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ABSTRACT

Trade in commodities is rarely simple. Biosecurity risk material occurs in a variety of ag-
gregations such as farms, containers and cases in the importation pathway. Assessing either
the effectiveness of mitigation methods or the risk of incursion often requires considering this
context. This report provides tools to support this assessment. We have proposed a mathe-
matical/statistical method to model complex pathways which often occur in quantitative risk
assessments in biosecurity. The mathematical models we have developed in this report include
pest infection, mixing and inspection. Monte Carlo simulation techniques were used to analyse
different stages of mixing and inspection. A worked example is given to illustrate the proposed
modelling and analysis techniques. All the required computing functions have been coded in
R and bundled together to form an R package called cpathway for easy adoption by decision
makers.

Keywords: risk assessment, biosecurity, complex risk pathway, simulation.



1 Introduction

Risk assessment methodology has wide application in government. The exact definition of risk
assessment is problematic, but it typically involves identifying an end point which is undesirable
and then modelling the likelihood of occurrence of this endpoint and the possible consequence
if this endpoint occurs. The focus on a defined endpoint, and the structured process that is used
to calculate the likelihoods (and possibly the consequences) are the major attractions of the
methodology to policy.

Much of the methodology of risk assessment has strong roots in the engineering literature. A
popular approach is the use of failure trees and probability techniques to analyse the likelihood
and modes of failure. The likelihood of an endpoint such as the failure of a structure or device is
routinely assessed via these approaches. More recently, the analysis of biosecurity risks has also
been considered in this framework (Office International des Epizooties (OIE), 2004a,b; Michael
and Podleckis, 2000; Gray et al., 1998). This occurred because of a desire to more transparently
describe the logic of the assessment and to better characterise uncertainty. This report consid-
ers a particular aspect of this analysis that occurs when assessing the risk of importation of a
commodity to a country.

In Australia, applications to import commodities are assessed to ensure that they do not impose
an unacceptable risk to local industries and the environment. In certain cases a quantitative
assessment may be performed to assess the particular risk. This assessment involves construct-
ing a quantitative model that consists of the pathway through which the commodity is imported,
inspected and distributed. Individual identified pests and diseases are assessed against this path-
way to assess their risks.

The construction of a pathway typically involves deciding on a unit of analysis (Miller et al.,
1993; Vose, 2008). For example, individual fruit, cases of fruit, or pallets of cases could be
considered as an appropriate unit for analysis depending on which of the importation stages is
the most critical. The choice of unit also has implications for the ease with which available data
can be used and how the risk of individual units is aggregated into the overall risk. While the
biosecurity risk assessment literature has identified the importance of choosing an appropriate
unit to aid the formulation of the model, and the associated closeness of the model to the real
world, it has not considered more complicated behavior that occurs in pathways. It has not
considered modelling of complex pathways generally. However, this is important because this
behaviour may strongly influence the likelihood of establishment and therefore have a direct
influence on the overall assessment. Simple cases such as herds and individual animals have
been considered by a number of authors (see for example Office International des Epizooties
(OIE) (20044a,b)). Hartnett et al. (2007) alluded to an object oriented model that may consider
this phenomenon, but it was not explicitly described.

This report considers the general modelling of more complex pathways in biosecurity risk as-
sessments. It considers the logical basis of this analysis as well as the techniques for efficiently
computing them. It first reviews the issues that arise in an import pathway in Section 2. In
Section 3, it introduces an elaboration of the usual pathway model utilizing zero inflated dis-
tributions and mixtures, and sampling aggregates of them, to model risk. Section 4 contains
a worked example. The technique is further discussed in Section 5 before the report is con-
cluded in Section 6. In the Appendices, the descriptions of all the developed R functions of the
cpathway will be given together with the R code.



2 Pathway analysis

Pathway analysis typically refers to the specification of a particular outcome (or endpoint) and
the decomposition of the steps that need to occur for the outcome to occur (Vose, 2008). The
steps are typically sequential in time and hopefully represent the key components of the process
that leads to the outcome. An example from biosecurity is the probability that a disease spreads
and establishes in a country because of the importation of particular goods. For this to happen
it must occur on the farms the imported goods are sourced from. It must survive the packing
and shipment process. It must survive inspection at the border and distribution. It must be
transported to a region where it can establish, and it has to expose susceptible hosts in the
region that it is imported to and then establish and spread. This model is closely related to the
international standards for import risk assessment (Office International des Epizooties (OIE),
2004a,b), and is shown schematically in Figure 2.1.

This type of analysis has a long history in risk assessment, commencing in 1962 in relation
to nuclear missile safety. The analysis typically assigns probabilities to each of the pathway
steps which give the probability of infection/disinfection depending on the nature of the step.
Probability distributions are assigned to these probabilities to express “uncertainty”. Standard
calculation (typically Monte Carlo) is then used to predict model outcomes from the structure of
the model and the uncertainty distributions. The model outcomes typically produce likelihoods
that are used to quantify risk. This approach has a large number of proponents and has a sound
basis in probability theory. Provided that the beliefs of the person or group carrying out the
assessment are adequately represented by the probability distributions, the quantities used in
the model are well defined, and the construction of the pathway reflects the real world beliefs
about possibilities and plausibilities, then these probability calculations can be used to integrate
the information in a consistent and interpretable way.

It is the construction of an adequate stochastic representation of the pathway which is the focus
of this report. A common phenomenon in these models is that people confuse the process
and the empirical description of the process. A simple example is illustrative. In analysing
the pathway in Figure 2.1 the standard approach as advocated by Vose (2008) and others is
to decide on the unit of analysis. Imagine our choice is to consider individual fruit and to
aggregate these fruit over the volume (number of fruit) of the trade. If we have probabilities
associated with each step in the pathway we have implicitly defined a stochastic process for
the generation of the risk. Any mathematical model of a physical process is just a mathematical
abstraction of the process. Problems arise with the strong assumptions of independence between
units (fruit). The model is also inconsistent with how risk is normally formed, transmitted
and propagated. This is a particular danger when dealing with subject matter experts who are
not used to expressing opinions quantitatively. If the quantities are not grounded in reality,
miscommunication is almost inevitable.

Pathway analyses based on fixed units strike difficulties for a number of reasons. First, the effi-
cacy of inspection processes depends on the infection status of other units in the consignment.
If the unit of analysis is not the same as the consignment then significant difficulties will arise.
Another issue is that the risk of an infected individual unit might depend on the infection sta-
tus of nearby units. An example would be where insect pests are involved and there are allee
effects. The final point is that significant errors can occur if using marginal probabilities over
complex populations and processes. This is considered in a related report (Barry, 2010).

If one is tied to a simple pathway approach with simple probabilities, we need to consider



Figure 2.1: Hypothetical pathway.



alternative approaches and representations. If the reader is confused about why such a constraint
should be applied to the analysis, it is useful to understand that the major proprietary tool in this
area, @Risk!, has a strong alignment towards models with this structure.

One possible avenue is to consider the trade over the specified period as a “bucket” of the
commodities. The “probabilities” in the models are then interpreted as proportions, being the
proportion of the commodity at each step that will be impacted by the nature of the step. In this
case the expert is being asked to describe the hypothesised future trade in aggregate. This has the
advantage of being a concrete concept that an individual can be comfortable with and it could
potentially occur. Difficulties still arise. Each step needs to be conditioned correctly on the
previous steps for the propagation of uncertainties to be valid. In addition, the model is marginal
in the sense that it has no concept of clustering of risk units. This aspect is important because
risk and the number of infected units are typically non linear due to allee effects between model
variables. Thus the analysis needs to consider side analyses to take these things into account.
This approach is considered in a related report (Barry, 2010) which also discusses the impact of
ignoring clustering.

Alternatively, if we still want to respect the process we need to consider more realistic formula-
tions. This is the focus of the remainder of the paper.

3 Models

The choice of an appropriate model is a trade-off between available data, understanding of
process and the purpose of the model. We propose modelling the risk of units via a hierarchical
distribution. If we consider a unit such as a tonne of a commodity, each unit is made up of
multiple items (fruit, as an example). We propose modelling the infection status of the unit via
a two-step process. First we have a probability p that the unit has any infected elements (fruit).
Let this be denoted by the indicator y. Conditional on y, we model the proportion of the unit
that is infected, o as some distribution f(«; ), with 0 being the associated parameters which
define the distribution. This approach provides the framework for moving between elements
within the hierarchy. For a three level hierarchy the obvious extensions can be used.

An example distribution is shown in Figure 3.1. It shows the distribution of infection over
the population of infected units, f(c; ) with « the proportion infected and 6 the associated
parameters which describe the distribution of «. In this case the distribution is from the Beta
family and therefore 6 is the two parameters of this distribution. From this figure it can be seen
that the most likely amount of infection is 0.005 and very few units have infection rates above
0.06.

By having an explicit formulation for the structure of the units it is possible to coherently move
between different units at each stage of the process, tracking the infection status appropriately.
For example consider the pathway in the previous section. Initially the commodity (say, apples)
is sourced from farms. These are packed into some unit, such as a bin and transported to a
packing shed. At the packing shed inspections may occur and remedial actions applied to the
bin. The apples are then packed into new units such as the pallet. These pallets are then imported
and may be inspected, with selection and management actions occurring over the pallet, rather
than the individual fruit. After this they may be repacked and distributed to end consumers.

'www.palisade.com



In analysing these pathways there are three statistical issues that arise. These are the mixing
that occurs when commodities are repackaged into new units, the effect of inspection on units
and the pattern of distribution of the final risk after inspection. These will now be discussed in
the following sections.

Density
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Figure 3.1: Distribution of infection rate within units.

3.1 Mixing

At the packing shed, units from farms may be mixed with units from other farms. They are then
packed into new units such as pallets.

In practice the level of mixing that occurs may vary from day to day and location to location. In
any application a choice needs to be made about the level of abstraction of the mixing process
that is incorporated in the model that can still produce interpretable results. Complicated models
are typically difficult to parameterise and interpret, while simpler models may miss important
features. The choice will depend on the analysis.

As the key building block we consider either deterministic or stochastic mixing of risk. With
deterministic mixing we need to define a level of mixing. For example, if we assume that a final
unit is made up of a fixed mixture of k input units we need to calculate the resulting infection
distribution. The proportion of infected units in the mixture is

1 k
T = %Zﬂ_zyzaz



where the index % denotes the input units and 7 gives the mixing proportions, >, m; = 1. The
distribution of this data for £ = 2 and equal mixing is

Pr(z=0)=(1-p)?

and )
fla) = p*f () +2p(1 = p) f(a
(@) = = 117 (@) + 201 = p)fa)
with f*(«) being the probability density of the sum
1 1
5041 —+ 5(1/2.

Note that p is the proportion of units that are infected, defined earlier.

The mixture distribution obviously becomes notationally more complicated as the number of
mixing components increases, but the interpretation is straightforward. Practically, it is more
general to consider using Monte Carlo methods to perform these calculations. As the range of
the random variables is finite, E[Y?] is finite and it can be proved that all percentiles of the
distribution can be approximated with arbitrary levels of uncertainty, controlled by the sample
size chosen. Thus Monte Carlo methods are appropriate in this case.

The specification of the form of mixing will depend on the experts’ opinions about the appro-
priate pattern for this mixing. Possible approaches are:

e Deterministic, as discussed above. This gives the greatest amount of mixing.

e Dirichlet mixing components, which use a Dirichlet distribution to specify the mixing
proportions with its parameters determined by experts. This introduces extra variation
which may exist in certain systems, and this variation may be significant.

e Multinominal mixing, where components come from a multi-nominal distribution over
the input elements. In this case the mixing components are generated by a multinomial
selection of units to mix.

The choice will depend on the problem at hand. Different choices will lead to greater or lesser
amounts of mixing. In different contexts each may be plausible and reflect the process. The key
issue is that it needs to be taken into account in some way.

These procedures have been implemented in R and are described in Section 7. Examples are
given in Figure 3.2 and Figure 3.3.

3.2 Inspection

Inspection processes can be specified conditional on the level of infection and the action taken
will depend on the situation at hand. The inspection process is defined as some function [D|«]
where D is an indicator for whether the contaminant is detected. D = 1 if contamination is
detected and 0 otherwise.

Detection of pests can lead to two main intervention strategies. In the first case, the entire
cluster may be condemned and removed from the risk pathway. In this case, the effect of the
intervention on the distribution of risk in the units is to modify the proportion of infected fruit
by

p* = p x Pr(Destroyed) = p/ol[D|oz]f(oc)doz

9
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Figure 3.2: Mixing 50/50 deterministic mixing. Plotted curve is the density of « for the mixture.
Variation in the mixture distribution occurs due to Monte Carlo errors.
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Figure 3.3: Mixing 25/25/25/25 multinominal distributions. Plotted curve is the density of «
for the mixture.
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In other words the proportion of units that are uninfected will increase and the distribution of
infections will be modified. In the second strategy, detected units are removed but the unit
remains. In this case further assumptions are required about the number of sub-units in the
units to complete the analysis.

4 Example

4.1 Introduction

In this example we consider importing fruit originated from overseas farms which might be
infested by a pest. We apply the complex pathway modelling and analysis techniques described
in the previous sections to estimate the infection distribution at each stage of the importation
process, including the final infection distribution in the distributed product after inspection.

This could be done as part of an integrated assessment of the risk posed by a particular trade.
For example, a country might want, as part of a systems approach, to argue that the mixing of
materials was a contributing factor to achieving an acceptable level of protection.

We will describe the modelling and analysis process step by step.

4.2 Modelling and analysis

Step 1: Scenario description Assume there are four fruit farms considered in this example
with each of them producing the same kind of fruit. Fruit from these farms is harvested
into bins and then transported into a central packing house. Within the packing house,
fruit is boxed with fruit selected from bins supplied by the four farms in equal propor-
tions. Each box contains 50 pieces of fruit. These boxes are then stacked onto pallets
and put into larger containers before being shipped overseas. Pest inspections will be
undertaken after importation before being distributed to final consumers. The inspections
will be done by randomly selecting a box from a pallet within a container. This is an
inspection of 50 individual pieces of fruit as each box contains 50 pieces of fruit and all
fruit is individually inspected. How many boxes in total will be inspected depends on
the intended size of inspections. Also assume that, if one or more pieces of fruit in a
box is detected as infected during inspection, the whole pallet will be removed from the
pathway.

What we are interested in calculating is the distribution of infection in the final product
(fruit), given the original infection distribution assumed over the farms and given the way
the fruit was handled (i.e., mixed) through the importation pathway. This information
will give greater clarity to assessments of the threat posed by the trade.

Step 2: Construct the population distribution of rate of infestation of fruit across the farms
Assume each fruit farm has a probability p of being free from disease. Assuming available
information suggests that the uncertainty in this can be represented by a Beta distribution
with parameters v = 1000 and 3 = 10, which has an expected value of 10/1010. To put
this into perspective this implies that for approximately every 1010 (=1000+10) of such
fruit farms, 1000 farms will be uninfected.

12



Assume the conditional infection distribution for the level of infection in fruit from in-
fected farms also has a Beta distribution with & = 1 and 3 = 100. This implies a mean
infection rate in infected farms of approximately 1% (i.e. 1/101). Note that the two Beta
distributions have quite different interpretations. One represents uncertainty about the in-
fection rate of farms. The other defines the distribution of the level of infection within a
farm.

Under these two assumptions, we can construct the fruit infection distribution across
the farms using the developed R functions. The function make.analytic will model
the analytic population infection distribution with two Beta distributions described above
(i.e., one for the farm and the other for the fruit within the farm); and the object-oriented
plot function will execute another function plot .analytic which will display both
the prior and the conditional densities in a 2 by 1 sub-plot fashion shown in Figure 4.1.

popdist <- make.analytic(1000,10,1,100)
plot (popdist)

The top graph of Figure 4.1 shows the proportion of farms free from infection within the
total farms, that is, most (about 99%) of the farms are not infected. The bottom graph of
Figure 4.1 is the conditional density plot given the prior distribution of farms not infected
(i.e., the top graph). It shows that the majority of infection is no more than 5% (or 0.05),
with the mean infection rate of 1%.

Step 3: Mixture of the four farms with equal probability This step will generate the popu-
lation distribution of the mixtures based on the scenario given early, equal mixing from
four farms. We assume that there is no secondary infection based on interactions between
fruit.

The function make . mix will set up the distribution of the mixture with input parameter
(0.25, 0.25, 0.25, 0.25) which defines an equal weighting in the mixture.

The object-oriented function simul will call simul .mix, in this case, and it will per-
form the simulation with required sample size (i.e., 100,000) and with relevant options
(pop=T means it is a population based mixing; random=T means the mixing will be
done randomly following a multinomial distribution from the fruit products from the four
farms). Population mixing means that we will calculate the distribution over all pack-
ing sheds, each sourcing materials from the four farms. Technically it means we will
resample from the farm infection distribution each time we simulate a value.

popmix <- make.mix (popdist, c(.25,.25,.25,.25))
test <- simul (popmix, n=100000, pop=T, random=T)
plot (test)

R calculations give the uninfected rate of the mixture as 97.356% (i.e. (100000-2644)/100000)).
Figure 4.2 shows the highest infection rate of infected units from the packing house is
3.66%. The infection rate within infected units is typically less than 1%. That is, in this
particular mixing simulation, the infection rate in the mixture has been increased from

the original 1% before mixing to 2.644% (i.e. 2644/100000) after the mixing. The shape

of infection distribution has also been changed (see Figure 4.3 below). The increase is
because the mixing leads to fruit from infected farms becoming distributed through the

fruit from uninfected farms in the packing house, but at the same time, the infection rate

in infected units is reduced as the total expected infection rate is constant.

13
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Figure 4.2: Density plot of mixture.

If we want to see the difference in terms of the infection distribution of the population
between the original (before mixing) and the after mixing units, we can add the bottom
plot of Figure 4.1 (the original infection population density) into Figure 4.2 (the mixture
density) by using the function add.empirical.

add.empirical (popdist)
The combined plot is shown in Figure 4.3. The changed shape of the two distributions is

obvious, and the mixing produces more homogeneous units.

Step 4: Inspections after importation We have assumed that pest inspections will be done
after importation. We are interested here in calculating how many infected fruit will
escape from inspections, because those infected fruit represent a biosecurity threat to the
industry and the environment.

We already know that the fruit has been boxed so the inspection for each selected box
will result in one of the following cases:

One piece of fruit infected,
Two pieces of fruit infected,

Fifty pieces of fruit infected, or
No infection occurred.

Assume p; is the infection probability of fruit ¢ in the mixture, then 1—p; is the probability
that fruit 4 is not infected. Hence, (1 — p;)*° is the probability that all 50 pieces of fruit
are not infected. Therefore, ¢ = 1 — (1 — p;)*" is the probability that at least one piece of
fruit in a box has been detected by inspection. Here, p; is given by Figure 4.2.

The following code will run such inspection and plot the density of those undetected, but

15
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Figure 4.3: Comparing the infection population distribution of the mixture (the upper curve)
with the original before mixing (the lower curve).

infected, fruit.
plot.empirical (inspection (test, 50))

Figure 4.4 shows that within the original 2,644 infected samples, 2,220 of them have
escaped inspections. Thus there is a decrease in the proportion of units that are infected.
The maximum infection rate in infected units now has reduced from 3.66% to about
2.90%, while the sample size has also been reduced from the original 100,000 to 99,576
(i.e., 424 infected samples have been removed after the inspection).

4.3 Summary

Using this simple but practical example, we have demonstrated the modelling and analysis
methods we have proposed in this report for the complex pathways of commodity importation.
This approach considers infection rates on farms, mixing and inspection. It can be seen that the
developed R functions can be easily used to model and analyse the infection densities through-
out the complex pathways of importation. Using this software tool we can also experiment and
evaluate different mixing and inspection methods in terms of their impacts on the final infection
distribution.

5 Discussion

A valid criticism of many risk assessments is that the complexity of the model far exceeds the
quality of the available data. This will be a key issue in this case. In considering this, it is also
important to be mindful that simple models can mislead if they do not capture key phenomena.
The scale and aggregation of trade is a key aspect of the risk and should not be dismissed lightly.

16
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Figure 4.4: The density of infected but undetected fruit after the inspection.

The additional overheads that this model imposes on a user are potentially outweighed by the
additional clarity of the answer provided by the approach. It is typically easier for experts to
describe units in terms of p (the probability that the unit has any infected fruit) and « (the
proportion of the unit that is infected) rather than the more complicated problems that occur
when constructing a useful model marginal to the statistical structure. Marginal in this case
means that experts need to consider the possible effects “in their head”, rather than considering
the possible assumptions and their logical implications transparently.

Note that the mixing process homogenizes the population. With large amounts of mixing the
infection status of material becomes uniform, and for rare event the Poisson distribution be-
comes appropriate. This could be useful in defining analyses which respect mixing but can be
parameterised more simply.

Arguments involving mixing will only impact on certain biosecurity decisions. While the po-
tential use of mixing as a primary mitigation strategy is low, it may become useful as part of
a systems approach. With the withdrawal of certain fumigation approaches there is a need to
find alternatives that are sustainable. For pests with thresholds to establishment, the mixing
approach could provide a component of an integrated approach. For an import risk assessment
it could demonstrate that the risks remain unacceptably high.

A limitation of this approach is that it cannot be implemented easily into Microsoft Excel, which
is the standard software used in most organisations. The approaches considered here are more
simply implemented as simulation techniques rather than analytic calculations but this should
not be seen as an impediment to its application.

17



6 Conclusions

We have proposed a mathematical/statistical method to model complex pathways that often
occur in quantitative risk assessments in biosecurity. Particularly, these complex pathways are
often presented in food importation scenarios such as imported fruits originated from multiple
supplies and/or farms in overseas. The mathematical models we have developed in this report
including:

1. Pest infection models, which can further be categorised by one of the following three

types:
(a) analytical model which is based on a Beta distribution;

(b) empirical model which is essentially a “model free” approach, that is, simulating
directly from user supplied data; and

(c) mix model which uses a multinomial distribution approach.
2. Product mixing model.
3. Final inspection model.

A work-through example was given to illustrate the proposed modelling and analysis tech-
niques. All the required computing functions have been coded in R and bundled together to
form an R package called cpathway for easy adoption by the general public.

18



7 Appendix A: cpathway - an R package

In this section, we will describe the developed R package called cpathway which stands for
complex pathways. The cpathway package contains all the required R functions to carry
out the complex pathway modelling and the analysis described in the previous sections. The
package was generated under R version 2.10.0. It does not require any other R packages to run
apart from the standard R. The zipped package is currently named cpathway_1-0.zip and
it can be obtained by contacting any one of the authors. After the trial process, the authors may
submit it to the CRAN depository for possible use by the general public. The zipped package
contains both the developed functions and their documentations in both the text and the HTML
format.

7.1 List of functions developed within the cpathway package

Table 7.1 lists (in alphabetical order) all the functions developed for the modelling and analysis
of complex pathways.

Function name
add.empirical
inspection
make.analytic
make.empirical
make.mix
plot.analytic
plot.empirical
simul

simul.analytic
simul.empirical
simul.mix

unmake.empirical

Table 7.1: List of R functions developed for cpat hway package.

7.2 Function name: add.empirical
Description: add an empirical distribution onto the current plot.

Input(s): = — input data which is going to be added on to the current plot;
col — defines the line colour with 1 = black (defualt), 2 = red, 3 = green, 4 = blue, 5 =
cyan.

Output: plotting x onto the current graph.

7.3 Function name: inspection
Description: conduct pest inspection and return those undetected (but infected originally).

Input(s): = — data object from the mixing simulation;
t — boxsize (i.e., t pieces of fruit per box).

Output: a list includes the distribution of undetected but infected goods.

19



7.4 Function name: make.analytic

Description: set up population distribution parameters (four parameters for Beta distributions)
of a farm.

Input(s): p.alpha — Ist parameter of a Beta distribution to define the probability a farm is
uninfected, hence, the prior information;
p.beta — 2nd parameter of the Beta distribution to define the probability that a farm is
uninfected;
quant .alpha — 1st parameter of a Beta distribution that defines the proportion of the
fruit infected given that at least one item is infected;
quant .beta — 2nd parameter of a Beta distribution that defines the proportion of the
fruit infected given that at least one item is infected.

Output: a list that contains two pairs of Beta parameters and a class attribute which specifies
the current approach is ‘analytic’.

7.5 Function name: make.empirical
Description: turns raw data into summary information (including to find the number of zeros).
Input(s): = —raw data in vector format.

Output: a list that contains the number of zeros in z, the number of non-zeros and the non-zero
part of x.

7.6 Function name: make.mix
Description: set up a mix distribution.

Input(s): dist —the parameters for the mixture distribution generated by make .analytic;
weight — the weights for the mixing. The number of elements in the vector specifies
the number of components in the mixture. The weights are used in simulation and their
interpretation depends on the flags set there.

Output: a list containing the weights, the distribution parameters for individual farms before
mixing and the class attribute.

7.7 Function name: plot.analytic
Description: plotting analytic distributions on a 2 by 1 sub-plot.

Input(s): z —alist contains two pairs of the Beta parameters constructed by make .analytic;
- - - — other parameters inherited from the generic plot function.

Output: The top density plot is the prior distribution made by the 1st pair of parameters of the
Beta distribution; the bottom density plot is the proportion infected made by the 2nd pair
of parameters of the Beta distribution.

7.8 Function name: plot.empirical

Description: plot the data using R function Density - Kernel smoothing method.
Input(s): = —raw data to be fitted by a Kernel smoothing density.

Output: a density plot.
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7.9 Function name: simul

Description: a generic simulation function, depending on the class, it will call one of
{simul .analytic; simul.empirical; simul. mix}.

Input(s): = — a simulation object;
- - - — other possible parameters carried over.

Output: execute one of {simul.analytic; simul.empirical; simul.mix} de-
pending on class attribute.

7.10 Function name: simul.analytic
Description: conduct simulation based on an analytic distribution.

Input(s): z — the analytic object;
n — the number of observations;
lock —whether values generated are conditional on a single draw (1 ock=T) or marginalised
over the uncertainty (Lock=F).

Output: a vector of Beta variables based on parameters given.

7.11  Function name: simul.empirical
Description: conduct simulation based on an empirical distribution.

Input(s): = — the empirical object;
n — the number of simulations;
- - - — other possible parameters carried over.

Output: a vector of empirical random variables redraw from given dataset.

7.12 Function name: simul.mix
Description: do mixing simulation.

Input(s): = — the mix object;
n — the number of observations;
random — whether the mixing weights are fixed (random=F) or random (random=T);
pop — whether the sample is from the population of units after mixing (pop=T) (i.e.
marginal to mixing) or from a particular mixture (pop=F).

Output: a list containing mixing simulation results.

7.13 Function name: unmake.empirical

Description: a reverse operation as make.empirical, i.e., put those zeros back into the original
dataset.

Input(s): z — the dataset with zeros have been removed by make.empirical.

Output: a vector with zeros and non-zeros as originally presented in z.
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7.14 Example code
The following R code produced the example with plots in Section 4.

# example code

# Construct the population distribution of fruit
# in any of these four farms

popdist <- make.analytic(1000,10,1,100)

plot (popdist)

# Mixture of the four farms with equal probability
popmix <- make.mix (popdist, c(.25,.25,.25,.25))
test <- simul (popmix, n=100000, pop=T, random=F)
plot (test)

# Add the original population density from a single farm
add.empirical (popdist, col=2)

# Inspection after importation
plot.empirical (inspection (test, 50))
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8 Appendix B: R code developed for cpathway

R functions developed for complex pathways
developed by Simon Barry

maintained by Xunguo Lin

2010

FHEHH A A AR AR R R R R R
make.analytic - set up population distribution parameters
(4 Beta distribution parameters) of a farm

p.alpha, p.beta - a pair of parameters for Beta distribution to define
the probability that a farm is un-infected.
Hence it is the prior information.

#

#

#

#

#

#

#

#

#

#

# input:
#

#

#

#

#

# quant.alpha, quant.beta - a pair of parameters for Beta distribution that

# defines the proportion of the fruit infected

# given that at least one item is infected

FHE A R R R

make.analytic <- function(p.alpha, p.beta, quant.alpha, quant.beta) {

result <- list (p.beta.a=p.alpha, p.beta.b=p.beta, gquant.a=quant.alpha, quant.b=quant.beta)
class(result) <- "analytic"
result

FHAF A A A R R R S R R R R R R R

make.empirical - turns raw data into summary information (inc finding O0s)
input:

x — raw data

#

#

#

#

#

#

# output:
#

# p - proportion of zeros

# x - non-zero data

# nx — number of non-zero data

# n - number of data points

FHE AR AR A A R A R R R

make.empirical <- function (x) {

n <- length (x)

ind <- x==

p <- sum(ind)/n

result <- list (p=p, x=x[!ind], nx=n-sum(ind), n=n)
class (result) <- "empirical"

result

}

FHE AR A A R A R R
# unmake.empirical - a reverse operation as make.empirical,
# i.e. put those 0s back into the original dataset

# input:
#
#
#

x — the dataset with 0s have been removed by make.empirical
FHEHH AR A A A R R R R R R R

unmake.empirical <- function (x) {

result<-c(rep(0,x$n))
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1f (x$p<1l) result[l:xSnx]<-x$x
result

}

FHA A A R R R R R R R

which has the same length as weights

Note, the object returned by the function contains a single realisation
of the mixture. This could be useful in certain simulations
FH A R R R

# make.mix - set up a mix distribution

#

# input:

#

# dist - the mixture distribution parameters generated by make.analytic

#

# weight- the weights for the mixing. The number of elements in the vector specifies
# the number of components in the mixture. The weights are used in simulation
# and their interprtetation depends on the flags set there.

#

# output:

#

# a list contains - weigths, Beta parameters, simulated (using beta para) values

#

#

#

#

#

make.mix <- function(dist, weight) ({
result <- list (weights=weight, dist=dist, x=simul (dist, n=length(weight), F))

class (result) <- "mix"
result

FHEFE AR A R R R R
plot.analytic - plot analytic (object) distribution on a 2 by 1 sub-plot

input:

X — a list contains 2 pairs of the Beta parameters constructed by make.analytic
plots:

the top density plot is the prior distribution made by the 1lst pair of para

#
#
#
#
#
#
#
#
#
# the bottom density plot is the proportion infected made by the 2nd pair of para
FHEFE AR A R A R R R R R R
plot.analytic <- function(x,...) {

oldpars <- par()
par (mfrow=c(2,1)

plot (1:1000/1000,dbeta (1:1000/1000, x$p.beta.a, x$p.beta.b), type="1", ylab="density", xlab="p")
title ("prob zero")

plot (1:1000/1000,dbeta(1:1000/1000, xS$Squant.a, xS$Squant.b), type="1", ylab="density", xlab="p")
title ("proportion infected, given infected")

par (oldpars)

}

FHAF A A R R R R R R

# plot.empirical - plot the data using kernal smoothing method
FHA A R R R R
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plot.empirical <- function(x) {

val <- density (x$x, from=0.00001)
val$x <— c(0,vals$x)

valSy <- c(x$p,valsyx (1-xS$p))
plot (val, main="")

}

FHEH A AR AR AR A A R R R R
add.empirical - adds an empirical distribution onto the current plot
This function is normally used to compare 2 curves
input:

#

#

#

#

# x — input data which is going to be added on to the current plot

# col - define the colour with 1 = black (defualt), 2 = red, 3 = green,
# 4 = blue, 5 = cyan

FhAfHH A R R
add.empirical <- function(x, col=1l) {

if (class (x)=="analytic") x <- make.empirical (simul (x,1000000))

val <- density(x$x, from=0.00001)

val$x <- c(0,valsx)

valSy <- c(x$p,vals$yx (1-xS$p))

lines(val, col=col)

}

FREF AR R R R R R R R R R R R R

# simul - generic simulation function, depending on the class,

# it will call one of

#

# simul.analytic

# simul.empirical

# simul.mix

FHE AR A A R A R R

simul <- function(x,...){
UseMethod ("simul")

}

idssasiisaasisssasiisastisasaniiassiiiasaiiiaasiiisaniissaniiasRisisasiisnssdi

# simul.analytic - do simulation based on analytic distribution

#

# input:

#

# x - the analytic object

# n - the number of observations

# lock — whether values generated are conditional on a single draw (lock=T)

# or marginalised over the uncertainty (lock=F)

FHEHH AR R R R R R

simul.analytic <- function (x,n=1, lock=F) {
result <- rep(0,n)

if (lock) {

p <- rbeta(l, x$p.beta.a, x$p.beta.b)

ind <- p > runif (1)

if (!ind) result <- rep(rbeta(l,x$quant.a, x$quant.b),n)
} else {

p <- rbeta(n, x$p.beta.a, xS$p.beta.b)
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ind <- p > runif (n)
result[!ind] <- rbeta(n-sum(ind),x$quant.a, xS$Squant.b)

}

result

}

FHEFE AR A R R R R R R R R R R
# simul.empirical - do simulation based on empirical distribution

input:

x — the empirical object

n - the number of simulations
FhAd A R R

#
#
#
#
#
#
simul.empirical <- function(x,n=1,...) {

result<-rbinom(n, 1, 1-x$p)

if (sum(result>0)) {

result [result>0]<-sample (x$x, size=sum(result), replace=T)

}

result

FAEEA AR R R R R R R R R R R R R

# simul.mix - do mixing simulation

#

# input:

#

# x - the mix object

# n - the number of observations

# random - whether the mixing weights are fixed (random=F) or random (random =T)
# pop - whether the sample is from the population of units after mixing (pop=T)
# (ie marginal to mixing) or from a particular mixture (pop=F)

#

#

FHA AR A R R R

simul.mix <- function(x,n=1, random=F, pop=T) {
if (!pop) {

if (!random) {
result<-rep (sum(x$Sweights*x$x),n)

}

else {
new.weights<-t (rmultinom(n, length (x$weight), x$weight))/length (x$weight)
result<-as.vector (new.weights$*$x$x)

}
} else #pop

{

if (!random) {

result<-matrix (simul (x$dist,n=length (x$weight)*n), nrow=n)%$*% xS$Sweights
} else #random

{
new.weights<-t (rmultinom(n, length (x$weight), xS$Sweight))/length (xSweight)

result<-as.vector (apply (new.weightsxsimul (x$dist, n=length (x$weight)*n), 1, sum))

}
}
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result<-make.empirical (result)
result

FHEHE AR A R R R R
inspection - conduct pest inspection of fruit and return

those undetected (but infected originally)
input:

#
#
#
#
# x - data object from the mixing simulation

# t - boxsize (i.e., t pieces of fruit per box)

FHE AR A AR AR A R R R

inspection <- function(x, t=20) {

pdetect <- 1-(1-x$x)°t

index <- rbinom(xS$nx,1,pdetect)
result <- x

result$x <- x$x['as.logical (index) ]
result$n <- x$n-sum(index)
result$nx <— x$nx-sum(index)

result

}
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