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1. Executive Summary  

Stochastic scenario trees are a new and popular method by which surveillance systems 

can be analyzed to demonstrate freedom from pests and disease. For multiple component 

systems—such as a combination of a serological survey and systematically collected 

observations—it can be difficult to represent the complete system in a tree because many 

branches are required to represent complex conditional relationships.  

Here we show that many of the branches of some scenario trees have identical outcomes 

and are therefore redundant. We demonstrate how to prune branches and derive compact 

representations of scenario trees using matrix algebra and Bayesian belief networks. The 

Bayesian network representation is particularly useful for calculation and exposition. It 

therefore provides a firm basis for arguing disease freedom in international fora 
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2. Introduction  

Under the Sanitary and Phytosanitary Agreement of the World Trade Organization 

(WTO), measures taken to protect animal, plant or human health must be scientifically 

justified and supported by evidence 
(1)

. Countries which seek to impose sanitary measures 

can demonstrate freedom from particular pests, weeds or diseases (the word disease is 

used hereafter in a generic sense to refer to a pest, weed or disease) using a surveillance 

system, which may comprise a range of ongoing observations and tests—for example, 

observations by qualified personnel and structured serological surveys. Likewise, 

countries which wish to export commodities can use a surveillance system to demonstrate 

freedom from disease in the sources of those commodities.  

In many cases, however, even if signs of a disease have not been seen for many years, we 

cannot be confident that the disease is truly absent because introduction of the disease 

could be recent and most surveillance systems are not 100% sensitive. To maximize 

confidence in freedom from a disease, countries can use surveillance systems with 

multiple (preferably independent) components to increase the conditional probability of 

detection (that is, the probability of detection assuming the disease is present). In the 

animal health literature 
(2)

, demonstrating freedom from disease by calculating the 

probability of a disease being present across multiple components of a surveillance 

system has been a hot topic since the WTO began operations in 1995. Recently, Martin et 

al. 
(3, 4)

 presented a general methodology to analyse and support claims of freedom in 

complex surveillance systems using stochastic scenario tree models. The method assumes 

that if a disease is present in a country it must be present at some minimal prevalence 

when the surveillance is conducted. This is called the design prevalence, P*. For a single 

component of a surveillance system—such as a serological survey—the method partitions 

the reference population into groups within which all units have the same probability of 

being detected as diseased (assuming that the population is infected at the design 

prevalence). This division of the population allows calculation of the sensitivity of 

surveillance in both representative sampling schemes and targeted schemes (in which the 

sampling units are not independent). For multiple component systems, such as 

surveillance by field and abattoir sampling, the sensitivity of the combined components is 

estimated by serial application of Bayes theorem.  

Analysis of multiple-component systems using scenario trees is flexible, provides a 

quantitative estimate of the probability of freedom, can account for lack of independence 

between components, and allows incorporation of historical data. Scenario tree diagrams 

are also promoted by the World Organisation for Animal Health 
(5, 6)

 since they provide a 

clear and logical presentation of pathways, clarify ideas and assist in communicating the 

results of a risk analysis. The stochastic scenario tree methodology, therefore, has many 

advantages over traditional alternatives such as statistical analysis of structured surveys 

(which are expensive and difficult to implement) and qualitative assessments (which are 

subjective and not easily repeated). Scenario trees are also computationally simple and 

relatively easy to review compared to recent approaches using simulation models to 

evaluate the effectiveness of surveillance systems 
(7, 8)

. 

But the method has some drawbacks. For complex surveillance systems, one or more 

(potentially large) scenario trees must be constructed using spreadsheets or other 
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computer software. Unless specialist tools are used, implementation of large trees in 

software is prone to calculation errors and can be difficult to audit. This diminishes their 

value for risk communication—defined under international  standards as the open, 

interactive, iterative and transparent exchange of information 
(7)

. As we shall see in the 

following case studies, the scenario tree format can also obscure conditional relationships 

amongst risk factors, especially in complex models. 

To improve risk communication, we present alternative methods for analyzing multiple-

component surveillance systems. The methods are analogues of the scenario tree 

method—providing the same results in all cases—but can be simpler to implement using 

current software, and also provide alternative views of the system that are relatively easy 

to interpret and audit. The first method collapses the redundancy inherent in the multiple 

limbs of scenario trees and uses matrix algebra to simplify calculation of the sensitivity of 

each component of a surveillance system. The chief advantage of this method is that it 

produces a compact representation of the complete surveillance system and eases 

calculation of component sensitivities—though some practitioners would argue that the 

scenario tree representation is simpler to interpret. 

The second method reconstructs a scenario tree as a Bayesian belief network (BBN). 

BBNs are widely used for machine learning 
(8)

 and are increasingly used for modelling 

ecological systems 
(9, 10)

, but have received little attention in the surveillance literature. 

We will show that a BBN provides a compact diagram of the structure of a surveillance 

program, simplifies calculations, and extends the range of software that can be used for 

analysis. The sometimes tedious calculations required for analysis of surveillance systems 

can be performed by simply updating beliefs in components of the network using readily 

available software.  

In what follows, we introduce some key terminology and concepts from Martin et al. 
(3, 4)

 

and provide brief introductions to each of the new methods. We then use each method to 

analyse both a simple contrived example and the real example of Danish surveillance for 

classical swine fever described in detail by Martin et al. 
(3)

. To facilitate applications of 

the scenario tree methodology and its analogues outside existing veterinary applications, 

we provide tools for implementing the matrix method in spreadsheets, example code in 

the R statistical language 
(11)

, and examples of belief networks in various formats in the 

online appendices.  
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3. Key terminology and concepts 

In general, we follow the terminology introduced by Martin et al. 
(4)

, who consider that 

each surveillance system component, SSC, targets individuals (units) within a reference 

population (sampling frame). Tests or observations of individuals are defined as having a 

characteristic sensitivity Se (the probability that an infected individual yields a positive 

test) and perfect specificity (that is, the probability that a negative test result comes from 

a truly negative individual is one). Perfect specificity implies that all steps are taken to 

ensure that any positive results are thoroughly investigated to confirm or deny the 

(possibly false-positive) result—an assumption that simplifies the analysis but is not 

strictly necessary.  

A key quantity in the scenario tree method is the component sensitivity, CSe, the 

probability that the SSC would give a positive outcome given the individuals tested and 

that the reference population is infected at the design prevalence, P*. The purpose of the 

scenario tree is to partition the sampling frame into groups with a homogeneous history 

(where, for surveillance systems, history is defined as all factors that can affect the 

outcome of a test or observation). This allows calculation of the probability that a unit 

would yield a positive test at P* for each of the terminal nodes. All dependence between 

units—such as membership of the same region—is incorporated into the tree so that, 

given N terminal nodes, CSe can be calculated as  

 
N

i

iTCSe
1

)Pr(1 , (1) 

where Pr(T+)i is the probability of a positive test in the ith terminal node. For a system 

with J independent components, the sensitivity of the system can be calculated as  

J

j

jCSeSSe
1

)1(1 . (2) 

When the system components are not independent, SSe is calculated by sequential 

application of Bayes theorem, as described by Martin et al 
(4)

. And given SSe, Bayes 

theorem likewise yields a point estimate of the posterior probability of freedom given a 

negative surveillance outcome and some prior probability of disease being present in the 

country. Martin et al 
(4)

 extend the approach to account for sequential sampling schemes 

and uncertainty in the parameters—issues not considered here since the only differences 

in the methodologies lie in the calculation of sensitivities. 
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4. Matrix method 

Because the purpose of a scenario tree is to partition all units in the sampling space into 

groups with a similar history, each node in a scenario tree represents a historical state 

with the Markov property that the conditional probability distribution of future states 

depends only upon the present state. The properties of a scenario tree can therefore be 

computed by representing the tree as a Markov chain 
(12)

. To do so, we construct a 

transition matrix, each row of which forms a probability distribution of future outcomes 

for each state (it is row stochastic). The transition probabilities in this matrix correspond 

to the branch probabilities of an equivalent scenario tree representation.  

Consider the simplest surveillance application we can contrive, in which samples from an 

infected population are subject to a single test with sensitivity, Se. A scenario tree 

representing this system has three nodes representing the three possible states of a 

sample: (1) the undifferentiated state before testing is completed, (2) a positive and (3) a 

negative outcome (Figure 1).  

[Figure 1 hereabouts ] 

The corresponding transition matrix in canonical form is: 

100

010

10
to

 from
SeSe

P , (3) 

which shows that the Markov chain has two absorbing states corresponding to positive 

and negative outcomes of the test. The chain reaches absorption after just one step after 

which the samples have been partitioned into those with positive and those with negative 

outcomes. Using the distribution vector v0 = [100 0 0] (representing the initial state of the 

chain with all samples in the undifferentiated state), the distribution after one step can be 

calculated using the matrix expression 

Pvv 01 . (4) 

Given, for example, 100 samples with Se = 0.95, we obtain the expected distribution v1 = 

[0 95 5]. And because absorption is reached with one step, we also have v∞ = [0 95 5]. 

Note that, since the state of the system after partitioning into the absorbing positive and 

negative outcomes is of no interest, we can ignore subsequent outcomes using the 

simplified transition matrix P = [0, 0.95, 0.05]. In the node diagram, this would be 

represented by omitting the two ―self‖ loops. 

In this trivial example, the formulation of a scenario tree as a Markov chain has no 

obvious utility. Benefits arise in more complicated systems in which a reduced transition 

matrix can be formulated which retains the behavior of the full system. This 

simplification is achieved using a branch pruning algorithm similar to that used for binary 
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decision trees 
(13)

. We illustrate this approach fully in the case studies below. In brief, the 

method entails (1) pruning of outcomes having no interest (negative test results), and (2) 

pooling states which have different prior histories but identical distributions of future 

outcomes. These operations yield a simplified matrix amenable to manipulation and 

inference using spreadsheets or any software that allows matrix multiplication. 

For representative sampling schemes—where the proportions of units processed falling 

into each of the categories specified in the tree are the same as their proportions in the 

reference population—we can calculate the probability that any randomly selected unit in 

the population will give a positive outcome, CSeU, using the matrix product v0P
k
, where 

k is number of steps to absorption in the Markov chain described by matrix P. For a 

single sample, the initial state has zeroes everywhere except for its first element and we 

therefore need only compute the matrix power P
k
. Because the outcomes of the chain 

(and the scenario tree) are mutually exclusive, the probability of a positive result is the 

sum of those elements of P
k
 representing positive outcomes. To see this, notice that for N 

samples drawn from a reference population, each cycle of the Markov chain represents a 

partitioning of the N samples according to their disease risk or test response category. The 

number of such partitionings will equal the number of branching levels in the equivalent 

scenario tree representation. Given a k-level scenario tree, a complete partitioning of N 

samples is conducted by completing k cycles of the corresponding Markov chain—these 

operations being equivalent to equations 2 and 3 of Martin et al. 
(4)

. The overall 

component sensitivity, CSe, is then calculated using equation 4 of Martin et al. 
(4)

. That 

is:  

CSe = 1 – (1 – CSeU)
n
. (5) 

For targeted sampling schemes, in which the units processed are not independent, the 

matrix representation of scenario trees is not so useful for calculation of CSe because a 

new transition matrix must be prepared for each unique set of risk and test outcomes—a 

task best left to computer code. 
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5. Bayesian belief networks 

The second methodology can simplify calculation of CSe for both representative and 

targeted sampling schemes. The conditional independence of nodes in scenario trees 

means that they can be represented using Bayesian belief networks (BBN). A BBN is a 

probabilistic graphical model in which nodes represent variables and arcs encode 

conditional independence. For surveillance systems, a BBN can be constructed de novo, 

but can also be formed as a translation of a scenario tree representation following the 

same simplification steps used for representing a scenario tree as a transition matrix. One 

benefit from such a translation is that commercial and open-source software for analysing 

BBNs is readily available, and, once constructed, computation of CSeU for representative 

sampling schemes merely requires compilation of the network to obtain the probability of 

a positive result. The capacity for belief updating in BBN software permits 

straightforward analysis of sampling schemes in which the units processed are not 

independent. For each sample, the known information (e.g. risk categories from which 

the sample was drawn and the result of the test—which will always be negative in our 

case) is updated in the BBN. The posterior probabilities of infection at the unit and higher 

(e.g. herd) levels are then calculated by belief updating (probabilistic inference). Using 

the ensemble of posterior probabilities derived from all processed units, calculations like 

equation 5 then provide estimates of CSe.  

We now illustrate the matrix and BBN methods using two case studies: the first is a 

contrived example of surveillance for Foot and Mouth Disease (FMD) in an island nation; 

the second is the more complex case study of Martin et al. 
(4)

 which computes the 

sensitivity of Danish surveillance for classical swine fever (CSF) using serological tests 

collected at abattoirs. 



Insert Project Title 

   

 

 14 

6. Case Study 1. FMD surveillance 

Consider a country stratified into two cattle rearing zones. One zone (Low, comprising 

70% of the country’s area) is far from neighboring countries and the risk of FMD 

infection is low; the other (High) is close to neighboring countries where FMD is 

endemic and the risk of infection in that zone is judged by expert opinion to be high (say, 

RR_High = 5). We assume all livestock are owned by smallholders, so that there are no 

large herds and cattle are distributed evenly across the zones. Experts believe that the 

prevalence of infection, if established, would be at least P*A = 0.01 and have embarked 

on a program to sample cattle in each zone using an enzyme-linked immunosorbent assay 

with a sensitivity of ELISASe = 0.95. All positive tests are thoroughly investigated and so 

we assume the specificity of the test is 100%. A summary of fundamental parameters and 

derived quantities appears as Table I. 

[Table I hereabouts] 

[Figure 2 hereabouts] 

6.1 Matrix formulation 

The full scenario tree for this study (Figure 2a.) shows that the surveillance program has 

three classification levels for each surveillance outcome—zone status, animal status and 

test result. To construct a simplified transition matrix, we first observe that negative 

outcomes are of no interest and that uninfected cattle do not produce positive outcomes. 

Branches that lead to wholly negative outcomes can therefore be pruned. Second, since 

zone status affects the prevalence of infection but not the result of the ELISA, we can 

further simplify the model by pooling animals from both zones—after calculating the 

relative proportions of infected animals in each zone. Application of these two 

simplifying steps results in the node diagram shown as Figure 2b, in which nodes are 

numbered according to the row numbers of the transition matrix: 

P 

00000

0000

0000

0000

0010

ELISASe

EPIA_High

EPIA_Low

Pr_High_HighPr

. (6) 

The elements of P are transition probabilities (Table I) and their values are reflected in 

the width of the arrows joining nodes in Figure 2b. Pr_High (the proportion of animals in 

the High zone) and ELISASe are given a priori; the effective probabilities of infection 

(EPIA_Low and EPIA_High) are calculated for the low and high risk zones using the 

method discussed in Martin et al. 
(4)

. The sequence of calculations is: 

P*A = 0.01, 
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RR_High = 5, 

AR_Low = 1 / (RR_High x Pr_High + 1 – Pr_High), 

AR_High = AR_Low x RR_High, 

EPIA_Low = AR_Low x P*A, 

EPIA_High = AR_High x P*A, 

where AR_Low and AR_High are the adjusted relative risks in the Low and High zones, 

where ―adjusted‖ means that the relative risks are ―adjusted to ensure that the (weighted) 

average adjusted risk for the section of the SSC reference population represented by the 

risk node is 1‖ 
(4)

. For simplicity and generality these calculations can be represented in 

matrix format. If we extract the submatrix r as a column vector of relative risks for each 

zone, and construct c as a row vector of the proportion of animals by zone, then 

i ii

Ai
i

rc

Pr
EPIA

*

, i = 1 … 2, (7) 

and so the effective probabilities of infection which appear as elements in P is 

EPIA = P*A r(c r)–1. (8) 

and there is no need to calculate adjusted risks as an intermediate step.  

The node diagram shows that there are three classification steps. Hence, given matrix P, 

the sensitivity of the surveillance system can be calculated using 

P
3
 

00000

00000

00000

00000

0.00950000

. (9) 

The component unit sensitivity is CSeU = P
3
(1, s) = 0.0095, where s is the dimension of 

P. The surveillance system sensitivity (assuming independence) is then calculated as 

SSC = 1 – (1 – 0.0095)
n
,
 

(10) 

where n is the number of samples tested. 

In this particular case, there is no particular advantage in developing the matrix 

formulation other than that provided by the relative simplicity of the associated node 
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diagram (Figure 2b). Indeed, because we consider only positive outcomes, and the 

effective probabilities of infection must conform to the design prevalence, CSeU can be 

readily computed as the product   

CSeU = P*A . Se = 0.0095.
 

(11) 

A feature of the matrix formulation, however, is that it clearly shows that CSeU is linear 

in the parameters of equation 6, and so variation in these parameters has no effect on the 

expected value of CSeU. Hence, if the mean of CSeU is the only parameter of interest, 

simulation is not required for its estimation.  

Code for calculation of CSeU in this case study is provided as an Appendix. 

6.2 Bayesian belief network representation for the FMD study 

Structurally, the BBN for the FMD case study is trivial (Figure 3a). A Zone node displays 

the probability that a sample derives from the High or Low zone; a Disease node enforces 

the design prevalence; and a Test result node allows for the sensitivity of the ELISA test. 

Some care needs to taken to populate the conditional probability tables (CPTs) of the 

nodes: the CPT of the single marginal node (Zone) is populated using Pr_High = 0.3 (and 

1 – Pr_High = 0.7); the CPT of the Test result node is populated using ELISASe and our 

assumption that ELISASp = 1 (i.e. that the specificity is 100%); and the CPT of the 

Disease node is populated using equation 8.  

[Figure 3 hereabouts] 

The value of the BBN formulation lies in the clear presentation of dependency and 

outcomes in Figure 3. As the arrows imply, the presence of disease depends only on the 

zone and the result of testing depends only on the disease status. A check that EPIA_Low 

and EPIA_High have been calculated correctly is provided by the Disease node which 

(when the network is evaluated) displays our belief that a randomly selected sample 

comes from a diseased animal, P*A = 0.01. The value we seek, CSeU, is displayed in the 

Test result node as the probability of the state Positive, from which we derive CSe using 

equation 5. 

The structural simplicity of a BBN makes extensions of the basic model simple. For 

example, chronic diseases such as paratuberculosis of cattle are more likely to be found in 

older animals, and so the design prevalence should be distributed across age classes 
(14)

. 

Accounting for zone-specific age distributions and age-specific probabilities of infection 

in a scenario tree version of the FMD model would require az branches to represent the 

zone and age classes (where a is the number of age classes and z is the number of zones). 

By contrast, a BBN version requires just one extra node (Figure 3b). In both versions, 

recursive application of equations like 8 can provide the effective probabilities of 

infection.  

Our next case study highlights both the expository value of the alternative formulations 

and the use of the BBN for calculating CSe for both representative and targeted sampling 

schemes. 
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7. Case study 2. Danish CSF 

This case study is based on a real example of Danish surveillance for CSF. Here we 

compare the scenario tree analysis of Martin et al. 
(3)

 with analyses using a transition 

matrix and a BBN. A complete description of the system is provided by Martin et al. 
(3)

, 

including a depiction of the full scenario tree (their Figure 2). In brief, the surveillance 

system uses a serological test of blood samples collected from adult pigs at abattoirs. The 

samples are classified by county of origin, herd status and farm type. We focus here on 

calculation of CSe for this system. 

6.3 Matrix formulation for the Danish CSF study 

Construction of a simplified node diagram—using the branch pruning algorithm—yields 

Figure 4. The node diagram shows that the expected proportion of positive samples at the 

design prevalence can be partitioned from the complete set of samples in six steps. 

1. Herds are selected from either South Jutland (high risk) or other (low risk) 

counties. 

2. Of these, a proportion of herds from each zone could be expected to be infected 

given herd prevalence P*H and the relative risk of infection in each zone. 

3. Infected herds may be breeder or slaughter herds. The proportion of each type 

differs between zones. 

4. All pigs in slaughter herds are growers, but breeder herds have both adults and 

growers and the proportion of each differs between the two zones. 

5. Blood samples are taken from adult and grower pigs which have different risks of 

infection. The design animal prevalence, P*A, and relative risk of infection allow 

us to determine how many of each age class would be infected. 

6. A proportion (ELISASe) of all blood samples from infected pigs return positive 

results. This proportion does not depend on age class. 

The nodes of Figure 4 are numbered sequentially left to right and top to bottom with 

numbers corresponding to the entries in the description of the transition matrix, A (Table 

II).  

[Figure 4 hereabouts] 

[Table II hereabouts] 

Most of the transition probabilities are calculated following the methods in Martin et al 
(3)

, but our matrix formalism provides a shortcut for calculating the effective probabilities 

of infection for each age class. Slaughter herds have only growers and so the effective 

probability of infection for them is P*A. In breeder herds, the effective probabilities of 

infection depend on the design animal prevalence, P*A, and the number of pigs of each 

class in this type of herd. We are given P*A, but the number of pigs in each age class 

must be calculated using the earlier transition probabilities. This is most easily achieved 
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by computing the matrix power Pr
4
, where Pr is the reduced matrix obtained by removing 

the last two rows and columns of the full transition matrix, P. We then obtain the 

proportion of samples of these classes using columns nine and ten of row one of Pr
4
 

(since these nodes represent the proportions in each age class after the earlier 

classification steps). This yields proportions c = [0.42, 0.58] and thence, using equation 8 

with r = [5, 1], effective probabilities of infection = [0.0933, 0.0187] (Table II). Finally, 

using the completed matrix, we compute P
6
 to obtain a CSeU for representative sampling 

of 0.000475. 

As in the previous example, the matrix formulation (displayed as a node diagram, Figure 

4) provides a relatively simple overview of the sampling scheme. The diagram is 

complete, all parameters contributing to the calculations are displayed, and derived and 

fundamental (where fundamental refers to assumed or externally estimated values) 

parameters are clearly distinguished. 

Bayesian belief network representation for the Danish CSF study 

The BBN for the CSF study is presented as a network diagram in Figure 5a. The 

unshaded nodes indicate states of the population of samples, while the shaded Sampling 

scheme node indicates the choice of either Representative or Targeted sampling. When 

the Sampling scheme is Representative (as shown in the figure) the probabilities of each 

state in the County, Age and Herd type nodes (Table III) match the expected proportions 

for non-targeted sampling of the Danish pig population (see Table II). When the 

Sampling scheme node is set to Targeted, the CPTs ensure that only adult breeders are 

sampled and the probability of a sample being from South Jutland matches the observed 

proportion (Figure 5b). 

[Figure 5 hereabouts] 

[Table III hereabouts] 

County and Age CPTs are populated directly using Table II, and the Herd status CPT is 

populated using equation 8. Setting values of the remaining CPTs is relatively 

complicated and is dealt with below. For now, we note that the display of the network in 

the Netica
TM

 software 
(15)

 (Figure 5) provides a rough check that these calculations have 

been performed correctly: for the state Infected, the Herd status node displays the herd 

design prevalence, P*H, and the Animal status node displays (as a percentage) P*H.P*A = 

0.0005. 

To set the CPT of the Animal status node, we first set Sampling scheme to Representative 

and Herd status to Infected. We then set the belief in Herd type to Breeder and compiled 

the network to obtain the distribution amongst age classes. This yields the same 

proportions obtained using the matrix method, c = [0.42, 0.58] and we then use equation 

8 to obtain effective probabilities of infection EPIAbreeder = [0.0933, 0.0187]. Repeating 

the process after setting Herd type to Slaughter yields EPIAslaughter = [0.25, 0.05] (see 

Table IV). Notice that setting beliefs in the BBN reflects the assumption in Martin et 

al. 
(3)

 that the prevalence in a herd—given that it is infected—is P*A regardless of the 
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herd type. The differences between the effective probabilities of infection between 

Breeder and Slaughter herds arise because of differences between age distributions of the 

two Herd types and the requirement to jointly satisfy the relative risks and design 

prevalence, P*A. As the arrow from Herd type to Animal status in Figure 5 implies, under 

this assumption Animal status is only conditionally independent of Herd type.  

[Table IV hereabouts] 

An alternative analysis is possible by removing this relationship, reflecting a new 

assumption that Herd type affects Animal status only through differences in Age class. 

For representative sampling, this yields the Age classes r = [0.204, 0.796] (Adults, 

Growers), from which we obtain EPI = [0.138, 0.0276]. While preserving the overall 

animal-level design prevalence, this assumption means that the level of infection is 

assumed to be higher in Breeder herds which contain more susceptible (Adult) animals. 

This increases the estimate of the sensitivity of the surveillance system—which happens 

to target Breeder herds. This assumption may be realistic, but the decision to allow 

variation in P*A at this level will often be dictated by international standards and the 

requirements of trading partners
(4)

.  

The final step is to calculate the CSe for the targeted sampling scheme. For this we 

require two quantities for each herd: 

1. SeHi: The herd sensitivity is the probability that one or more positive outcomes 

will be obtained when ni animals are sampled and the herd is infected at the 

(animal-level) design prevalence P*A. 

2. EPIHj: The effective probability of infection of a herd in county j. 

With the BBN representation of the sampling scheme, the conditional probability of any 

particular state can be calculated by belief updating. Given two events A and B where A 

precedes or causes B, our belief in B given knowledge of A is 

Pr(B) = Pr(A).Pr(B|A), (12) 

while knowledge of B gives us  

Pr(A) = Pr(B)/Pr(B|A). (13) 

An algorithm to calculate SeHi and EPIHj for each herd can therefore be devised using 

two applications of 12: 

1. Set the state of the Sampling scheme node to Targeted 

2. Set the state of the County node to the county of origin of the herd (South Jutland 

or Other) 

3. Read EPIHj as the belief that the Herd status is Infected (given that sampling is 

targeted and the county is known) 

4. Now set the Herd status node to Infected 
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5. Read the probability that an individual sample yields a positive result in an 

infected herd in county j (PUPosj) as the belief that Serology is Positive (given 

that sampling is targeted, the county is known and the herd is infected) 

6. Set SeHi equal to 1 – (1 – PUPosj)
n
. 

As shown in Martin et al. 
(3)

, the prior probability of a negative herd test is then 

Pr(Herd i in county j is negative) = 1 – SeHi.EPIj, (14) 

and the CSe for the targeted sampling scheme is 

2

1 1

).1(1
j

I

i

ij

j

SeHEPIHCSe , (15) 

where Ij is the number of herds in the county from which samples have been processed. 

The calculations above use knowledge of causes to infer probabilities of an effect 

(equation 12); the reverse calculation (13) is most useful when more than one sampling 

scheme targets a sampling unit or cluster. For joint sampling of, say, a herd we must 

calculate the posterior probability of a negative test in the first sampling scheme (see 

section 5.2. in 
(4)

). In the BBN for CSF this is easily achieved by setting node states 

appropriately to account for ancillary information (e.g. County, Age, Herd type) and 

setting the Serology node to Negative. This yields the posterior estimate of EPIHj in the 

Herd status node (Figure 5b). If more than one sample is collected from a herd, we apply 

Bayesian revision—that is, the posterior estimate of EPIHj from each sample becomes 

the prior EPIHj for the next sample. 
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8. Discussion 

The methods presented here provide compact overviews of surveillance systems and 

expand the range of tools that can be used for their analysis. The matrix method yields a 

simple diagram and provides a useful method for calculating the effective probabilities of 

infection for programmers and statisticians. Formulation as a matrix permits some kinds 

of automated analysis. Figure 2b, for example, was constructed (semi) automatically 

using an existing routine to draw diagrams based on demographic matrices 
(16)

. The 

requirement to transcribe probabilities into the correct location in a transition matrix, 

however, can make implementation tedious, prone to errors, and difficult to audit.  

The BBN is a more generally useful formulation. BBN node diagrams provide a compact 

representation of surveillance systems, such that the structure can be understood at a 

glance. The node diagram required for CSF surveillance (Figure 5) requires just seven 

nodes to represent the complex scenario tree equivalent. Indeed, the BBN version is 

actually a superset of the scenario tree shown as Figure 2 in Martin et al. 
(3)

 since the 

Sampling scheme node represents the cloning of a complete tree to model a targeted 

sampling scheme. As Figure 3b demonstrates, it is often a relatively simple matter to 

model additional complexity by adding structure to a BBN, especially where a single 

factor, such as age, affects more than one state or event.  

BBN node diagrams provide a particularly clear representation of conditional 

independence. Our Figure 5 shows that Herd type is affected only by the County of a 

sample. County affects the distribution of Age class and Herd type, and whether an 

individual animal is infected in an infected herd depends on both of these factors. Our 

alternative analysis is easily depicted by dropping a single connection in the diagram 

(from Herd type to Animal status). Conditional relationships are high-level structures in 

the model—as opposed to the low-level structures in the CPTs—and such relationships 

are difficult to discern amongst the branches and leaves of scenario tree diagrams, for 

which branch labels are be required to depict some of the conditioning. A BBN diagram, 

therefore, provides a more visually accurate depiction of dependence relationships than a 

scenario tree. 

BBN diagrams are particularly useful for exposition and auditing. Several software 

packages provide interactive tools for working with BBNs. Users of the software can set 

beliefs for any node and obtain instant feedback when beliefs for other nodes are 

calculated. This capacity, and the visual feedback provided by the display of probabilities 

both as numbers and ―belief bars‖ (as illustrated in Figures 5a and 5b) makes it easy to 

check the BBN for consistency with data and assumptions—an essential step for 

reviewing claims of freedom from disease.  

A BBN can be converted into an influence diagram, which can be used directly as a tool 

to assist decision makers 
(17)

. In the CSF example, the Sampling scheme node could easily 

become a decision node for evaluation of alternative sampling strategies. Given sampling 

costs, and a value for the confidence in freedom, the decision node would rank strategies 

according to their expected utility. It then becomes a simple matter to place a value on 

additional information and determine the sensitivity of the network and its outputs to 

different surveillance components. 
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Calculation of component sensitivities using a BBN poses some practical difficulties. 

First, calculation of probabilities for multiple clusters (e.g., herds) where risk factors vary 

by cluster requires either automation by code or tedious pointing and clicking via the 

graphical user interface of a software program. However, the code required is quite 

straightforward. For the CSF example, we automated Netica
TM

 via its COM interface 
(18)

, 

with each step in the algorithm requiring just one line of code. Automation by code is a 

generally useful technique, since it allows an existing BBN to be used as a component of 

a simulation program. This can obviate the need to discretize continuous variables—

which can lead to errors in BBNs 
(19)

—and also permits stochastic simulation. 

A more serious problem with the BBN formulation of a surveillance problem is that some 

of the logic and relationships are hidden—not in the nodes and arrows of the diagram—

but in conditional probability tables. These relationships are explicit in the scenario tree 

format at the expense of greater clutter in the resulting diagram. Scenario trees are rightly 

promoted in the OIE handbooks on import risk analysis 
(5, 6)

 as an aid to logical 

identification of pathways and information requirements. Their value for ―clarifying ideas 

and understanding the problem‖ 
(6)

, however, diminishes with complex surveillance 

programs for which a BBN node diagram provides greater clarity. In the examples 

presented here, low-order relationships are encapsulated in the particular probabilities of 

the CPTs. These are populated using observed frequencies and application of equation 8 

(Tables III and IV). In more complex applications, extra care may be required to ensure 

that CPTs are well documented and that they accurately represent data and assumptions. 

For surveillance systems where systematically collected data is available, the BBN 

formulation is a bridge to a fully Bayesian analysis using Markov chain Monte Carlo 

methods to obtain posterior estimates of prevalence based on prior distributions of model 

parameters (e.g., 
(20-22)

). The dependence on prior distributions makes such methods 

inherently controversial 
(23)

 but the scenario tree and BBN approaches have a similar 

credibility problem when there is uncertainty in detection probabilities and other 

parameters. In both approaches, many sources of uncertainty—e.g., in parameter values, 

bounds and model structure—are ignored for the sake of exposition and mathematical 

tractability. Burgman et al. 
(24)

 have recently demonstrated how information-gap theory 
(25)

 can be used to make robust decisions by accounting for such uncertainty in BBNs. 

There is no fully satisfactory general methodology for proving disease freedom in 

international fora. For complex surveillance systems, BBNs and the calculation methods 

presented here extend the reach of the scenario tree methodology, making some claims 

easier to analyze and audit.
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Table I. Case Study I. Fundamental parameters and derived quantities 

 
Name Value Calculation Explanation 

 

Fundamental parameters 

PrP_High 0.30 Fixed value Proportion of animals close to infected country (high 

risk) 

RR_High 4 Fixed value Relative risk of infection close to infected country 

P*A 0.01 Fixed value Animal design prevalence 

ELISASe 0.95 Fixed value ELISA sensitivity 

 

Derived quantities 

AR_Low 0.526 1/(RR_High x PrP_High + 1 – PrP_High) Adjusted relative risk of infection for animals far from 

infected country 

AR_High 2.11 AR_Low x RR_High Adjusted relative risk of infection for animals close to 

infected country 

EPIA_Low 0.00526 AR_Low x P*A Effective probability of infection for an animal far from 

infected country 

EPIA_High 0.0211 AR_High x P*A Effective probability of infection for an animal close 

infected country 
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Table II. Transition probabilities for the Danish CSF case study. Proportions of herd types and age classes derived from 

Table 3 of Martin et al. (3). Effective probabilities of infection calculated as described in the text. 

 
From To Formula Value Explanation 

1 2 PrP_SJ 0.0913 Proportion of herds in South Jutland (SJ) 

1 3 1 – PrP_SJ 0.909 Proportion of herds in other counties 

2 4 EPIH_SJ 0.0285 Effective probability of infection for a herd in SJ 

3 5 EPIH_Other 0.00814 Effective probability of infection for herds in other counties 

4 6 PrP_SJ_Breeder 0.472 Proportion of breeder herds in SJ 

4 8 1 – PrP_SJ_Breeder 0.528 Proportion of slaughter herds in SJ 

5 7 PrP_Other_Breeder 0.489 Proportion of breeder herds in other counties 

5 8 1 – PrP_Other_Breeder 0.511 Proportion of slaughter herds in other counties 

6 9 PrP_SJ_Breed_Ad 0.45 Proportion of adults in breeder herds in SJ 

6 10 1 – PrP_SJ_Breed_Ad 0.55 Proportion of growers in breeder herds in SJ 

7 9 PrP_Oth_Breed_Ad 0.41 Proportion of adults in breeder herds in other counties 

7 10 1 – PrP_Oth_Breed_Ad 0.59 Proportion of growers in breeder herds in other counties 

8 10 PrP_Slaughter_Grower 1 Proportion of growers in slaughter herds (all counties) 

9 11 EPIA_Breeder_Adult 0.0933 Effective probability of infection of an adult in an infected breeder herd 

10 11 EPIA_Breeder_Grower 0.0187 Effective probability of infection of a grower in an infected breeder herd 

11 12 ELISASe 0.95 Sensitivity of the CSF ELISA 
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Table III. Case Study II. Conditional probability table for the (a) Herd type and (b) 

Age nodes. In each case the elements reflect observed proportions in the sampled 

population. 

 
(a) 

Sampling scheme County Breeder Slaughter 

Targeted South Jutland 1 0 

 Other 1 0 

Representative South Jutland 0.472 0.528 

 Other 0.489 0.511 

(b)  

Sampling scheme County Herd type Adult Grower 

Targeted South Jutland Breeder 1 0 

  Slaughter 0 1 

 Other Breeder 1 0 

  Slaughter 0 1 

Representative South Jutland Breeder 0.45 0.55 

  Slaughter 0 1 

 Other Breeder 0.41 0.59 

  Slaughter 0 1 
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Table IV. Case Study II. Conditional probability tables for the (a) Herd status and 

(b) Animal status nodes. Calculation details are described in the text. 

 
(a) 

County Infected 

(EPIH) 

Uninfected 

(1 – EPIH) 

South Jutland 0.0285 0.972 

Other 0.00814 0.992 

 

(b) 

Herd status Herd type Age Infected 

(EPIA) 

Uninfected 

(1 – EPIA) 

Infected Breeder Adult 0.0933 0.907 

  Grower 0.0186 0.981 

 Slaughter Adult 0.25 0.75 

  Grower 0.05 0.95 

Uninfected Breeder Adult 0 1 

  Grower 0 1 

 Slaughter Adult 0 1 

  Grower 0 1 
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Figure 1. Node diagram representation of a scenario tree for a sampling scheme 

in which an infected population is subjected to a single test. It has three nodes 

being: (1) ‚All‛ the undifferentiated state before testing is completed, (2) ‚+‛ 

positive and (3)  ‚–‚ negative outcomes. 
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Figure 2. Scenario tree for Case study I (a) and corresponding node diagram (b) in which the width of the arrows 

approximates the transition probabilities—created using the Poptools (16) software.  
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Figure 3. (a) Bayesian belief network for the FMD scenario tree as displayed by the NeticaTM software (15), and (b) an 

extension of the network to include zone-specific age distributions and age-specific probabilities of infection. 

 

(a) 

Test result

Positive
Negative

0.95
99.0

Disease

Infected
Uninfected

1.00
99.0

Zone

Low risk
High risk

70.0
30.0

 

(b) 

Disease

Infected
Uninfected

 1.0
99.0

Test result

Positive
Negative

0.95
99.1

Zone

Low risk
High risk

70.0
30.0

Age_class

Young
Mature
Old

40.0
47.0
13.0

 
 



Insert Project Title 

   

 

 30 

Figure 4. Node diagram for Case study II showing possible histories for positive samples. Fundamental parameters are 

shown in bold font. The width of the arrows approximates the transition probabilities. 
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Figure 5. Bayesian belief network representation for the Danish CSF study in (a) the ‘default’ state in which the Sampling 

scheme node is set to Representative but no other information is know about a sample, and (b) in the state required to 

calculate a posterior probability of infection of a herd given a single negative sample from South Jutland in the targeted 

sampling scheme. 
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