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1. Executive summary

The federal Department of Agriculture, Water and the Environment (DAWE) and as-
sociated state biosecurity agencies play a fundamental role in surveying for the early
detection of high impact invasive plant pests. This surveillance is inherently labour
intensive and costly to maintain. As such, efficient allocation of increasingly finite
surveillance resources across all risk areas presents a significant challenge for biose-
curity decision-makers. Compounding the issue of prioritising which pest species to
target in early detection surveillance, little to no information is available about where,
when and how a new pest species is likely to arrive and establish in Australia. In order
to determine where surveillance resources should be allocated for early detection, it
is imperative we have an understanding of how the risk of pest establishment varies
across space.

This project sought to develop a general and pragmatic framework for creating de-
fensible maps of pest establishment likelihoods for the purposes of informing post-
border surveillance for early detection of pests not currently present in Australia. Specif-
ically, the project aimed to utilise border pathway leakage likelihoods derived from
DAWE’s pathway model, the Risk-Return Resource Allocation model (RRRA); com-
bine these with various models describing pathway post-border spread; and weight
expected arrival numbers by biotic (e.g. host abundance) and abiotic (e.g. climate) suit-
ability for the pest/disease.

In this report, we outline the four primary outputs:

1. A guide designed to aid practitioners in developing robust and transparent species
distribution models for use in biosecurity decision-making (See Chapter 3);

2. A framework for creating maps of pest establishment likelihood for the pur-
poses of informing early detection, incorporating 1) RRRA pathway leakage like-
lihoods, 2) methods for distributing risk associated with 10 high risk pathways,
and 3) spatially-explicit measures of biotic and abiotic suitability for a pest (See
Chapter 4);

3. An R package, edmaps, for implementing the above framework (Appendix D);
and

4. Four case studies utilising the establishment likelihood mapping framework:

a) Oriental fruit fly (Bactrocera dorsalis; Chapter 5);

b) Khapra beetle (Trogoderma granarium; Chapter 6);

c) Brown marmorated stink bug (Halyomorpha halys; Chapter 7); and

d) Gypsy moth (Lymantria dispar; Chapter 8).
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In delivering the above outputs, the project also:

1. outlines several applications in which these maps may be used (Chapter 9);

2. outlines several areas warranting future research (Chapter 10);

3. conducted a formal literature review examining how pest risk maps are com-
monly developed and the types of models and data that are used (Appendix A);

4. conducted a workshop (Appendix B) attended by 21 participants from various
government agencies, academic institutions and private enterprises in order to
elicit:

a) how biosecurity practitioners currently estimate the potential distribution of
pests and diseases that are not currently present in a country; and

b) what were the major areas of uncertainty they faced when developing and
using such models to inform biosecurity policy and management.

5. conducted an analysis examining the utility of model ensembles for dealing with
predictor uncertainty in invasive species distribution models (Appendix C), and;

6. developed a web tool for estimating areas where correlative species distribution
models are extrapolating, and are thus unlikely to be reliable (Climate Matcher).

Examination of the four case studies revealed that areas of highest establishment
likelihood were generally in and around metropolitan areas. This is because these
regions are expected to receive high propagule pressure from most pathways, and for
the four case studies at least, are thought to contain adequate host material and suitable
climate.

2

https://apps.cebra.unimelb.edu.au/climate_matcher/


2. Introduction

Pest risk maps are a fundamental decision support tool used in biosecurity. Depending
on how they are built, they can describe where an invasive species may arrive, estab-
lish, spread or cause significant economic, environmental and societal harm. They are
used to inform strategic and tactical decisions about where to allocate finite surveil-
lance resources, international and domestic trade interventions, and cost-sharing be-
tween jurisdictions (Venette et al., 2010; Camac et al., 2018). Pest risk maps can also be
used to inform likelihoods of pest absence (Camac et al., 2019) and are a critical commu-
nication tool used to raise public awareness, and thus, the efficacy of general surveil-
lance (i.e. reporting from farmers and the general public). Pest risk maps are such a
vital component of an effective and efficient biosecurity system, that now, many gov-
ernments and industries are heavily investing into some form of risk mapping (Elith,
2017).

In the ideal case, pest risk maps should describe 1) the likelihood a species will suc-
cessfully establish in an area, and 2) the associated magnitude of harm if an incursion
occurred in that area (Venette et al., 2010). However, in practice, pest risk maps rarely
incorporate both likelihoods and consequences (Venette et al., 2010), but rather focus on
estimating likelihoods associated with a particular stage of the invasion process such
as the likelihood that a pest may arrive at a port (i.e. pathway analyses), or the like-
lihood an area is environmentally suitable for pest establishment (Venette et al., 2010;
Elith, 2017). As such, most pest risk maps do not explicitly measure risk (i.e. likelihood
× consequence; Venette et al. 2010; Venette 2017). Irrespective of this, such likelihood
maps still provide crucial information for informing where to conduct border screen-
ing and post-border surveillance for early detection.

Two approaches are commonly used to inform decisions about where to allocate
early warning surveillance for pests that are believed to have not yet arrived in a coun-
try. The first involves conducting detailed pathway analyses that may use interception
data coupled with pathway-specific trade volumes (e.g. number of imported contain-
ers) and information about which countries the pest is known to have established in
(Yemshanov et al., 2011; Douma et al., 2016; Tingley et al., 2018). The second, more
common approach, is to construct models, typically referred to as species distribution
models (SDMs) or niche models, using physiological data (Kearney et al., 2008), global
occurrence data (Zhu et al., 2012; Phillips et al., 2017), or a combination of the two
(Kriticos et al., 2017). These models generally use global climatic data (e.g. WorldClim,
CliMond) as predictor inputs, and predict where climatic conditions are suitable for
pest survival and establishment. These two approaches – pathways and SDMs – are
characterising different things, though both can potentially contribute useful informa-
tion for surveillance.

Interestingly, there have been few attempts to integrate pathway analyses with esti-
mates of a pest’s environmental suitability (See Appendix A for a detailed review).
This is despite both pieces of information being critical in determining whether a
species can successfully establish at a given location. Moreover, studies that do at-
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tempt to link pathway likelihoods with estimates of environmental suitability are of-
ten geographically restricted to points of entry (e.g. ports), and as such, do not make
inferences about relative risk of establishment beyond these points of entry (e.g. Tin-
gley et al., 2018). In part, this is not surprising, because using statistical approaches to
estimate likelihoods of arrival across large geographic areas would require substantial
computing power and detailed information about the likely secondary movements of
pests once they arrive within a country – data that for a variety of reasons (e.g. privacy,
limited resources) is often not recorded, or only recorded for a fraction of the area of
interest.

Project purpose

DAWE has tasked the Centre of Excellence for Biosecurity Risk Analysis (CEBRA) to
develop a transparent and pragmatic (given data limitations) approach that can be
readily applied to priority plant pests for estimating national maps of plant pest estab-
lishment likelihood. Fundamentally, establishment likelihood maps for a given pest or
disease must encompass:

1. its ability to arrive at a given location;

2. climatic suitability at mapped locations; and

3. the presence of hosts/vectors at mapped locations.

In developing this framework, the department requested that, in order to maximise
1) the model’s applicability to most priority plant pests; and 2) its use the department,
the proposed framework should use information that is readily available for most pests
and incorporate data which is either collected or derived from existing departmental
systems (e.g. Risk Return Resource Allocation model). Furthermore, given the large
number of subjective decisions made throughout the modelling process, the depart-
ment also requested general guidance in estimating climate suitability maps for inva-
sive species.

In this final report of the two-year project, we outline a pragmatic framework for
creating maps of pest establishment likelihood as a function of arrival rates, climate
suitability and the presence of host material. In doing so, we provide general guidance
in estimating an invasive species’ climate suitability – from obtaining and cleaning
data, to model development, model validation and model use in decision making. We
then illustrate the model mapping framework by developing maps of establishment
likelihood for four plant pests identified on the National Priority Plant Pest (NPPP)
list: oriental fruit fly (Bactrocera dorsalis), khapra beetle (Trogoderma granarium), brown
marmorated stink bug (Halyomorpha halys) and gypsy moth (Lymantria dispar). We se-
lected these four pests as they all posed significant threat to Australian agriculture
and/or environment and were exemplars of different pathways of entry, different host
materials and differing potential climatic distributions.

This report does not provide guidance on how to prioritise pests and diseases, how to optimally
allocate surveillance, or how to account for climate change.

What this report does not do
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3. Decision tree for invasive species

distribution modelling

Species Distribution Models (SDMs) for invasive species are often considered synony-
mous with pest risk maps (Venette et al., 2010; Elith, 2017). The primary aim of such
models is to relate environmental conditions to the persistence of a species. The es-
timated relationships from these models are then projected onto geographic space in
order to produce maps of environmental suitability for a particular species or group
of species. The degree of environmental suitability and the extent of suitable environ-
ment in a region of interest are then used to inform a variety of biosecurity decisions
such as:

1. which pests/diseases should be prioritised;

2. where surveillance programs should be conducted;

3. the likelihood of pest absence; and

4. which government agencies should incur monitoring and eradication costs.

The utility of SDMs to inform such important biosecurity decisions has led to many
government agencies and industries actively investing in some form of pest risk map-
ping. A consequence of such investment has been the spawning of initiatives such as
the European Union’s Pratique risk assessment program and government in-house de-
velopment of risk mapping platforms such as the USA’s NAPPFAST (Magarey et al.,
2007) and Australian’s climate matching system (CLIMATE/CLIMATCH; Crombie
et al. 2008). However, a wealth of additional tools also exists in scientific literature for
estimating the potential distribution of a species. These methods range from those that
model the underlying ecophysiological or biophysical processes governing a species’
distribution (Kearney et al., 2008; Higgins & Richardson, 2014; Kearney & Porter, 2017),
to those that correlate environmental variables to patterns in species occurrences, and
those that incorporate both mechanistic and correlative processes.

Despite the vast number of tools available, and the diversity of opinions on how to
use them, there remains no clear evidence of a single, best approach for predicting an
invasive species’ potential distribution (Barry et al., 2015). There are good arguments
for thinking that there would not exist a best method for all species and all places:
the ecology and biogeography of species’ distributions is so diverse and so complex,
that it is highly likely that different models will have different strengths. Even so, a
fundamental problem is that to determine which approach performs consistently well
requires an understanding of models’ ability to predict the potential invasive distribu-
tion of a species, which for all practical purposes is unknowable (Elith, 2017). In order
to get around this, modellers have mostly evaluated methods based on their predictive
performance when predicting to current distribution data (Sequeira et al., 2018; Yates

https://secure.fera.defra.gov.uk/pratique/
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et al., 2018). However, these performance metrics do not explicitly examine the perfor-
mance with respect to the true purpose of these models – their ability to predict the
potential, currently unoccupied, distribution of a species. Accurate prediction to the
region in which a model was fitted does not guarantee accurate prediction outside this
range (Elith, 2017; Fourcade et al., 2017). In order to examine a model’s transferability
from one region to another, various cross-validation approaches have been used, such
as parametrising a model based on native occurrences and then using it to predict to
the observed invasive region (Yates et al., 2018). However, this too is fraught with prob-
lems because the distributional data in the native or invaded range may not be a true
indication of a species’ ability to persist under environmental conditions not currently
occupied (Elith et al., 2010; Elith, 2017). As such, as with all modelling, whilst decisions
about the correct method to use can be well informed by existing knowledge, there
remains ambiguity in the final choice of model to predict an unobserved event. This
chapter aims to provide the framework for making a well-informed decision about the
method to use.

At the broadest level a distinction exists between methods that explicitly model pro-
cess, and those that fit statistical (also known as correlative) models to the data – the
patterns – that result from those processes. In theory, process-based models are ex-
pected to be better than pattern-based methods at predicting the potential distribution
of a species (Dormann, 2007; Kearney & Porter, 2009; Elith et al., 2010). This is because
these models attempt to explicitly model the dominant processes governing survival,
growth and fecundity and how these relate to various environmental data. Relative
to correlative approaches, if these models are parametrised correctly, they should be
better able to estimate a species’ fundamental niche – the distribution governed by abi-
otic factors such as climate – and thus, the species’ potential distribution. While these
process-based models are increasingly becoming an area of active research, they are
still considerably less used to predict potential distributions of invasive species rela-
tive to correlative approaches (Elith, 2017). This is predominantly due to these models:
1) being considerably more complex to build and run; 2) requiring more time to collate
appropriate physiological data; and 3) having to deal with difficulties of matching mi-
croclimate or laboratory conditions associated with physiological responses to broad-
scale climatic variables that are commonly available for mapping (Kearney & Porter,
2009; Yates et al., 2018).

By contrast, correlative models are generally faster and easier to fit relative to process-
based models. Instead of explicitly modelling the processes governing a species’ po-
tential distribution (e.g. growth, mortality and fecundity), they work by deriving like-
lihood functions by correlating occurrence records (and absences if available) with en-
vironmental data using regression and machine learning techniques. These likelihood
functions are then used to create suitability maps within the trained region as well as
in novel space and/or time. If parametrised correctly, the predictive accuracy of correl-
ative models is typically high in the region in which they were trained (Elith, 2017). In
fact, comparisons between process-based and correlative models often show a high de-
gree of congruence of predictions in the regions where correlative models are trained.
However, a range of outcomes (from congruence to dissimilarity) are often observed
when comparing predictions outside the trained region of correlative models (Morin
& Lechowicz, 2008; Buckley et al., 2010; Kearney et al., 2010). This is because the ability
of correlative models to accurately predict outside the trained region (termed trans-
ferability) is thought to be highly contingent on the degree to which predictions are
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made under novel environmental conditions that are not present within the trained
region (termed extrapolation; Dormann 2007; Elith & Leathwick 2009; Sequeira et al.
2018; Yates et al. 2018).

Both process-based and correlative approaches come with a variety of technical and
practical pros and cons – most of which have been exhaustively examined elsewhere
(e.g. Kearney & Porter, 2009; Froese, 2012; Elith, 2017). However, irrespective of the
approach taken, a wealth of subjective decisions and assumptions must be made at
each step of the modelling process, from data sourcing and cleaning, to model devel-
opment, model validation and model utility. These decisions impact predictions, so
it is important to think them through logically and to document what decisions were
made, and why. Predictions will never be perfect – indeed, given the paucity of data
on some species, predictions may not be accurate at all. However a well thought out
and documented process will produce predictions whose provenance is known, and
will also provide good intuition about how to quantify uncertainties and test sensi-
tivities. Ultimately, it will be these decisions and assumptions that govern whether
scientists, stakeholders and government agencies can use the model and its predic-
tions, especially when applied to invasive species where the true potential distribu-
tion is unknowable. This is well understood within the academic literature and has
led to considerable discussion on how ’best’ to source and clean data (Zizka et al.,
2019), select background points (in the case of correlative presence-background mod-
els; Phillips et al. 2009; VanDerWal et al. 2009), choose parameters or predictors (Austin,
2002; Breiner et al., 2017; Fourcade et al., 2017), validate models (Elith et al., 2010; Se-
queira et al., 2018; Yates et al., 2018), and deal with model uncertainty (Elith et al., 2010;
Yates et al., 2018). Unfortunately, little consensus currently exists in the literature as to
how these various issues should be handled. As a case in point, when developing cor-
relative distribution models for invasive species, occurrence data used to fit the model
are often restricted to those from the ’native’ range (Thuiller et al., 2005; Elith, 2017),
where the species is more likely to be in equilibrium with its environment. However,
others have used or advocated for using the only the invaded range (Mau-Crimmins
et al., 2006; Barbet-Massin et al., 2018), or in some cases, occurrence records from both
the native and invaded range (Broennimann & Guisan, 2008; Jiménez-Valverde et al.,
2011). This general lack of consensus within the academic literature, coupled with
often poorly described methods and justifications, has led to inconsistent workflows
being undertaken when developing these models. Consequently, a wide variety of
possible potential distributions can be predicted for a single species, even when using
the same modelling technique.

Species distribution models are an integral component of our risk map framework,
which is outlined later in this report. As such, we first aim to improve the transparency,
reproducibility and consistency of workflows used to create species distribution mod-
els for informing policy and management of invasive species. Specifically, we aimed to
create a generic, method-agnostic (because there is no single ’best’ method; Barry et al.
2015) decision tree that will guide users in developing models for invasive species, but
also prompt users to explicitly consider and document the various decisions made at
each step of the modelling process.

In the proceeding sections we describe a decision tree for invasive species distribu-
tion modelling. This decision tree was informed by practical and technical knowledge
derived from a workshop attended by biosecurity practitioners and SDM experts, as
well as analyses conducted by CEBRA and CSIRO using real and simulated species
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data (See Appendix B for details).
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3.1. Guide for invasive species distribution modelling

The guide presented in this report is designed to aid practitioners in developing robust
and transparent species distribution models for use in biosecurity decision-making. It
should be consulted irrespective of whether one is developing a new model or re-
producing (or updating) an existing model. The decision tree is broken up into five
sequential steps: data sourcing; data cleaning; model development; model validation;
and model utility (Fig 3.1). Each major step contains a number of component steps
that must be carefully considered, because the consequences ultimately affect model
predictions, interpretation and how the model is used to inform policy and manage-
ment. Since some steps then feed into later steps, the following descriptions gradually
develop a suite of relevant information for a modeller.

In the following steps it is imperative that all gathered information and decisions made are
fully documented. This ensures transparency in how data was sourced and used and allows
experts to fully assess the merits of any analysis or model outputs.

Document what you have done!

9
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Figure 3.1.: Guide for developing scientifically robust species distribution models for in-
vasive pests. For further details please see text in sections 3.1.1 to 3.1.5.
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3.1.1. Step 1: Data Sourcing

3.1.1.1. Pest biology

When considering whether to build or reproduce a species distribution model, the very
first step should be to conduct a short literature review of grey (national and inter-
national governmental reports) and published literature that outlines what is known
about the pest or disease. Specifically, the literature review should summarise details
associated with: physiological climate tolerances, existing SDMs, required hosts, and
any distributional data reported in the literature1.

A good place to start a literature review is to examine information available on CABI (https:
//www.cabi.org/isc/). CABI contains a large collection of pest data sheets compiled by
experts. These data sheets provide information on pest biology, distribution, spread pathways
and many other factors. They also contain comprehensive reference lists indicating where
information was sourced.

It is important to consult more than just CABI.
While CABI is generally kept up-to-date, it does not always contain the latest biological or
model-derived information and also only contains coarse distributional data (typically coun-
try level). Moreover, it rarely contains specifics as to how these data were derived. It is
therefore critical that the underlying data sources provided by CABI are consulted and sup-
plemented by independent searches of the scientific literature (e.g. via Google Scholar or Web
of Science).

Tip

1Grey or published literature can sometimes provide detailed occurrence data that are not available
in large online databases such as GBIF.

11

https://www.cabi.org/isc/
https://www.cabi.org/isc/
https://scholar.google.com.au
http://apps.webofknowledge.com/
http://apps.webofknowledge.com/


Camac et al. 2020 Cen t r e  o f  Exce l l en ce  f o r
B i o se cu r i t y  R i sk  Ana l y s i s
 

3.1.1.2. Occurrence data

Conducting a literature review is fundamental to a firm understanding of the biolog-
ical constraints on a pest or disease, yet it is also important to source data on its cur-
rent distribution. The best models are based on presence-absence or abundance data,
but since these are rarely available globally, here we simply focus on "presence-only"
data (i.e. records of species presences, with no explicit information on absences). One
such source that should be consulted is the Global Biodiversity Information Facility
(GBIF; https://www.gbif.org/). GBIF is the most comprehensive global biologi-
cal database, with over 1 billion occurrence records for more than one million species
(Fig 3.2). The data contained within GBIF is an invaluable source for both parametris-
ing correlative SDMs, and validating process-based models.

Data from GBIF can be directly sourced via its web interface, or imported directly into R using
the R package rgbif. A nice tutorial of how to use rgbif can be found at:
https://ropensci.org/tutorials/rgbif_tutorial/.

Tip

Figure 3.2.: Distribution and intensity of Global Biodiversity Information Facility (GBIF)
occurrence records. Lighter colours equal higher intensity. Sourced from
https://www.gbif.org on 09/01/2019.

Pest-specific databases (e.g. fruit fly database for the Afro-tropical region) are an-
other invaluable source of occurrence information. These databases are typically com-
piled and verified by experts, and thus, are considered highly reliable. In many cases
these data are already integrated into GBIF, however, this is not always the case. As
such, it is important that searches are made for such speciality databases, and if avail-
able, they are consulted to determine whether distributional data is present.
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3.1.1.3. Climatic data

Irrespective of whether one is reproducing a model or developing a new one, sourcing
global climate data is essential. Common climate databases include:

• WorldClim (Fick & Hijmans 2017; http://www.worldclim.org)

• Climate Research Unit (Harris et al. 2014; http://www.cru.uea.ac.uk),

• CliMond (Kriticos et al. 2012; https://www.climond.org); and

• CHELSA (Karger et al. 2017; http://chelsa-climate.org).

Each dataset contains different suites of long-term averaged climatic variables. Each
database estimates long-term climatic averages across the earth using different data
sources, interpolation algorithms and temporal periods. It is therefore important for
the user to carefully select the variables (and database) that are likely to be most useful
for the pest/disease of interest. Sometimes the most relevant climatic variables might
not be long-term averages but rather variables related to weather or extremes.

3.1.1.4. Non-climatic data

While climate is considered to be the predominant factor governing species distribu-
tions at large spatial scales (Araújo & Rozenfeld, 2014), other variables can also play
an important role in governing a species’ distribution (e.g. predator-prey interactions,
landuse and disturbance patterns). However, such information is generally not avail-
able at either the spatial extent or resolution required to parametrise or predict invasive
SDMs. Where such information does exist (e.g. landuse layers), it is often based on im-
age classification algorithms from satellite imagery. As a consequence, such data are
often coarse (either in terms of spatial resolution or categorisation), and thus, may have
limited utility in species distribution modelling.

A summary of some freely available global landuse datasets can be found at https:
//geography.com/free-global-land-cover-land-use-data/. Over time,
the quantity and quality of these other datasets will undoubtedly improve and become
more readily accessible. We therefore recommend users continue to be on the lookout
for new large-scale spatial datasets that become available, and which could be used to
estimate or refine SDMs.

3.1.1.5. Alternatives for data-poor species

In some situations there is limited biological or distributional data for a pest or disease
(e.g. fewer than 30 records worldwide, or only records from a very restricted locality).
In these cases, one has three options: 1) collate data on a species with similar phylogeny
or similar biological, behavioural or physiological traits (Morales-Castilla et al., 2017);
2) use a trait-based SDM (e.g. Morin & Lechowicz, 2008; Pollock et al., 2012); or 3) use
an expert elicitation framework (e.g. IDEA protocol; Hemming et al., 2017) to estimate
relevant physiological tolerances or responses to various climatic factors (e.g. Martin
et al., 2015).
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3.1.2. Step 2: Data Cleaning

Irrespective of whether a process-based or correlative approach is used, data cleaning
is a must when developing robust models of the potential distributions of pests or
diseases.

3.1.2.1. Physiological data

Physiological data that are incorporated into process-based SDMs are generally de-
rived directly from controlled laboratory experiments found in the peer-reviewed lit-
erature and academic theses. Commonly, these data are reported as means and stan-
dard errors and are presented in either tables or text. Such data are often considered
definitive with minimal errors or data cleaning required. However, such experimental
data suffer from two primary concerns. The first is whether the experimental condi-
tions are transferable to the natural world, and the second is whether the individuals
used are representative of the true variability within a species. Both questions are dif-
ficult to answer, especially the latter, where the true intra-specific variability is almost
never known. However, by documenting the experimental approach, the number of
individuals used, where they were sourced, and the number of populations sampled,
the modeller and consulted experts have the required information to make informed
decisions in regards to both the representativeness and transferability of experimental
findings2.

It is also important to record the uncertainty around any experiment-derived phys-
iological responses. This is because such errors allow for the faithful propagation of
uncertainty throughout the modelling process. Ultimately, this manifests itself in a
range of possible distribution maps, ranging from best to worse case scenario.

Lastly, in light of the biological information that should be obtained from the litera-
ture review (stage 1), it is important to document physiological processes (e.g. factors
governing reproductive maturity or diapause) that lack empirical estimates. Docu-
menting these knowledge gaps highlights areas of future research. Moreover, it pro-
vides greater context to the decisions made within the model development stage in
handling these unknown parameters.

2Ideally, this information should have been documented as part of stage 1 (Data sourcing).

14



Camac et al. 2020 Cen t r e  o f  Exce l l en ce  f o r
B i o se cu r i t y  R i sk  Ana l y s i s
 

Several demographic and physiological databases have recently been published in an effort to
simplify parametrisation of process-based models. These include:

GlobTherm; (Bennett et al., 2018): A database that includes thermal tolerance metrics for
2,133 species of multicellular algae, plants, fungi, and animals in 43 classes, 203 orders and
525 families from marine, intertidal, freshwater, and terrestrial realms, extracted from pub-
lished studies.

AmP; (Marques et al., 2018): A database of referenced data on animal energetics, parameter
values of models based on Dynamic Energy Budget (DEB) theory, and properties derived from
these parameters. Contains records for over 1000 animal species.

COMPADRE; (Salguero Gómez et al., 2015): A database of more than 5,500 plant popula-
tion matrix models derived from over 450 studies and more than 600 species worldwide. Also
contains relevant ancillary information (e.g. ecoregion, growth form, taxonomy, phylogeny)
that facilitates interpretation of the numerous demographic metrics that can be derived from
population matrices.

COMADRE; (Salguero Gómez et al., 2016): A database of more than 1625 animal popula-
tion matrix models derived from over 400 and more than 340 species worldwide. Also contains
ancillary information (e.g. ecoregion, taxonomy, biogeography, etc.) that facilitates interpre-
tation of the numerous demographic metrics that can be derived from population matrices.

Tip
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3.1.2.2. Occurrence data

Species occurrence records derived from online databases (e.g. GBIF) are an invaluable
resource for both parametrising and validating SDMs. However, issues with data qual-
ity such as errors in geo-referencing, taxonomy, temporal period, irrelevant records
(e.g. cultivated specimens) and incomplete metadata can introduce significant biases
in model fitting and validation procedures (Maldonado et al., 2015). As such, careful
scrutiny of these data is a must! Special care must also be taken for migratory pests,
which may contain records in regions where persistence is not year-round.

Here, the decision tree prompts the user to methodically search their data for errors
and irrelevant records commonly found within biological databases. A summary of
common errors can be found in Table 3.1.

Table 3.1.: Common errors in biological databases and occurrence records.

Geo-referencing errors Taxonomic errors Temporal errors Irrelevant records

1. Incorrect habitat
(Marine or Terrestrial)

2. Coordinates & country
mismatches;

3. Switched or equal
latitude & longitude;

4. Records on country
or province centroids;

5. Records based on
rasterized collections;

6. Records with high
spatial uncertainty
or strong decimal
rounding;

7. Duplicate records.

1. Misidentifications;
2. Obsolete or incorrect

taxonomy;
3. Incorrect spelling.

1. Incorrect dates or
dates not supplied;

2. Records not within
climate temporal
period.

1. Records from zoos,
botanical gardens
& museums;

2. Fossil records;
3. Migratory records;
3. Biosecurity interceptions;
4. Records from unreliable

sources (e.g. iNaturalist).

It is important to note that most GBIF records also contain details of the record’s
original source. This allows users to further scrutinize the reliability of the record.

Once data have been cleaned of the above errors, it is critical to remove records that
are unlikely to have originated from established populations. This is because our inter-
est is in delimiting the potential distribution of where a pest or disease could establish
and subsequently spread. Unfortunately, such information is not always recorded in
online metadata. As such, we recommend cross-referencing occurrence data against
expert verified country statuses published in CABI (https://www.cabi.org/isc/).
In the ideal case, were appropriate resources are available, all records should be scru-
tinized by experts in the relevant geographic area to verify whether they belong to an
established population, and if not, removed prior to model development or validation.
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GBIF data are typically manually cleaned by poorly documented user-defined functions and
procedures that ultimately affect the reproducibility of an analysis (Zizka et al., 2019).

Recently, there has been concerted effort to develop standardised tools for cleaning large-scale
biodiversity databases, such as GBIF. One such tool is the R package CoordinateCleaner
(Zizka et al., 2019). This package provides a standardized, reproducible and fast way to iden-
tify records from cultivated sources as well as identify many geographic and temporal errors
commonly found in biological databases. A tutorial on how to use CoordinateCleaner
can also be found at:
https://ropensci.github.io/CoordinateCleaner/articles/Cleaning_

GBIF_data_with_CoordinateCleaner.html.

Taxonomic errors such as spelling mistakes and use of synonyms or obsolete taxonomy can be
identified and corrected using the R package taxize (Chamberlain et al., 2017). A tutorial
for using taxize can be found at:
https://ropensci.org/tutorials/taxize_tutorial/.

Tip

3.1.3. Step 3: Model Development

While a vast number of tools exist, and a diversity of opinions on how to use them,
there remains no strong evidence of a single best approach for predicting an invasive
species’ potential distribution (Barry et al., 2015). Moreover, the choice in approach
will ultimately depend on data availability and the model’s intended application (see
Section 3.1.5). It will also strongly depend on the available in-house technical expertise
and various resource constraints (e.g. analyst time, access to commercial software). As
a consequence, the decision tree presented in this report does not advocate for any par-
ticular method. Instead, it focuses on providing users with general guidance for both
process-based and correlative methods.

We highly recommend users consult Froese (2012). This report, prepared by the Queensland
government, provides a comprehensive description of a range of SDM tools that can be used to
inform biosecurity policy and management. Furthermore, it outlines the technical advantages
and disadvantages of different approaches as well as their expected resource requirements (i.e.
analyst time, skill and data requirements).

We also recommend users carefully consider how the model will be used and whether the cho-
sen method is fit for purpose. Guillera-Arroita et al. (2015) provides a comprehensive sum-
mary of whether correlative models are appropriate for various biosecurity decision contexts.
We summarise some of the main points of that paper in section 3.1.5.

Tip
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3.1.3.1. Process-based models

Process-based models range in complexity from simple climatic threshold mapping to
complicated biophysical models such as NicheMapper (Kearney & Porter, 2017). The
commercial software CLIMEX (Kriticos et al., 2015) – a semi-mechanistic model – can
also incorporate process when it is parametrised using experimental data. However,
more commonly CLIMEX physiological parameters are inferred using global distribu-
tional data (Kriticos et al., 2015; Elith, 2017) and manual tweaking of stress parameters
in the fitting process. The primary advantage of process-based models is that they at-
tempt to model the causal relationships between climate and various vital attributes
such as survival, growth and fecundity. They are therefore considered to be superior
at predicting a species’ fundamental distribution – the distribution governed by abi-
otic factors such as climate (Kearney & Porter, 2009; Elith, 2017). In practice, however,
the reliability of these models is strongly dependent on whether it accounts for the
fundamental processes delimiting a species’ fundamental niche and whether the em-
pirically derived parameters accurately reflect both the responses to climate as well
as the intra-specific variability in these responses (Kearney & Porter, 2009). In most
cases, the climatic factors governing a species’ potential distribution are unknown or
unknowable, and the resources required to obtain such data (i.e. lab experiments and
field validation) coupled with time and in-house technical skills required to build these
models currently make them infeasible for most biosecurity agencies.

If process-based models are built, we strongly recommend that irrespective of the
method used, it is critical to account for parameter uncertainty (where possible) when
using these models. This is because such uncertainty accounts not only for possible
measurement errors in such experiments, but more importantly, will also provide an
estimate of the intra-specific variability of a species, and thus, the range of possible
climatic responses it may exhibit. This uncertainty can either be directly incorporated
into the model or acknowledged via repeat model runs using parameter estimates at
lower, upper and median quantiles. The outcome should be a range of climate suit-
ability maps that encompass the entire plausible range of climatic responses.

3.1.3.2. Correlative models

There is a vast range of correlative methods that can be used to predict the potential dis-
tribution of a pest or disease. Broadly these methods fall into three distinct categories:
1) those based on presence-only data such as climatic envelopes (e.g. BIOCLIM, range
bagging, convex hulls) and climate matching algorithms available in CLIMEX and
CLIMATCH; 2) those that can be fitted to presence/background or presence/pseudo-
absence data, such as machine learning algorithms and regression models (e.g. Max-
ent, Boosted Regression Trees, Generalised Linear Models, Generalised Additive Mod-
els); and 3) those based on presence/absence records such as binomial regression tech-
niques. Determining which model type to use is ultimately dependent on data avail-
ability, assumptions the modeller is willing to make, and what objective or decision
context the model is designed to solve (Guillera-Arroita et al., 2015; Elith, 2017). How-
ever, irrespective of the approach, all three work by attempting to relate occurrences to
spatially explicit covariates (Elith et al., 2010).
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Presence-only methods:

Presence-only methods commonly estimate a species’ potential distribution in one of
three ways: 1) by using occurrence records to delimit the climatic range in which a
species may persist (e.g. envelope methods such as BIOCLIM; Booth et al. 2014 and
range bagging; Drake 2015); 2) by calculating climatic similarity indices (CLIMATCH,
CLIMEX; Crombie et al. (2008); Kriticos et al. (2015)); or 3) by estimating convex hulls or
hyper volumes; Blonder et al. (2017). These methods use only presence locations and
make no comparison with the range of environments in the broader landscape or at
absence sites. That is, they ignore the set of environmental conditions potentially avail-
able to a species within the region of interest (Elith, 2017). Climatic variables can be
equally or unequally weighted or the most limiting variable can be used for prediction
(e.g. BIOCLIM). Distance matrices such as the Gower metric or Mahalanobis distance
can also be used to predict climatic similarity between records of occurrence and all
unvisited sites. Range bagging (Drake, 2015) is a recent development in presence-only
distribution modelling that appears to show great promise to invasive species distri-
bution models (For more information see Appendix (C).

The primary appeal of these models is that they deal directly with the most common
type of data available – presence-only records – without having to make additional as-
sumptions and decisions associated with the choice of background/pseudo-absences
found in other methods below. However, the primary disadvantage of these methods
is that they can be highly sensitive to outliers (e.g. when delimiting climatic ranges)
and sampling biases (i.e. some sites are more likely to be sampled than others) present
within the occurrence records (Elith, 2017). The latter is particularly problematic be-
cause sample biases are commonplace in invasive species occurrences and these meth-
ods provide no direct means by which one can account for such biases. These methods
also do not estimate probabilities of occurrence, since the prevalence is unknown (Elith,
2017).

Presence-background methods:

Presence-background methods derive suitability scores from relative frequencies of
surveyed occurrences (positive cases) relative to another non-positive case. The mean-
ing of this alternative case can vary in subtle but important ways. For some methods,
such as Maxent (Phillips et al., 2006), the non-positive case is commonly referred to as
the background – a set of points that randomly sample the landscape or locations avail-
able, irrespective of whether a species is present or not. Increasing evidence shows that
this approach is best for modelling presence-only data with logistic regression (Merow
et al., 2013; Elith, 2017).

Other methods or interpretations treat the non-positive cases as implied absences or
pseudo-absences (e.g. GARP). Typically these implied absences are either placed any-
where except where presences occur, or in geographic or environmental zones consid-
ered to be unlikely to contain the species of interest (Elith, 2017). The peer-reviewed lit-
erature contains several suggestions on how to choose locations for pseudo-absences,
or define reliable absences for presence-only data (e.g. Le Maitre et al., 2008; Lobo et al.,
2010). However, relative to the presence-background approach, this method requires
additional ad hoc decisions about both the position and number of pseudo-absences,
and is generally perceived as a less rigorous statistical framework (Renner et al., 2015).
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Irrespective of which approach is used, both assume a species is in equilibrium with
their environment – that is, the species has had the opportunity to establish in all suit-
able areas within the model-fitting region. These methods also do not estimate prob-
abilities of occurrence as this requires knowing the true prevalence of the modelled
organism (Guillera-Arroita et al., 2015). Rather, these models estimate relative proba-
bilities that are assumed to be proportional to the true probabilities. The implication
of this is that predictions within a map for one species are sensibly ranked, but pre-
dictions across species are not comparable – all you know for each species is that high
is high and low is low, not what the exact numbers mean. Lastly, these approaches
require subjective decisions about the extent, distribution and number of non-positive
cases to be sampled. The impacts of these decisions are often underappreciated by
species distribution modellers, despite evidence highlighting how different decisions
can result in substantial effects on model predictions and interpretation (Phillips et al.,
2009; Warton & Shepherd, 2010; Syfert et al., 2013).

Presence-absence methods:

Presence-absence methods derive suitability scores from relative frequencies of sur-
veyed occurrences and absences in different environmental conditions. Presence-absence
models are the ideal case, because they can more readily be used to account for imper-
fect detection and survey effort while also removing the need to select background
points (Lahoz-Monfort et al., 2014; Guillera-Arroita et al., 2015). More importantly, un-
like other methods they can be used to estimate probabilities as opposed to relative
probabilities (Guillera-Arroita et al., 2015). As such, if the required data are available,
this approach should always be preferenced over either of the two alternatives men-
tioned above. However, in practice such data are rarely available at the geographic
grain and extent commonly required to estimate the potential distribution of an inva-
sive species (Elith & Leathwick, 2009; Elith, 2017).

3.1.3.3. Model settings & complexity

It is critical to carefully consider and document the settings used when fitting a model.
All methods, irrespective of whether they are presence-absence, presence-background
or presence-only, contain settings that can be modified by the user that ultimately af-
fect how a model is fit and interpreted. For example, the commonly used tool Maxent
contains a variety of settings which control the selection and number of background
points, the complexity of covariate response curves (via feature selection and regular-
ization) and types of model outputs that can be extracted (e.g. raw, cumulative, logistic,
or logit; Merow et al., 2013).

Too often, users underappreciate the importance of these settings and instead opt
to use defaults (Merow et al., 2013). However, depending on the species and decision
context, such defaults may be highly inappropriate. For example, by default Max-
ent randomly selects background points across all locations represented by predictor
data supplied by the user (Merow et al., 2013). As a consequence, if one modelled an
invasive species using global maps of climatic variables, Maxent would sample back-
ground points from across the world. Such a background implies that the species has
an unlimited dispersal capacity and has had the opportunity to establish anywhere in
the world – a highly unrealistic assumption. Instead, a non-default background should
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have been used, with the extent restricted to a region that could reasonably be assumed
to have been available to the species (VanDerWal et al., 2009; Merow et al., 2013).

It is also important to carefully consider model complexity when fitting correlative
models (Merow et al., 2014). Highly complex models (i.e. those with many predictors
and interactions) are more susceptible to over-fitting, especially when the number of
occurrence records is low (Merow et al., 2014; Breiner et al., 2015). Over-fitting is an
error that occurs when a model too closely fits a limited set of data such that it de-
scribes idiosyncrasies of that dataset (i.e. fits to the noise rather than the signal). A
consequence of over-fitted models is that because they model idiosyncratic patterns in
the data used to parametrise them, they tend to be less transferable when predicting
outcomes outside the fitted dataset.

Modellers have several options available to them to determine the right amount
of complexity, and thus, exposure to over-fitting species distribution models (Elith &
Leathwick, 2009; Merow et al., 2014). A common approach is to use cross-validation
(e.g. Valavi et al., 2018), a statistical procedure that attempts to measure a model’s
transferability (i.e. ability to predict outside the fitted data). It achieves this by split-
ting a dataset into subsets, fitting the model to some of the subsets (training sets) and
predicting to the others (test sets), and typically repeating this procedure until all sub-
sets have been used for testing. This process can then be repeated for each of a set of
competing models (i.e. models using different predictors and varying complexity). The
models’ ability to accurately predict the testing data can be compared, with higher pre-
dictive performance inferring higher model transferability and by implication lower
over-fitting error.

When conducting cross-validation, data are typically assigned randomly to training and test-
ing subsets. However, in a spatial context, such random assignments will likely exhibit high
spatial autocorrelation (i.e. observations close to each other have similar characteristics); po-
tential consequences include over-estimation of predictive power and model transferability. To
minimise this issue, some (Valavi et al., 2018) have advocated for dividing the study area into
blocks and assigning the records within these block to cross-validation folds. While in theory
this seems straightforward, in practice it can be a difficult exercise.

The R package blockCV (Valavi et al., 2018) has vastly simplified this process of partitioning
spatial data into blocks. A plain English description of what this package can do can be found
at:
https://methodsblog.com/2018/11/29/blockcv-english/

Tip

When there are very few occurrence data, cross-validation procedures will have lim-
ited capacity to infer model transferability (i.e. due to high uncertainty in performance
measures). In these situations, it is best to use simple models, such as those with few
predictors (Breiner et al., 2015), few or no interactive (product) terms, and those that
utilise simple non-linear responses or features. Simple models minimise over-fitting
and have greater tractability, which can help in understanding the primary drivers
of species’ occurrence patterns, and are likely to be more easily generalised to new
datasets (Merow et al., 2014). In some models, the complexity of response curves can
be configured in user-defined settings. In Maxent, users can set the maximum com-
plexity of responses by adjusting the allowable feature types and the extent of regu-
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larisation (Merow et al., 2013). For Generalised Additive Models, the complexity of
response curves can be modified by specifying the degrees of freedom available in
various smoothing terms (here higher degrees of freedom allow for more complex re-
sponse curves).

3.1.3.4. Sampling background & dealing with survey bias

Background points or pseudo-absences are required when estimating the potential dis-
tribution of a species using two-class methods such as Maxent, GARP, Boosted Regres-
sion Trees, binomial GLMs and GAMs, or when using spatial point process models
(PPMs; Renner & Warton 2013). Recent evidence has shown that how these samples
are chosen, and the number used, can have a substantial impact on both model inter-
pretation and predictive capacity (Syfert et al., 2013; Elith, 2017). However, consensus
is currently lacking as to how background (or pseudo-absences) should be sampled for
invasive species, and what number should be used (Fourcade et al., 2014).

Ideally, background points should: 1) characterise the range of environments the
species of interest could have dispersed to; and 2) exhibit the same patterns in survey
bias as observed in the occurrence records. However, in practice, accounting for survey
bias or defining the geographic extent in which a species may have dispersed is no easy
task (VanDerWal et al., 2009; Syfert et al., 2013), especially for invasive species. Invasive
species by definition are undergoing active range shifts (Elith, 2017). These range shifts
make it difficult to define the extent across which a species could have dispersed, and
thus, the extent across which background or pseudo-absences should be sampled. An
additional complexity is that often these range shifts will exhibit strong geographic
biases in survey effort, with invaded regions more likely to be intensively sampled
relative to native regions (Elith, 2017).

When two-class methods are used to estimate the potential distribution of an inva-
sive species, occurrence records are commonly restricted to the native range (Thuiller
et al., 2005; Elith, 2017). This is done because a species is more likely to be in equilibrium
with its environment in its native range – that is, it is assumed a species has had greater
opportunity to disperse across its native range and occupy sites with suitable environ-
ments. Not only does this minimise violations of the assumption of equilibrium, but it
also simplifies the process of background sampling by allowing the modeller to justi-
fiably sample points across the native range extent.

However, problems can arise when discarding occurrence records from outside the
native range, including: 1) it can dramatically reduce what is already a small set of
occurrence records; 2) it does not solve issues of survey bias within the native range;
and 3) it can reduce the model’s ability to predict the suitability of environments that
are outside the native range. These issues can ultimately manifest in ill-specified mod-
els, and/or models that predict a restricted potential distribution relative to what may
actually be the case (Broennimann & Guisan, 2008; Jiménez-Valverde et al., 2011). This
is of particular concern among biosecurity practitioners, who regularly use SDMs to
inform where a pest could establish, and consequently, where to allocate finite surveil-
lance resources. As such, biosecurity practitioners are typically hesitant to discard
occurrence records (see synthesis of workshop discussion in Appendix B), and pos-
sibly as a consequence, tend to use presence-only methods such as climate matching
algorithms (e.g. CLIMATCH, CLIMEX), convex hulls and hyper volumes (Drake, 2015;
Blonder et al., 2017), which don’t require background points (Elith, 2017).
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Nevertheless, a variety of methods exist for handling survey bias and/or constrain-
ing the geographic region from which background is sampled. A brief description of
some of these methods is provided below:

Defining the extent from which to sample background
If only the native occurrence records are used, modellers commonly sample back-
ground points across the entire extent under the assumption the species has had the
opportunity to disperse across the region. However, if occurrences from the invaded
range are included, modellers use several different approaches. One approach is to
construct convex hulls (often with buffers) around the set of occurrence records and
then sample background from within that hull. Another approach is to sample back-
ground from within a radius around each occurrence record – the size of the radius typ-
ically being defined by maximum dispersal distances (VanDerWal et al., 2009). A third
option is to sample background in a pre-defined set of bioclimatic zones (e.g. Köppen-
Geiger zones; Hill & Terblanche, 2014), which might represent occupied zones or those
believed to provide suitable environmental conditions for the modelled organism3.

Dealing with survey bias
Occurrence data are often biased toward human population centres and roads (Reddy
& Dávalos, 2003). If not corrected, this bias may result in a model that describes pat-
terns in survey effort as oppose to the true distribution of suitable environmental con-
ditions for the species (Phillips et al., 2009). A common way to account for survey
bias is to sample the background such that it reflects the same sample selection bias as
the occurrence data. For example, if presence data are only taken from near roads or
cities, then background data should be taken from the same areas (Ferrier et al., 2002).
Many methods exist for achieving this (e.g. Fourcade et al., 2014), but we briefly detail
the three most commonly used. The simplest is called target-group sampling, which
uses occurrence records from a broad set of species that are likely have similar obser-
vation activities of collectors as the species of interest (Phillips et al., 2009). The sites
for all records from all species in the target group then make up the full set of avail-
able information on survey effort and can be directly used as background data within
the region of interest. The second method is a continuation of the first, whereby the
target-group occurrence records are used to construct a interpolated bias grid that can
then be used to inform the distribution and intensity of background samples. The pri-
mary advantage of this latter approach is that it provides greater flexibility in defining
the total number of background points one wishes to use. The third option is to cre-
ate a bias grid as a function of regression techniques that correlate occurrence records
against factors likely to explain geographic survey bias (e.g. distance from roads and
cities). Outside the bias grid approach, other modellers use bias covariates (Warton
et al., 2013; Fithian et al., 2015).

Whilst these methods are the best available for dealing with bias, they are not com-
monly applied in invasive species modelling. This is partly through lack of technical
expertise, but also because at the scale of modelling (across countries) and with the
patchiness of records across countries, modellers often cannot drill down to the grain
required to consider relevant factors such as distance to roads. However, bias is a sub-
stantial problem that needs to be considered when modelling with presence-only data,
and it is worth assessing how best to characterise variation in survey effort. Some mod-

3Though this still requires defining the extent in which background should be sampled.
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ellers simply reduce the density of records (i.e. thinning) in relatively over-sampled
locations.

3.1.3.5. Covariate uncertainty

Accurately predicting a species’ distribution into novel environmental space using a
correlative approach requires that the model includes the causal predictors that gov-
ern a species’ niche (Austin, 2002; Elith, 2017). However, rarely do we know what
these variables are, makes sensible selection of model predictors a significant challenge
(Barry et al., 2015).

A range of studies have attempted to determine which predictor variables are best
to include, and in lieu of truly causal predictors, how proximal these variables may be
(for a review, see: Barry et al., 2015). However, despite this work, there has been little
attempt to review or develop methods to simply identify “good predictive variables”
from those typically available to modellers, and how to best use them to reduce errors
associated with model transferability.

Based on work conducted by CSIRO in collaboration with CEBRA, we recommend
that modellers account for covariate uncertainty and improve model transferability by
constructing ensembles of simple bivariate models. Specifically, when the choice of
which predictors to use is unknown or unguided, constructing an ensemble of small
(e.g. two-variable) models allows for model construction to be focussed on selection
of “good” performing variables (ones that perform well in both native and non-native
ranges), rather than relying on model fit as the indication of the “best” model. This al-
lows for putatively more proximal variables to be identified and to apply them in a sim-
ple manner that not only increases transferability, but also provides a more tractable
approach to developing maps of pests’ potential distributions. For full details of these
methods please see Appendix C.

3.1.4. Step 4: Model Validation

Irrespective of whether a model is process-based or correlative, it should be validated
against independent datasets (i.e. occurrence data not used in the model parametri-
sation process). For process-based models this is a relatively straightforward process
of overlaying localities of known establishments onto maps of predicted suitability
and then examining whether patterns in both broadly match (e.g. Kearney et al., 2008,
2010; Kriticos et al., 2017). However, due to a variety of difficulties, correlative invasive
species SDMs are rarely validated using independent data (West et al., 2016).

Correlative SDMs have been evaluated using a variety of approaches. For example,
some have examined patterns in model residuals and whether predictor importance
and fitted functions are consistent with what is known about the species’ ecology and
physiological tolerances (Elith & Leathwick, 2009; Elith, 2017). More commonly how-
ever, emphasis has been on using formal statistical summaries such as area under the
receiver operating curve (AUC), kappa, and explained deviance to examine a model’s
ability to accurately predict the fitted data, or ideally, a set of independent data (Elith,
2017).

While these statistical summaries provide invaluable information on how well a
model can predict a species’ known range, their application to invasive species dis-
tribution modelling is not particularly appropriate (Elith, 2017). This is because the
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objective of invasive species SDMs is to predict a species’ potential (i.e. unobserved)
distribution, not just its known range, which is what these statistical measures inform.
To effectively use such statistical methods in this context would require knowing the
potential distribution of a species – something that is unknowable.

To overcome these issues, some have fitted invasive species SDMs using only native
range occurrence data and then evaluating the models’ ability to predict occurrences
in the known invaded range (i.e. a measure of its potential range). However, the relia-
bility of this test is dependent on whether the processes limiting a species’ distribution
in its native range are the same in the invaded range or the potential invaded range
(i.e. regions where the pest has not yet arrived). It is also based on the strong assump-
tion that the occurrences in the invaded range are representative of persistence4 (Elith,
2017).

Others have evaluated invasive species SDMs according to their ability to predict
performances in the model-fitting range. The assumption here is that if the model ac-
curately predicts the known distribution of a species, then it is more likely to accurately
predict its potential distribution. Simulation analyses conducted in a previous CEBRA
report shows some support for this assumption (Barry et al., 2015).

Due to the difficulties in evaluating and validating correlative two-class invasive
distribution models, we suggest that:

1. models are first assessed for their ecological relevance, by: using expert knowl-
edge; examining functional response curves; sourcing additional data including
physiological information (e.g. temperature tolerances); or comparing models
with process-based models that do not use occurrence records, as well as other
published models.

2. one formally examines a model’s ability to predict in the model-fitting region
(e.g. by using AUC) if the method involves estimating response curves5.

3. regions of novel environmental space (i.e. environments not found in the model-
fitting region) be highlighted on any suitability map derived from a correlative
model estimating climatic response curves.

The mapping of novel environments (Elith, 2017) is a crucially important step when
using models that attempt to estimate covariate response curves (e.g. Maxent, GAMs,
GLMs etc.) because it helps interpretation of model output and also guides users as to
where predictions may be highly unreliable (i.e. where the model is extrapolating).

Lastly, in order to maximise the robustness of these models, we recommend that
model outputs and associated model documentation (i.e. how the model was parametrised,
from data sourcing through to validation) be independently assessed by both techni-
cal and biological experts. Doing so will ensure key aspects of the pest biology are
incorporated and that the models are appropriately implemented.

4This also affects process-based models.
5Statistical performance measures in the fitted region will be less applicable for climatic envelope

models (e.g. range bagging, BIOCLIM), which define suitability as a function of the extent of occurrence
records in environmental space.
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Two popular methods used to identify and map novel environments:

MESS (Multivariate Environmental Similarity Surface; Elith et al. 2010): can identify, dis-
tinguish and quantify novel univariate ranges. It does not account for changes in correlation
structure among these predictors (i.e. new combinations of covariates). MESS is currently
implemented as a tool in Maxent and can also be calculated in R using:
dismo::mess() or ecospat::ecospat.mess().

ExDet (Extrapolation detection; Mesgaran et al. 2014): can detect, distinguish and quantify
two types of novelties: novel univariate range and novel combinations of covariates. ExDet is
not implemented in Maxent but can be readily estimated within R using:
ecospat::ecospat.climan()

Web interface: In order to improve the accessibility to these extrapolation algorithms, CE-
BRA, as part of this project, has developed a web interface called Climate Matcher (Fig.
3.3) that allows users to examine novel climatic conditions relative to selected countries or
user uploaded points/polygons. Users can then download the resultant output and use it to
highlight areas where SDM predictions may be dubious. This web interface can be accessed
at:
https://apps.cebra.unimelb.edu.au/climate_matcher/

Tip

Figure 3.3.: An output from the web interface Climate Matcher – An easy to use tool
for examining novel climatic conditions. In this example, ExDet is used to
examine areas of novel climate relative to Afghanistan (Yellow). Red = Novel
climatic range, White = Analogous climate, Blue = Novel correlations.
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3.1.5. Step 5: Model Utility

Clear model documentation

Invasive species SDMs are regularly used to inform a variety of biosecurity manage-
ment decisions (see Table 3.2). However, to ensure the appropriate use of a model, the
first step is to ensure fundamental details are clearly articulated and summarised for
biosecurity decision-makers. In particular, it is critically important to summarise what
data were used, how the model was developed, the assumptions it made and how
one should interpret and use the output. In essence, the documentation that happens
at each step of the decision tree (Fig 3.1) should be collated and summarised into a
non-technical summary readily interpretable by policy staff.

Versatility of different model methods

The type of model will have important implications for how it is used to inform biose-
curity management. Process-based models tend to directly measure quantities of in-
terest that govern whether species can persist in a given environment (e.g. fecundity).
As a consequence, the outputs are often easier to interpret and can be readily used to
inform priority pest lists, optimal surveillance and post-border cost-sharing arrange-
ments.

Correlative models are also commonly used to inform biosecurity decisions. How-
ever, while these models may be appropriate for some decision contexts (e.g. spa-
tial prioritisation of surveillance) they are often inappropriate for many biosecurity
applications (Table 3.2). For example, Guillera-Arroita et al. (2015) highlighted that
using presence-background models such as Maxent to inform pest prioritisation or
surveillance optimisation routines is often inappropriate because outputs are relative
probabilities that are not comparable across species. For a comprehensive guide as
to whether relative likelihoods or ranked scores can be used for various biosecurity
decision contexts please see Table 3.2.

Thresholding model outputs

It is common practice to convert maps which provide continuous predictions (e.g. true
and relative probabilities) into a binary (suitable/not suitable) or categorical (high/moderate/low)
heat map (Guillera-Arroita et al., 2015). While this is a simple way to communicate
possible risk to the broader public, we strongly recommend against discretising model
outputs for other biosecurity decision contexts. This is because the decision of where to
threshold is often highly subjective and dependent on both the expected consequences
of a pest outbreak and the tolerance for incorrectly assigning a suitable location as
unsuitable. More important, however, is that discretising model outputs rarely im-
proves decision-making because it degrades the information supplied by the model
(Table 3.2).
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Table 3.2.: Examples of presence-background SDM usage in the management of invasive species. Adapted from Guillera-Arroita et al. (2015).
AOO = Area of Occupancy; S/M = Single or Multi-species. For a comprehensive review of SDM applications to invasive species
management please see Guillera-Arroita et al. (2015).

Application SDM usage
(input into. . . )

S/M Consequences of biased
occupancy estimation

Is relative likelihood or
ranking a sufficient
input?

Has binary
conversion
been used?

Consequences of using
binary conversion

Target management
actions (e.g. survey or
control)

Rank sites according to
habitat suitability

S Efforts to survey or
control invasion may be
spatially misguided.

Both suitable if only
interested in identifying
best sites. Ranking not
sufficient if aim is to
identify sites within a
certain suitability
compared to best sites.

Yes A ’threshold’ may be
used to delimit best sites
but binary conversion
leads to loss of
information.

Optimal surveillance Input to optimisation:
find surveillance level
that minimises overall
costs (monitoring +
management) given site
occupancy probability.

S Overall costs will
increase, as the level of
surveillance guiding
early management is not
optimal.

Computing expected
costs requires
probabilities; can result
in suboptimal solution
otherwise.

No Not valid. Method based
on acknowledging
uncertainty in species
presence to evaluate
trade-offs in expected
costs.

Invasive species
monitoring or status
assessment

Calculate species’ AOO
or compare temporal
changes in AOO (by
fitting models at different
points in time).

S Invasion status may be
incorrectly assessed due
to biased estimation of
AOO or its temporal
trends (real trend missed
or spurious trend
detected).

Relative likelihoods &
rankings not able to
estimate AOO, and not
sufficient input to track
temporal trends (as not
comparable across time;
except for PA data when
detectability constant in
space and time).

Yes Degrades AOO
estimation, even when
probabilities are
estimated; It does not
solve the inadequacy of
relative likelihoods or
rankings.
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Table 3.2 continued from previous page

Application SDM usage
(input into. . . )

S/M Consequences of biased
occupancy estimation

Is relative likelihood or
ranking a sufficient
input?

Has binary
conversion
been used?

Consequences of using
binary conversation

Importation decisions
(pre-border risk
assessment)

SDMs fitted with data
from other areas used to
calculate potential AOO,
for categorising risk (e.g.
low, medium, high),
sometimes within a
scoring system that also
considers non-spatial
attributes (e.g. weed risk
assessments).

S May result in beneficial
species being denied
entry, or harmful species
being imported.

Relative likelihoods and
rankings are not suitable
for estimating AOO.

Yes Degrades AOO
estimation, even when
probabilities are
estimated; It does not
solve the inadequacy of
relative likelihoods or
rankings.

Post-border
cost-sharing
arrangements

SDMs fitted with data
from other areas used to
calculate the proportion
of potential AOO within
each jurisdiction.

S Could lead to
inappropriate allocation
of management costs
across jurisdictions.

Relative likelihood is
sufficient, as the
proportion of AOO is not
affected by a constant
scaling. Correct site
ranking does not
guarantee appropriate
cost sharing.

Yes Degrades the estimation
of proportions of AOO.

Post-border
prioritisation lists for
control or eradication

Calculate potential AOO
for several species to
prioritise management
resources across them.

M Management effort may
be allocated to species
that actually have low
potential for spread and
vice versa.

Relative likelihoods and
rankings are not
sufficient because they
are not comparable
across species.

Yes Degrades AOO
estimation, even when
probabilities are
estimated; It does not
solve the inadequacy of
relative likelihoods or
rankings
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Table 3.2 continued from previous page

Application SDM usage
(input into. . . )

S/M Consequences of biased
occupancy estimation

Is relative likelihood or
ranking a sufficient
input?

Has binary
conversion
been used?

Consequences of using
binary conversation

Evaluate management
options or scenarios,
in terms of the
probability of
eradicating a species
over some defined
time horizon

Input to spatially-explicit
meta-population
modelling methods (e.g.
RAMAS GIS) to:

1. Define the spatial
extent of suitable habitat
(or ’patches’), by
choosing a threshold
below which
environments are
considered ’unsuitable’.

2. Set the carrying
capacity of ’suitable’
patches as a function of
suitability.

3. Set vital rates at
’suitable’ patches as a
function of suitability.

S Poor estimates of
probability of eradication
and therefore choice of
management options.

(1) Using relative
likelihood allows
delineating patches of
distinct suitability, but
can be problematic
because the choice of
threshold is arbitrary (i.e.
not based on observed
prevalence). Occupancy
probabilities provide a
more natural way to
determine the spatial
structure of the
meta-population.

(2-3) Can be problematic
(as can be the use of
occupancy probabilities)
unless a good model can
be developed to link
relative likelihood to
carrying capacity / vital
rates (e.g. using other
data). Ideally one would
directly model
’maximum abundance’
or vital rates as a function
of environmental
covariates.

(1) Yes.
Needed by
definition.

(2-3) No

(1) Needed to define
patches (but note that, if
suitability does not
indicate sharp
boundaries, a
patch-based
meta-population model
may not be appropriate).

(2-3) Not valid, non-
thresholded values are
needed to distinguish the
suitability of patches.
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Table 3.2 continued from previous page

Application SDM usage
(input into. . . )

S/M Consequences of biased
occupancy estimation

Is relative likelihood or
ranking a sufficient
input?

Has binary
conversion
been used?

Consequences of using
binary conversation

Evaluate management
options or scenarios,
in terms of the
probability of
eradicating a species
over some defined
time horizon

Input to spatially explicit
individual- based,
cellular automata or
multi-agent model, to
determine the
performance of
individuals in each cell in
each time step.

S Poor estimates of
probability of eradication
and therefore choice of
management options.

Can be problematic (as
can be the use of
occupancy probabilities)
unless a good model can
be developed to link
them to whichever rules
govern the performance
of individuals within
cells.

No Not valid,
non-thresholded values
are needed.

Assessment of the
impact of
climate/land use
change on invasive
species

SDM fitted with current
data used to make
predictions under
changing environmental
conditions (e.g. based on
projected scenarios).

S Incorrect evaluation of
impacts of climate/land
use change, as both
current and projected
species range are
incorrectly estimated.

Relative likelihood
suitable to evaluate
relative change but not to
compute AOO and
derived quantities such
as species persistence. A
ranking has the risk of
missing critical
isoclines/thresholds and
lead to incorrect impact
predictions.

Yes Degrades AOO
estimation, even when
probabilities are
estimated; It does not
solve the inadequacy of
relative likelihoods or
rankings
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4. Framework for mapping

establishment likelihoods for plant

pests

Federal and state biosecurity agencies play a vital role in surveying for the early de-
tection of high impact invasive plant pests. Such surveillance is labour intensive and
costly to maintain, and as such, is rarely implemented uniformly across geographic
space but rather positioned in regions considered to have high likelihoods and/or con-
sequences of pest establishment (De Lima et al., 2011; Whittle et al., 2013; Renton et al.,
2017; National Fruit Fly Strategy Action Plan, 2017). However, determining the geo-
graphic distribution of establishment likelihoods, especially when a pest may enter via
multiple pathways, poses a significant challenge to biosecurity agencies worldwide.
This is because accurate estimation of establishment likelihoods requires information
about: 1) the major pathways that allow pests to enter a country; 2) the probability that
a carrier along a pathway (e.g. passenger) contains a pest; 3) how pathway vectors will
distribute post-border; and 4) whether the abiotic and biotic environment at a given
location is suitable for pest establishment. However, such detailed knowledge is rarely
available for large geographic extents (e.g. all of Australia) or is simply not known for
many plant pests.

In this chapter we outline a pragmatic (given data constraints) and transparent frame-
work for developing Australian national maps of establishment likelihood that we be-
lieve should be applicable to the majority of terrestrial plant pests that are likely to
enter Australia. At its foundations, this mapping framework is based on the principle
that for a pest to successfully establish it must first overcome three geographic barriers
(Catford et al., 2009), namely:

1. can it reach the location of interest (i.e. arrival rate)?

2. are the abiotic conditions suitable (e.g. climate suitability)?

3. are the biotic conditions suitable (e.g. presence of host/food)?

In the proceeding sections, we outline how each of these three geographic barriers
can be estimated using readily available data sources and methods. We also outline
an approach in which these three geographic barriers can be integrated in order to
derive a national map of establishment likelihood. We illustrate the implementation of
this framework using four priority plant pest case studies: oriental fruit fly (Bactrocera
dorsalis), khapra beetle (Trogoderma granarium), brown marmorated stink bug (BMSB;
Halyomorpha halys) and gypsy moth (Lymantria dispar).
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It is important to note that the maps developed in this project are technically not maps of risk
but rather establishment likelihoods. Risk maps, by definition, are the product of spatially
explicit establishment likelihoods multiplied by spatially explicit consequences (likelihoods
× consequences). In this project, the focus was on the first component of risk, establishment
likelihoods. We therefore avoid the term “risk maps" when referring to the mapping framework
or associated outputs developed as part of this project.

Risk vs. establishment likelihoods

The mapping framework described in the following sections is explicitly designed for terres-
trial plant pests. The framework is not suited to marine pests which utilise different pathways
of entry and are exposed to different environmental and biotic variables.

Framework not suitable for marine pests
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4.1. Identifying high risk pathways

In the ideal case, post-border arrival rates should be estimated using a comprehensive
pathway analysis that incorporates: 1) volumes of multiple pathway carriers entering
the country from infected countries; 2) border surveillance effort and sensitivity (i.e.
in order to estimate leakage rate); and 3) post-border movements of pathway vectors
(i.e. carriers). However, in practice, pathway analyses rarely incorporate post-border
movements, but instead focus on estimating arrivals at various points of entry (e.g.
ports; Paini & Yemshanov, 2012; Tingley et al., 2018). This lack of post-border move-
ment in pathway analyses is possibly due to two factors. The first is that governments
worldwide have a strong focus on border surveillance in the effort to mitigate risk
and associated post-border costs. Second, obtaining high quality post-border move-
ment data across large geographic extents from multiple pathways will likely come at
significantly greater cost and may have social and political implications (e.g. privacy
concerns in passenger movements).

The Department of Agriculture (DAWE’s predecessor) invested significant effort
into quantifying the likelihood that high priority pests or functional groups (e.g. fruit
fly) enter Australia from up to 54 pathways. Likelihoods were estimated using a for-
mal expert elicitation process involving more than 120 experts with familiarity with
the Australian biosecurity system. These national-level entry likelihoods were then
integrated into a probabilistic framework (i.e. a Netica Bayesian network) called the
Risk-Return Resource Allocation (RRRA) model. Fundamentally, RRRA is defined by
a set of entry pathways, a set of organisms of concern and a set of biosecurity inter-
ventions that occur both pre-border and at the border (Craik et al., 2017). These are
combined with estimates of outbreak consequences in order to evaluate the effective-
ness of biosecurity controls designed to stop pests, diseases and weeds from entering
Australia and provide insights as to where finite biosecurity resources should be allo-
cated to maximise risk mitigation (Craik et al., 2017).

As RRRA currently contains Australia’s most comprehensive database on pest by
pathway arrival likelihoods, the mapping framework developed as part of this project
was designed to directly utilise national pathway probabilities derived from RRRA
– specifically probabilities of arrival after accounting for pre-border and border con-
trols. However, in practice, the risk map framework can utilise any national pathway
probability, irrespective of how it is estimated. Moreover, while RRRA does not con-
tain likelihoods of entry by country of origin, the risk map framework developed here
could be readily applied to such data should it become available.

While national pathway probabilities are useful for identifying high risk pathways,
they do not provide information about the subsequent distribution of arrivals that
evade pre-border and border checks, or whether they are likely to result in establish-
ments. In the following sections we outline methods, based on data pragmatic first
principles, for distributing vectors/carriers post-border for ten high risk pathways,
as identified from RRRA or interception data, for four national priority plant pests:
oriental fruit fly (Bactrocera dorsalis), khapra beetle (Trogoderma granarium), brown mar-
morated stink bug (BMSB; Halyomorpha halys) and gypsy moth (Lymantria dispar).
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4.2. Pathways

The method outlined below does not explicitly account for Approved Arrangement (AA) sites.
This is due to several reasons. First, pathway likelihoods used are leakage rates after account-
ing for pre-border and border controls (of which AA sites form part of the latter). Second, we
were unable to obtain a comprehensive spatial layer of all AA sites or the volume of pathway
goods sent to each. Consequently, leakage from AA sites could not be incorporated into this
analysis as we were unable to appropriately account for the differential risk profiles among
AA sites.

Approved Arrangement Sites

4.2.1. Pathway: Air passengers

Between January 2018 and January 2019 there were a total of 23,356,510 international
passengers entering Australia (Table 4.1). These numbers encompassed permanent set-
tlers, long-term returning residents and long-term and short-term visitors. As tourists
are likely to disperse across the country differently to returning residents, and because
they may differ in their probability of carrying a pest, we treated them independently.
For the purposes of our analyses we classified short and long term visitors as tourists
and the remainder as returning residents. This meant that between January 2018 and
January 2019 there were a total of 10,633,690 tourists and 12,722,820 returning resi-
dents entering Australia. Unfortunately, due to limited reliable information on passen-
gers’ final destinations, we were unable to ascertain the number of passengers arriv-
ing at each international airport. This was predominately due to passengers entering
Australia via a major international airport (e.g. Sydney) and then proceeding to catch
domestic flights to their final destinations (e.g. Hobart), for which we are unable to
differentiate tourist from returning resident. As a consequence, country-level arrival
numbers were distributed across Australia using methods described below.

Table 4.1.: Number of international arrivals between January 2018 and January 2019.
Data source: 3401.0 – Overseas Arrivals and Departures, Australia, Feb 2019.

Passenger type Number

Long-term returning resident 153,060

Short-term returning resident 12,454,100

Permanent settlers 115,660

Long-term arriving visitors 657,790

Short-term arriving visitors 9,975,900

TOTAL 23,356,510

4.2.1.1. International tourists

In the days immediately following arrival into the country — when the risk of a pas-
senger carrying a pest is likely greatest — international tourists are not expected to
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travel significant distances and are likely to congregate in areas with high densities
of tourist accommodation. For this reason, we distributed national numbers of inter-
national tourists across Australia as a function of the number of tourist rooms and
distance from major international airports:

Touristsi =
tourist roomsi × f(airport distancei)
n
∑

i=1

tourist roomsi × f(airport distancei)
× Tourist passengers. (4.1)

Where Tourist passengers is the total number of tourists entering Australia in a given
year and tourist roomsi is the number of tourist rooms in a grid cell1.

Tourism room data were downloaded from the ABS (Cat. 8635.0 - Tourist Accom-
modation, Australia, 2015-16) for each state in Excel format. These data cover 4,453
establishments with 203,766 rooms and 552,877 beds2. Small area statistics for 2015-16
are classified to the Australian Statistical Geography Standard (ASGS): Volume 3 – Non
ABS Structures, 2015 Edition (cat. no. 1270.0.55.003) effective from September quarter
2015. Small area data are available for States and Territories, Tourism Regions (TR) and
Statistical Area Level 2 (SA2). A correspondence of SA2 to TR and detailed TR maps
for each state and territory can be found in Tourism Region Maps and Allocation File,
Australia (ABS Cat. 9503.0.55.001).

A total of 914 of 988 accommodation records matched those of the SA2 data set. Dis-
crepancies were mainly to do with the amalgamation of SA2 areas. All accommodation
areas containing more than 3 accommodation providers were allocated to the appro-
priate SA2 by splitting the quantities equally between the two SA2 areas so that 951
SA2 areas were reconciled with the data. There were 37 SA2 areas with three or fewer
accommodation providers that were not reconciled as the names could not be easily
resolved and the impact for this analysis was considered negligible. The final totals
from the reallocated data contain 4,413 accommodation providers, 203,682 rooms and
552,557 beds.

The number of rooms is expected to be the most representative of the risks associ-
ated with tourist pathways as rooms represent the family/friend groups that travel
together. By using rooms, the large international tourist establishments are more rea-
sonably included. As some of the SA2 records had the number of establishments listed,
but not number of rooms. Number of rooms has been regenerated based on a polyno-
mial approximation (Fig 4.1) to the number of accommodation providers in the SA2,
where SA2s with many accommodation providers usually have larger establishments
(Fig. 4.1). The final geographic distribution of tourist room density can be seen in Fig.
4.2.

1A grid cell could be any size of interest (here we use 1 km2).
2Noting that some areas were missing room or bed numbers.
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Figure 4.1.: Polynomial relationship between the number of accommodation providers
and rooms contained in Statistical Area level 2 categories. Figure courtesy of
Dr Mark Stanaway.
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The accommodation data obtained from the ABS does not include private providers (e.g.
Airbnb). As such, these data do not fully encapsulate all accommodation providers that
tourists may use. However, the use of such accommodation by tourists is expected to oc-
cur in similar areas where more formal accommodation providers occur (e.g. regions with
tourist attractions).

Private accommodation

0 500 1000 1500 km

N

log10(Rooms)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Figure 4.2.: Geographic distribution of tourist rooms across Australia. For presentation
purposes data has been aggregated to 5 km grid cells.
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The airport distance weight for each grid cell, f(airport distance
i
) (eqn 4.1) is an at-

tempt to account for the situation that international tourists are unlikely to travel sig-
nificant distances from airports when they first arrive in Australia. Ideally, this weight
would be informed by empirical data on where passengers travel in the first few days
from arrival. However, in the absence of such information, a weight could be informed
by any function thought to approximate the likely distances travelled by tourists in the
first few days since arrival. For example, a continuous decay function such as a nega-
tive exponential (eqn: 4.2) could be used.

f(airport distancei) = e−β×airport distance
i . (4.2)

After consultation with departmental staff, a decision was made to assume that 50%
of tourists are likely to be distributed within 200 km of a major international airport
(Table 4.2). Effectively, this meant that β was assigned as log(0.5)/200 = −0.0035. The
distance from international airports and the derived weight score can be seen in Fig
(4.3).

Table 4.2.: Major Australian international airports.

International airport Longitude Latitude

Darwin 130.8774 −12.40809

Cairns 145.7557 −16.87301

Brisbane 153.1097 −27.40341

Sydney 151.1658 −33.93649

Canberra 149.1911 −35.30748

Melbourne 144.8511 −37.66876

Adelaide 138.5375 −34.93862

Perth 115.9741 −31.94080
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Figure 4.3.: Top) Distance from major Australian international airports; Bottom) Distance
weight score derived from negative exponential under the assumption that
50% of tourists will be distributed within 200 km of an international airport.
For presentation purposes data has been resampled to 5 km grid cells.
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4.2.1.2. Returning residents

Again we did not have sufficient information as to where returning residents go upon
entering Australia. However, these passengers are likely to be distributed post-border
as a function of population density (Fig. 4.4), whereby a greater proportion of returning
residents will comes from (and will return to) high population areas. As such, we
estimated the expected number of returning residents occurring in each grid cell, i, as:

Returning residentsi =
population densityi
n
∑

i=1

population densityi

× Returning residents. (4.3)

Where Returning residents is the total number of returning residents entering Aus-
tralia in a given year.

Population data were derived from the 2016 Australian Census of Population and
Housing produced by the Australian Bureau of Statistics (Cat. 2074.02016). Specifi-
cally, we first joined Mesh Block-scale counts of the Usual Resident Population (URP)
with Mesh Block polygons (Cat. 1270.0.55.001), and then transferred counts onto a 1
km2 raster with Australian Albers coordinate system (i.e. equal area projection). This
entailed calculating, for each grid cell, the proportion of the cell overlapped by each
intersecting Mesh Block polygon, and distributing population counts accordingly as-
suming uniform distribution of the population within Mesh Blocks. Population counts
were summed across the set of intersecting Mesh Blocks (or parts thereof) to achieve
an estimate of the count at the 1 km2 scale.
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Figure 4.4.: The geographic distribution of human population across Australia. Data
based on 2016 census. For presentation purposes data has been aggregated
to a 5 km grid.
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4.2.1.3. Torres Strait visitors (Fruit fly specific)

Between January 2018 and January 2019 there were approximately 51,0000 air passen-
gers arriving at Cairns international airport from the Torres Strait. This pathway has
been identified by the Risk Return Resource Allocation (RRRA) as a significant path-
way for the arrival of exotic fruit fly into mainland Australia. This is because parts of
Torres Strait exhibit regular incursions of Bactrocera dorsalis that likely originate from
established populations on Papua New Guinea3.We distributed air passengers arriv-
ing via this pathway as a function of distance from Cairns international airport and the
proportion of the national population present each grid cell i:

TS passengersi =
population densityi × f(Cairns airport distancei)
n
∑

i=1

population densityi × f(Cairns airport distancei)
× TS passengers.

(4.4)

Where TS passengers is the total number of Torres Strait passengers entering Australia
in a given year.

Like the tourist passenger pathway, we assumed that distribution of Torres Strait
passengers would exhibit a negative exponential decay with distance (eqn: 4.2). Af-
ter consultation with departmental staff, a decision was made to assume that 50% of
Torres Strait air passengers were likely to be distributed within 10 km of Cairns inter-
national airport in areas of higher population density. Effectively, this meant that β was
assigned as − log(0.5)/10 = −0.07. This much stronger decay function with distance
combined with population density was made under the assumption that passengers
from the Torres Strait were most likely to take up accommodation with friends and rel-
atives in and around Cairns. The distance from Cairns international airports and the
derived weight score can be seen in Fig. 4.5.

3Although this is fruit fly specific, there are other pests that occur in the Torres Strait Islands and
northern Cape York for which this pathway may be applicable.
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Figure 4.5.: Top) Distance from Cairns international airport; Bottom) Distance weight
score derived from negative exponential under the assumption that 50% of
Torres Strait air passengers will be distributed within 10 km of Cairns Inter-
national Airport. For presentation purposes data has been aggregated to a 5
km grid.
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4.2.2. Pathway: Mail

In 2017–18 Australia received 152 million international mail articles (DAWR, 2018).
As a wide range of goods can readily be sent by mail, this pathway is a significant
source of entry for many pests and diseases (e.g. RRRA has identified that both khapra
beetle and Xylella may enter via this pathway). As we were unable to obtain high
resolution empirical data as to how this volume of international mail was distributed
across Australia, we assumed, as for returning residents, that mail entering Australia
was distributed as a function of population density (see Fig. 4.4). Specifically, the mail
estimated to arrive in a given grid cell, i, was estimated as:

Maili =
population densityi
n
∑

i=1

population densityi

× Mail. (4.5)

Where Mail is the total number of mail units entering Australia.

4.2.3. Pathway: Imported fertiliser

RRRA has identified that some pests, such as khapra beetle, may enter Australia via
imported fertiliser or its associated packaging. Between 2015 and 2016 approximately
6907 units of fertiliser were imported into Australia (data supplied by the DAWE).
In order to distribute these units across Australia, we utilised the latest statistics on
fertiliser use summarised by the Australian Bureau of Statistics (4627.0 - Land Man-
agement and Farming in Australia, 2016-17)). These data were derived from the 2016–
17 Rural Environmental and Agricultural Commodities Survey (REACS) and provide
estimates of total fertiliser tonnage applied to each Natural Resource Management re-
gion across Australia. While both the volume of fertiliser imports and the ABS dis-
tribution data are not for the 2017–2018 year, we assume that the spatial distribution
of risk remains the same. Specifically, we rasterized NRM vector data (again using
equal area projection – Australian Albers) and then multiplied the fertiliser tonnage
in each raster cell, Fertiliser tonnage

i
, by the presence (1) or absence (0) of ALUMC

landuse categories (see Section 4.5 for more details) likely to utilise imported fertiliser,
Fertiliser landusei (Table 4.3). This allowed us to account for some of the spatial het-
erogeneity in fertiliser use within an NRM region (Fig. 4.6). We then can distribute
national numbers of imported fertiliser using:

Fertiliser unitsi =
Fertiliser tonnagei × Fertiliser landusei
n
∑

i=1

Fertiliser tonnagei × Fertiliser landusei

× Fertiliser units. (4.6)

Where Fertiliser units is the total number of imported fertiliser units entering Aus-
tralia in a given year.

45

https://www.abs.gov.au/ausstats/abs@.nsf/mf/4627.0
https://www.abs.gov.au/ausstats/abs@.nsf/mf/4627.0


Camac et al. 2020 Cen t r e  o f  Exce l l en ce  f o r
B i o se cu r i t y  R i sk  Ana l y s i s
 

Table 4.3.: Landuses likely to use imported fertiliser.

Landuse Code Landuse (cont) Code (cont)

Cropping 330 Irrigated beverage and spice crops 432

Cereals 331 Irrigated hay and silage 433

Beverage and spice crops 332 Irrigated oilseeds 434

Hay and silage 333 Irrigated sugar 435

Oilseeds 334 Irrigated cotton 436

Sugar 335 Irrigated alkaloid poppies 437

Cotton 336 Irrigated pulses 438

Alkaloid poppies 337 Irrigated rice 439

Pulses 338 Irrigated perennial horticulture 440

Perennial horticulture 340 Irrigated tree fruits 441

Tree fruits 341 Irrigated olives 442

Olives 342 Irrigated tree nuts 443

Tree nuts 343 Irrigated vine fruits 444

Vine fruits 344 Irrigated shrub berries and fruits 445

Shrub berries and fruits 345 Irrigated perennial flowers and bulbs 446

Perennial flowers and bulbs 346 Irrigated perennial vegetables and herbs 447

Perennial vegetables and herbs 347 Irrigated citrus 448

Citrus 348 Irrigated grapes 449

Grapes 349 Irrigated seasonal horticulture 450

Seasonal horticulture 350 Irrigated seasonal fruits 451

Seasonal fruits 351 Irrigated seasonal flowers and bulbs 452

Seasonal flowers and bulbs 352 Irrigated seasonal vegetables and herbs 453

Seasonal vegetables and herbs 353 Irrigated turf farming 454

Grazing irrigated modified pastures 420 Intensive horticulture 510

Irrigated pasture legumes 421 Production nurseries 511

Irrigated legume/grass mixtures 423 Shadehouses 512

Irrigated sown grasses 424 Glasshouses 513

Irrigated cropping 430 Glasshouses - hydroponics 514

Irrigated cereals 431

The ABS data used to distribute fertiliser across the country is based on farm usage. While
farm usage is likely to account for a substantial quantity of imported fertiliser, its use in
private gardens may also be high. Unfortunately, we do not have adequate data on domestic
use in order to partition its usage and distribute farm vs domestic use differently.

Domestic fertiliser use
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Figure 4.6.: Log10 proportion of fertiliser tonnage deposited per grid cell. For presenta-
tion purposes data has been aggregated to a 5 km grid.
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4.2.4. Pathway: International Containers

In 2017 a total of 5,125,422 containers were discharged at Australian ports (Table 4.4).
In order to estimate the post-border risk associated with international shipping con-
tainers, we require detailed information as to the ports at which they are discharged
and their post-border destinations. Unfortunately, information on the final destina-
tions of containers after discharge at ports is not readily available for 2017–2018. How-
ever, the Australian Bureau of Statistics contains an experimental statistical analysis of
the post-border movements of international shipping containers entering Australia in
2009–2010 (ABS Cat No. 5368.0.55.018). This experimental analysis explicitly estimated
the number of international shipping containers arriving at each postal area from each
of five of Australia’s busiest marine ports (i.e. Sydney, Melbourne, Brisbane, Fremantle
and Adelaide). Collectively, these ports account for 98.29% of containers being dis-
charged in Australia based on 2017–2018 data (Table 4.4). The analysis also revealed
that approximately 10% of containers being discharged in a given state are transported
interstate (See ABS Cat No. 5368.0.55.018 for details). However, the majority of con-
tainers are generally distributed in postcodes surrounding the port of entry.

Under the assumption that the distribution of containers has not substantially changed
since 2009–2010, we used this ABS experimental dataset to inform the post-border dis-
tribution on 2017–2018 containers. To do this we first combined 2009–2010 ABS con-
tainer count data with a postal area shape file (Version 2011; ABS Cat. 1270.0.55.003).
Container numbers arriving in each postal area polygon, p, from each of the five major
ports, j, can then be converted to a proportion using:

Proportion of containersp,j =
N containersp,j
n
∑

p=1

N containersp,j

. (4.7)

This vector data is then rasterised to the appropriate raster projection (i.e. Australian
Albers) and cell resolution, such that it produces a stack of five rasters – one stack for
each port. These rasters are then further normalised and multiplied by the current
number of containers arriving at each port (e.g. using 2017–2018 container numbers).
The total number of containers arriving in a given raster cell i, is then just the sum
across raster layers:

N containersi =
n
∑

j=1









Proportion of containersi,j
n
∑

i=1

Proportion of containersi,j

× Total containersj









, (4.8)

where Total containersj is the total number of containers discharged at a port j in a
given year.

48

https://www.abs.gov.au/ausstats/abs@.nsf/Latestproducts/5368.0.55.018Main%20Features92009-10?opendocument&tabname=Summary&prodno=5368.0.55.018&issue=2009-10&num=&view=
https://www.abs.gov.au/ausstats/abs@.nsf/Latestproducts/5368.0.55.018Main%20Features92009-10?opendocument&tabname=Summary&prodno=5368.0.55.018&issue=2009-10&num=&view=
https://www.abs.gov.au/AUSSTATS/abs@.nsf/second+level+view?ReadForm&prodno=1270.0.55.003&viewtitle=Australian%20Statistical%20Geography%20Standard%20(ASGS):%20Volume%203%20-%20Non%20ABS%20Structures~July%202011~Previous~22/07/2011&&tabname=Past%20Future%20Issues&prodno=1270.0.55.003&issue=July%202011&num=&view=&


Camac et al. 2020 Cen t r e  o f  Exce l l en ce  f o r
B i o se cu r i t y  R i sk  Ana l y s i s
 

Table 4.4.: Number of international containers discharging at major Australian ports in
2017–2018. Data obtained from the Department of Agriculture.

Port Port code Longitude Latitude Number of containers

Sydney AUSYD 151.1906880 −33.86068000 1762876

Melbourne AUMEL 144.9158500 −37.81745100 1759221

Brisbane AUBNE 153.1715600 −27.37148000 819838

Fremantle AUFRE 115.7480600 −32.04720000 466318

Adelaide AUADL 138.5079505 −34.79916667 229529

Townsville AUTSV 146.8307000 −19.25312000 36020

Darwin AUDRW 130.8452700 −12.47116000 15501

Port Kembla AUPKL 150.8904500 −34.45455000 12751

Newcastle AUNTL 151.7718500 −32.91538000 5472

Geelong AUGEX 144.3646500 −38.10478000 3917

Launceston AULST 147.1239500 −41.42815000 3534

Esperance AUEPR 121.8983600 −33.87233000 3429

Gladstone AUGLT 151.2415300 −23.82563000 1658

Cairns AUCNS 145.7803800 −16.92603000 1293

Hobart AUHBA 147.3337700 −42.88306700 1271

Port Alma AUPTL 150.8628300 −23.58269000 941

Port Hedland AUPHE 118.5738700 −20.31500500 454

Dampier AUDAM 116.7010900 −20.66269000 255

Mackay AUMKY 149.2226300 −21.10678800 222

Broome AUBME 122.2125300 −18.00359000 196

Port Pirie AUPPI 138.0139000 −33.18032000 101

Devonport AUDPO 146.3663100 −41.18003000 94

Portland AUPTJ 141.6150800 −38.35179000 85

Bunbury AUBUY 115.6665500 −33.32127000 81

Perth AUPER 115.8554770 −31.96527778 61

Weipa AUWEI 141.8697740 −12.67042600 57

Wyndham AUWYN 128.1011700 −15.45192700 51

Burnie AUBWT 145.9111800 −41.05032000 46

Geraldton AUGET 114.5930900 −28.77461000 42

Albany AUALH 117.8892400 −35.03078000 33

Port Lincoln AUPLO 135.8695100 −34.72168000 27

Whyalla AUWYA 137.5944290 −33.01487000 26

Gove AUGOV 136.6783200 −12.20134000 10

Bundaberg AUBDB 152.3884570 −24.76722222 4

Port Bonython AUPBY 137.7641800 −32.99250000 3

Onslow AUONS 115.1012200 −21.63765000 3

Botany Bay AUBTB 151.2166000 −33.97067000 2
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4.2.5. Pathway: Vessels

Unlike the container pathway (see below), where pests may be transported great dis-
tances from the point of entry, stowaway pests are more likely to disperse in the im-
mediate vicinity of the discharge port – either by natural means or via the initial un-
loading or short-distance movement of vessel items. To that end, we assumed the
spatial distribution of the likelihood of a pest arriving via this pathway would best be
described by the number of containers discharged at each port (supplied by DAWE;
Table 4.4), Containerj – a variable likely to be highly correlated with vessel numbers 4

– and then weighting this by a negative exponential distance-decay function for each
port, Port distancei,j . Specifically, we first constructed a weighted grid for each port
using:

Port weighti,j = Containersj × exp(β × Port distancei,j) (4.9)

where Port weight
i,j

produces the number of containers for each raster cell, i, asso-
ciated with port, j. Like the tourist and Torres Strait pathways, β describes how steep
the distance decay should be (i.e. how severely should dispersal be limited) and ulti-
mately will depend on the pest’s initial dispersal capabilities. Effectively, Port weight

i,j

is our bias grid for each port, where more risk is allocated to regions close to ports that
receive larger quantities of containers (and by implication vessels).

In order to distribute national numbers of international vessel visits across all ports,
we then sum these risk scores across ports for each i, and then normalise these such
that we receive a proportion of risk attributed to each raster cell i, that can then be
multiplied by the national number of vessels arriving into Australia:

Vessel arrivalsi =

n
∑

j=1

Port weighti,j

n
∑

i=1

n
∑

j=1

Port weighti,j

× Vessels (4.10)

4We were unable to obtain accurate numbers of vessels (and the type of vessel) docked at each port.
If this data becomes available, it can be readily substituted into the model.
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4.2.6. Pathway: Imported Machinery

Based on 2015–2016 data supplied by DAWE, Australia imported approximately 1,216,726
units of machinery from overseas, with the vast majority being new vehicles (Table 4.5).

As we did not have spatially explicit data describing how these imported machinery
were distributed post-border, coupled with the fact that new vehicles were the domi-
nant good imported via this pathway, we assumed that machinery was distributed as
a function of population density (see Fig. 4.4). Specifically, the number of imported
machinery units arriving in a given grid cell, i, was estimated using:

Imported machineryi =
population densityi
n
∑

i=1

population densityi

× Machinery imports, (4.11)

where Machinery imports is the total number of machinery items imported into Aus-
tralia.

Table 4.5.: Breakdown of goods imported via the machinery pathway. Data based on
2015–2016 data and obtained from the Department of Agriculture, Water and
the Environment.

Machinery type Percentage

Conveyances 0.38

Parts 3.48

Used machinery 0.14

New machinery 0.69

New vechicles 92.79

Used vechicles 1.43

Tools 1.10
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4.2.7. Pathway: Imported nursery stock

Based on 2015–2016 data supplied by the DAWE, Australia imported approximately
4,475 units of nursery stock from overseas. These goods are imported by a variety
of small, medium and large businesses and are likely to be distributed according to
population density – the higher the population, the greater the demand (see Fig. 4.4).
Thus, we estimate, the number of imported nursery items arriving in a given grid cell,
i, using:

Imported nursery stocki =
population densityi
n
∑

i=1

population densityi

× Imported nursery stock, (4.12)

where Imported nursery stock is the total number of nursery items imported into Aus-
tralia.

4.2.8. Pathway: Imported plant-based food

Imported food (e.g. fruit and vegetables), while often cold-treated, can still pose a sig-
nificant entry risk for some plant pests. Based on 2015–2016 data supplied by DAWE,
Australia imported approximately 15,832 units of plant-based food from overseas.
While detailed information on the final destination of these goods remains unknown,
it is highly likely that because they are for human consumption they will be distributed
according to human population density (see Fig. 4.4). Thus, we estimate the number
of imported food items arriving in a given grid cell, i, using:

Imported foodi =
population densityi
n
∑

i=1

population densityi

× Imported food, (4.13)

where Imported food is the total number of plant-based food items imported into Aus-
tralia.
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4.3. Expected number of pest arrivals

Assuming the number of units associated with each pathway have been distributed
across the country, we can calculate the expected number of pest arrivals at a location.
This is done by multiplying the expected number of pathway units in each raster cell,
Pathway units

i,k
, by the respective pathway per unit probability, Pr(contaminationk),

derived from RRRA or other pathway methods. For example, if a pest could enter the
country via the four pathways described above (i.e. tourists, returning residents, mail
and Torres Strait), one would first estimate arrivals by pathway:

Pest arrivalsi,k = Pathway unitsi,k × Pr(contaminationk) (4.14)

The total number of pest arrivals can then be calculated by simply summing the
expected number of arrivals in each grid cell i across entry pathways, k:

Total pest arrivalsi =
4

∑

k=1

Pest arrivalsi,k (4.15)

4.4. Abiotic suitability

Climate is likely to be the major abiotic barrier to most pest establishment, especially
at large spatial scales (Araújo & Rozenfeld, 2014). The geographic distribution of suit-
able climate can be estimated using a wide variety of approaches including climat-
matching algorithms (e.g. CLIMATCH, CLIMEX; Crombie et al., 2008; Kriticos et al.,
2015), environmental convex hulls and Range Bagging (e.g. Drake, 2015), two-class
correlative species distribution models (e.g. Maxent Phillips et al., 2006), physiologi-
cal models (e.g. NicheMapper; Kearney & Porter, 2017), semi-mechanistic models (e.g.
CLIMEX; Kriticos et al., 2015), or when data is poor, expert-derived suitability maps
(e.g. Martin et al., 2015). Many tools exist, and there are diverse opinions on how to use
them, but there remains no strong evidence of a single best approach for predicting an
invasive species’ potential distribution (Barry et al., 2015). As a consequence, our es-
tablishment likelihood mapping framework is agnostic as to how abiotic suitability is
estimated. However, we strongly recommend users consult Chapter 3 to obtain practi-
cal guidance on how to robustly estimate climatic suitability for a species. Regardless
of the method used, it is important that prior to input into this mapping framework the
spatial layer is in the same projection and has the same extent and resolution as the lay-
ers used to distribute pest arrival numbers in the previous subsection (e.g. Australian
Albers and 1 km resolution).
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4.5. Biotic suitability

The presence or absence of host material or suitable habitat will be another major fac-
tor affecting a pest’s establishment success. The geographic distribution of host ma-
terial can be informed using a variety of methods and datasets. For example, for a
plant disease that disperses via an insect carrier, biotic suitability could be estimated
by modelling the climatic distribution of the insect, the host, or a combination of the
two. Landuse layers may also be used to inform the distribution of host material –
particularly for agricultural plant species.

One such spatial layer that is likely to be highly applicable to most high priority plant
pests is the Australian Land Use and Management Classification (ALUMC version 8;
ABARES, 2019), provided by the Australian Collaborative Land Use and Management
Program. ALUMC is the most comprehensive and up-to-date Australian landuse layer
(current layer was compiled in December 2018) that classifies the dominant landuse of
every 50 × 50 m grid cell across Australia in a three-tiered hierarchical structure (Fig.
4.7). The deeper the layer, the more detail is provided about the land use. Other spa-
tial layers that may also be useful for informing habitat suitability include those that
attempt to quantify the amount of vegetation cover (fractional vegetation cover) or
vegetation greenness (Normalised Difference Vegetation Index; NDVI) or simply the
geographic distribution of major vegetation types (National Vegetation Information
System; NVIS). Like abiotic suitability, the establishment likelihood mapping frame-
work described in this report is agnostic as to how one estimates biotic suitability,
mostly because the types of models and data used will be highly species dependent.
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Figure 4.7.: Geographic distribution of secondary ALUMC classifications. ABARES December 2018.

55



Camac et al. 2020 Cen t r e  o f  Exce l l en ce  f o r
B i o se cu r i t y  R i sk  Ana l y s i s
 

4.6. Estimating establishment likelihoods

Given spatially explicit estimates of the number of arrivals per grid cell, i, coupled
with the abiotic and biotic suitability of these grid cells, one can then estimate a relative
establishment likelihood (i.e. the expected number of arrivals weighted by biotic and
abiotic suitability) as:

Establishment likelihoodi = Total pest arrivalsi × Abiotic suitabilityi × Biotic suitabilityi,

(4.16)

where abiotic and biotic suitability components are assumed to be normalised (if
required), such that their scores are scaled between 0 and 1. This ensures that both
biotic and abiotic factors are equally weighted (i.e. are equally important). If there is
evidence that these factors should not be equally weighted, an adjustment factor can
be added to either suitability score.
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5. Case study 1: Oriental fruit fly

Figure 5.1.: A female oriental fruit fly, Bactrocera dorsalis, laying eggs by inserting her
ovipositor in the skin of a papaya. Photo by Scott Bauer.

https://commons.wikimedia.org/wiki/File:Bactrocera_dorsalis.jpg
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5.1. Background

Oriental fruit fly, Bactrocera dorsalis (Hendel), poses a substantial threat to horticultural
industries in locations where the species could become established, with over 300 dif-
ferent types of fruit and vegetables potentially infested by the species (Vargas et al.,
2015). Recently, B. dorsalis has undergone significant taxonomic changes such that it
now also encompasses B. philippinensis Drew and Hancock, B. papayae Drew and Han-
cock and B. invadens (Vargas et al., 2015). This expanded classification has substantially
increased the geographic range of B. dorsalis, which includes the Pacific region, Africa,
South America, and parts of the USA (Vargas et al., 2015).

Fruit flies such as oriental fruit fly present a significant phytosanitary threat to the in-
ternational competitiveness of Australia’s horticultural industry. Over the past decade
many countries have joined the World Trade Organisation (WTO), which requires mem-
bers to manage imports according to the Sanitary and Phytosanitary Measures Agree-
ment (SPS Agreement) and the International Standards for Phytosanitary Measures
(ISPMs). In many cases, this has led to trading partners imposing stringent quarantine
measures that require increasing evidence of pest freedom in order to justify phytosan-
itary standards. This, in turn, has put strain on Australia’s competitive ability to gain
and maintain market access in the international horticultural market.

In the effort to minimise additional phytosanitary procedures and maximise inter-
national market access, each Australian state has established networks of fruit fly lure
traps. These networks of traps have been set up according to the draft national code
of practice (Anon, 2008) and international guidelines (International Atomic Engergy
Agency, 2003; International Plant Protection Convention, 2006) for fruit fly surveil-
lance (International Plant Protection Convention, 2006) and are a primary tool used to
provide evidence of fruit fly freedom and early detection. In the following sections
we develop a map of establishment likelihood for Bactrocera dorsalis to facilitate the
placement of finite surveillance resources for early detection.

5.2. High risk pathways

The Risk Return Resource Allocation Model (RRRA) identified three high risk path-
ways that could allow Bactrocera dorsalis to enter mainland Australia: tourists, return-
ing residents and passengers travelling from the Torres Strait into Cairns (Table 5.1).
For details on how units associated with each pathway were distributed post-border
see Chapter 4.

The Department of Agriculture, Water and Environment (DAWE) considered tourists en-
tering Australia to be less biosecurity aware, and thus, more likely to be carrying fruit fly
contaminated goods. In order to incorporate this belief, we assumed the that two-thirds of
the RRRA air passenger risk was assigned to tourists with the remaining third assigned to
returning residents. It is expected that this weighting will be revised once empirical data
become available.

Tourist contamination likelihoods
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Table 5.1.: Oriental fruit fly pathway likelihoods with associated expected number of
post-border entries per annum based on estimated pathway volumes. Data
derived from RRRA, with two-thirds of the air passenger risk assigned to
tourists and the remaining third assigned to returning residents.

Pathway Pr(Contamination) Units Expected entries

Tourists 1.57e− 06 13,941,270 21.9

Returning residents 7.86e− 07 15,486,050 12.2

Torres Strait visitors 4.12e− 04 51,000 21.0

TOTAL 55.1

5.3. Abiotic suitability

The potential distribution of oriental fruit fly (Bactrocera dorsalis) has been approxi-
mated using a variety of techniques such as CLIMEX (Stephens et al., 2007), Maxent
and GARP (De Meyer et al., 20010) as well as several other techniques tested as part of
this project (Figure 5.2 & Appendix C). While some broad similarities exist (e.g. Central
Africa and northern parts of South America are highly suitable) substantial differences
also exist between models. This is particularly obvious when examining the distri-
bution of suitable climate in Australia with CLIMEX indicating much of the central
and northern east coast of Australia being highly suitable, while GARP suggests the
northern coastline is most suitable and Maxent suggests minimal suitable climate in
Australia. The reasons for such discrepancies are many, each approach relies on differ-
ent assumptions, the models were parametrised and validated using different sources
of data and information, and the choice of covariates or constraining factors differed
among the models.
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Figure 5.2.: CLIMEX, GARP and Maxent model estimates of the global distribution of
suitable climate for oriental fruit fly (Bactrocera dorsalis) or its synonym Bac-
trocera invadens. Dark colours signify greater suitability. CLIMEX (Stephens
et al., 2007); GARP and Maxent (De Meyer et al., 20010)
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While climatic influences on some biological processes have been estimated and in-
corporated into published CLIMEX models for this pest (Stephens et al., 2007), we de-
cided against using this model. We did this because while CLIMEX models do use
some biological information, they are not truly mechanistic because they still require
parameter fitting via inference from the pest’s known distribution – typically via man-
ual tweaking of parameters (Kriticos et al., 2015). This manual tweaking of parameters
introduces a high subjectivity to the model fitting, which is exacerbated by the reliance
on a single parametrisation of the model.

Instead, based on work conducted as part of this project (see Appendix C), we opted
to use a novel method known as range bagging. Range bagging was recently proposed
by Drake (2015). This algorithm uses presence-only data to estimate the environmen-
tal limits of species’ habitat by subsetting the multidimensional environments (to user-
defined levels of dimensionality), and then using convex hulls to estimate boundaries
in each subset of environmental dimensions. Range bagging repeatedly fits models to
a random assortment of occurrence samples (and covariate choices) and averages the
outcome by using votes (how often a given environment occurs inside niche bound-
aries) on the ranges of convex hulls obtained from bootstrap samples across all the
environmental dimensions. Effectively, its output is the proportion of models that esti-
mate a given location has suitable climate. For example, a suitability score of 0.1 would
indicate that only 10% of the ensembled convex hulls deemed that location climatically
suitable (i.e. contained the environmental conditions at that location). By contrast, a
score of 0.9 would indicate that 90% of estimated convex hulls deemed that location
climatically suitable.

The approach has seen recent applications to invasion biology, and appears promis-
ing for biosecurity applications. Part of the appeal of this approach is that absences or
background data are not required – only presence data are needed (see Chapter 3 &
Appendix C). This in turn, removes a number of subjective decisions required in the
modelling process and instead focuses solely on the data which we do have – pres-
ence locations. Another major advantage of range bagging is that it can readily be
used to deal with uncertainty in covariate selection. This is done by specifying low di-
mensionality (e.g. 2-dimensions) and allowing the algorithm to randomly select from
among a suite of possible covariates – effectively resulting in an ensemble of hundreds
of competing models. Finally, range bagging also has the advantage of generating out-
puts that are directly comparable across species, since the predicted quantity (i.e. the
proportion of replicate hulls that contain given environmental conditions) is constant
across models. In contrast, presence-background methods can be poorly calibrated,
with varying estimated relationships between predicted suitability and true probabil-
ity of occurrence (e.g. Guillera-Arroita et al. 2014), complicating such comparison.

Here, we fit range bagging models using code supplied by Drake 2015, with di-
mensionality set to 2 (meaning only two covariates are fitted at a time), the number
of bootstrapped models set to 100 and the proportion of occurrence records used per
model set at 0.5. We allowed the algorithm to sample from all 19 WorldClim version 2
(Fick & Hijmans, 2017) bioclimatics parameters (i.e. BIO01 to BIO19) derived from the
published 10 minute (approximately 20 km resolution) raster layers. We used “sim-
ple” two-dimensional combinations in order to minimise biases associated with model
over-fitting (see Chapter 3 and Appendix C).

We sourced occurrence records of Bactrocera dorsalis, including its synonyms B. philip-
pinensis, B. papayae and B. invadens (Vargas et al., 2015), directly from GBIF and supple-

61



Camac et al. 2020 Cen t r e  o f  Exce l l en ce  f o r
B i o se cu r i t y  R i sk  Ana l y s i s
 

mented these data with those collated by Hill et al. 2017. Prior to running the range
bagging algorithms we first cleaned these occurrence records by using cleaning rou-
tines in the recently published CoordinateCleaner R package (Zizka et al., 2019).
Specifically, we removed records that:

1. had equal latitude and longitudes or were within 0.5 degrees radius of coordi-
nates 0,0;

2. were within a 5 km radius of a capital city centroid;1

3. were within a 10 km radius of either a country or province centroid;

4. were within 1 degree radius around the GBIF headquarters in Copenhagen, Den-
mark;

5. were within 100 m radius around the centroids of known biodiversity institu-
tions;

6. were located in the ocean; or

7. contained mismatches between the country specified in the record and the record’s
coordinates.

We also removed duplicate records and thinned occurrence records to one point per
20 km (the resolution of the WorldClim version 2 climate data). Following this, we
removed all occurrence records that were present in countries with no known estab-
lishment records based on CABI country-level distributional data. This ensured that
the remaining occurrences were most likely from established populations, and thus
suitable for inclusion in the range bagging analysis. Models were then fitted subse-
quently projected and resampled to a 1 km grid – our desired map resolution. The
mapped distributional data and model outputs can be seen in Figures 5.3 & 5.4.

1In large databases such as GBIF, if a record does not have accurate GIS coordinates, users sometimes
provide country or capital city coordinates. While such coordinates are useful for providing information
on the country or province of the record, they are likely to be too coarse when estimating climatic suit-
ability for a species, which involves mapping occurrence records onto fine-resolution gridded climatic
data.
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Figure 5.3.: Global climatic suitability for oriental fruit fly estimated from range bagging. Blue points indicate cleaned distributional data
collated from GBIF and Hill et al. 2017. Raster resolution: 10 minutes (approx 20 km). Suitability is the proportion of ensembled
convex hulls that identify a location as climatically suitable across bootstrapped combinations of environmental variables.
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Figure 5.4.: Australian projected climatic suitability for oriental fruit fly derived from
range bagging. Raster aggregated to a 5 km grid for presentation purposes.
Suitability is the proportion of ensembled convex hulls that identify a lo-
cation as climatically suitable across bootstrapped combinations of environ-
mental variables.
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5.4. Biotic suitability

We utilised the tertiary raster layer of Australian Land Use and Management Classifi-
cation (ALUMC version 8; ABARES, 2019), provided by the Australian Collaborative
Land Use and Management Program, to define the presence and absence of fruit fly
host material. Specifically, we created a binary raster whereby any 50 m2 grid cell con-
taining commodities vulnerable to fruit fly, such as tree fruits, vine fruits, olives, citrus,
vegetables, herbs, and shrub berries, as well as urban areas, was assumed to contain
host material and assigned a value of 1 (Table 5.2). All other grid cells containing other
dominant land uses were classified as 0 and assumed to contain no fruit fly host ma-
terial. This binary raster was then converted to a 1 km grid resolution by finding the
maximum value of aggregated grid cells. Note that this layer is an approximation of
the geographic distribution of host material, and does not account for possible native
and weed hosts, for which we currently have incomplete distributional data.

While the ALUMC binary layer provides insights into the presence or absence of
fruit fly host material, it does not provide an indication of the abundance of host ma-
terial in any given season. We approximated the host abundance (conditional on the
host being present) by multiplying the binary host presence raster with average Nor-
malised Difference Vegetation Index (NDVI; a measure of raster cell greenness), scaled
between 0 and 1, observed between October 2018 to March 2019 (The period when the
flies would be most active; Fig. 5.5). We obtained this data from the Bureau of Meteo-
rology at a raster resolution of 0.05 by 0.05 degrees (approximately 5 km scale), which
was then resampled to a 1 km grid. The resulting biotic suitability map can be seen in
Fig. 5.6).

Biotic suitabilityi = Host presencei ×
NDVIi −min(NDVIi)

max(NDVIi)−min(NDVIi)
(5.1)
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Table 5.2.: ALUMC landuses likely to contain fruit fly host material.

Landuse Code

Perennial horticulture 340

Perennial tree fruits 341

Perennial oleaginous fruits 342

Perennial tree nuts 343

Perennial vine fruits 344

Perennial shrub nuts, fruits and berries 345

Perennial vegetables and herbs 347

Perennial citrus 348

Perennial grapes 349

Seasonal horticulture 350

Seasonal fruits 351

Seasonal vegetables and herbs 353

Abandoned perennial horticulture 365

Irrigated perennial horticulture 440

Irrigated perennial tree fruits 441

Irrigated perennial oleaginous fruits 442

Irrigated perennial tree nuts 443

Irrigated perennial vine fruits 444

Irrigated perennial shrub nuts, fruits and berries 445

Irrigated perennial vegetables and herbs 447

Irrigated citrus 448

Irrigated grapes 449

Irrigated seasonal horticulture 450

Irrigated seasonal fruits 451

Irrigated seasonal vegetables and herbs 453

Abandoned irrigated perennial horticulture 465

Residential and farm infrastructure 540

Urban residential 541

Rural residential with agriculture 542

Rural residential without agriculture 543

Remote communities 544

66



Camac et al. 2020 Cen t r e  o f  Exce l l en ce  f o r
B i o se cu r i t y  R i sk  Ana l y s i s
 

0 500 1000 1500 km

N

NDVI

−0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 5.5.: Average Normalised Differential Vegetation Index (NDVI) observed between
October 2018 and March 2019. Data obtained from the Australian Bureau of
Meteorology. Raster aggregated to a 5 km grid for presentation purposes.
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Figure 5.6.: Distribution of suitable biotic environment for oriental fruit fly. Estimated as
a function of ALUMC and NDVI data. Raster aggregated to a 5 km grid for
presentation purposes.
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5.5. Establishment likelihoods

According to RRRA, Bactrocera dorsalis is most likely to enter via three pathways: inter-
national tourists, returning residents and air passengers from the Torres Strait (Table
5.1). Tourists are distributed as a function of the density of tourist accommodation and
distance from major airport. By contrast returning residents are distributed as a func-
tion of population density, while the Torres Strait arrivals are distributed as a function
of both population density and distance from Cairns airport. The implication of these
assumptions is that in the days following arrival the majority of arrivals will likely oc-
cur in major metropolitan areas that are close to airports and contain high densities of
tourist accommodation.

However, whether these arrivals are likely to result in establishment depends on
both the abiotic (e.g. climate suitability) and biotic (e.g. presence of food source) envi-
ronment (Fig. 5.7). In terms of food availability (i.e. biotic suitability), the expectation
is that all Australian cities are likely to be suitable because residents grow host fruit
and vegetables in backyards. However, what differentiates establishment likelihoods
between cities is the climate suitability. For example, we estimated a relatively high ar-
rival rate for Bactrocera dorsalis – a tropical fruit fly – in and around Melbourne, but the
climate suitability in this region is much lower compared to more tropical areas such as
Cairns (which also has a high arrival rate) (see Fig. 5.4). Thus, while Melbourne con-
tained one of the highest arrival rates, the highest establishment likelihoods for this
species were found in more tropical metropolitan cities (e.g. Brisbane and Cairns; Fig.
5.8). Fig. 5.9–5.16 provide more detailed maps of the geographic distribution of Bac-
trocera dorsalis establishment likelihoods around major cities and tourist locations. For
finer scale (i.e. 1 km resolution) maps please see associated interactive maps attached
to this report. Interactive maps on expected number of arrivals across all pathways
(not shown here) are also included as additional files attached to this report.
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Figure 5.7.: Estimated environmental suitability for oriental fruit fly. Suitability is de-
fined as the product of abiotic (i.e. climate suitability) and biotic suitability
(i.e. host presence × NDVI). Raster aggregated to a 5 km grid for presenta-
tion purposes
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Figure 5.8.: National establishment likelihood map for oriental fruit fly. Raster aggre-
gated to a 5 km grid for presentation purposes. Only establishment scores
above 10−8 plotted.
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Figure 5.9.: Oriental fruit fly establishment likelihood map for greater Cairns. Only es-
tablishment scores above 10−8 plotted.
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Figure 5.10.: Oriental fruit fly establishment likelihood map for greater Brisbane. Only
establishment scores above 10−8 plotted.
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Figure 5.11.: Oriental fruit fly establishment likelihood map for greater Sydney. Only
establishment scores above 10−8 plotted.
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Figure 5.12.: Oriental fruit fly establishment likelihood map for greater Melbourne. Only
establishment scores above 10−8 plotted.
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Figure 5.13.: Oriental fruit fly establishment likelihood map for greater Hobart. Only
establishment scores above 10−8 plotted.
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Figure 5.14.: Oriental fruit fly establishment likelihood map for greater Adelaide. Only
establishment scores above 10−8 plotted.
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Figure 5.15.: Oriental fruit fly establishment likelihood map for greater Perth. Only es-
tablishment scores above 10−8 plotted.
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Figure 5.16.: Oriental fruit fly establishment likelihood map for greater Darwin. Only
establishment scores above 10−8 plotted.
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6. Case study 2: Khapra beetle

Figure 6.1.: An adult khapra beetle (Trogoderma granarium). Photo by Udo Schmidt.

https://commons.wikimedia.org/wiki/File:Trogoderma_granarium_Everts,_1899_(30364726883).png
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6.1. Background

Khapra beetle (Trogoderma granarium) is a highly destructive pest of stored grain and
dry foodstuff that has caused losses of up to 74% (Botha et al., 2005). It is highly re-
sistant to many contact insecticides or fumigants and can undergo diapause under
adverse conditions for significant lengths of time, proving difficult to eradicate once
established (CABI).

Currently, khapra beetle occurs in many middle-eastern countries (e.g. Iran & Iraq),
Africa and South Asia, but remains absent from Australia, New Zealand, South-East
Asia and South America (CABI). Countries without this pest maintain strong quaran-
tine controls and restrictions to mitigate risk of importing the pest and to prevent mar-
ket access for countries with known infestations. Consequently, khapra beetle poses a
significant threat to Australia’s export-orientated grain industry.

To facilitate decisions associated with the deployment of finite surveillance resources
for early detection, we developed a map of establishment likelihoods for khapra beetle
(Trogoderma granarium). The details of this map, including how it was constructed, can
be found in the following sections.

6.2. High risk pathways

The Risk Return Resource Allocation Model (RRRA) identified five high risk pathways
that could allow Trogoderma granarium to enter Australia: tourists, returning residents,
international mail, imported fertiliser and international vessels (Table 6.1). See Chap-
ter 4 for details on how units associated with each pathway were distributed post-
border. For the purpose of this analysis, we assumed that arrivals associated with
vessels would decay exponentially with distance, such that 50% of the arrivals would
occur within 1 km of the port of arrival (i.e. β was assigned as − log(0.5)/1 = −0.693;
Section 4.2.5; Fig. 6.2). We deemed this appropriate, because khapra beetle cannot
fly and is therefore highly unlikely to travel large distances. Rather, it is likely to dis-
perse in close proximity to ports via natural movement, or more likely, short distance
hitch-hiking events where goods are taken off vessels.

Table 6.1.: Khapra beetle pathway likelihoods with associated expected number of post-
border entries per annum based on estimated pathway volumes. Data derived
from RRRA, with two-thirds of the air passenger risk assigned to tourists and
the remaining third assigned to returning residents.

Pathway Pr(Contamination) Units Expected entries

Tourists 1.07e− 06 13,941,270 15.0

Returning residents 5.37e− 07 15,486,050 8.3

Mail 8.01e− 08 152,000,000 12.2

Fertiliser 3.92e− 04 6,907 2.7

Vessels 1.44e− 04 18,612 2.7

TOTAL 40.9
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The Department of Agriculture, Water and Environment (DAWE) considered tourists enter-
ing Australia to be less biosecurity aware, and thus, more likely to be carrying goods con-
taminated by khapra beetle. In order to incorporate this belief, we assumed that two-thirds
of the RRRA air passenger risk was assigned to tourists, with the remaining third assigned
to returning residents. It is expected that this weighting will be revised once empirical data
become available.

Tourist contamination likelihoods

0 500 1000 1500 km

N

log10(Port weight [5km])

−45 −40 −35 −30 −25 −20 −15 −10 −5 0

Figure 6.2.: Log10 vessel pathway distance decay weights for khapra beetle. A nega-
tive exponential decay function was used where 50% of arrivals from vessels
would be distributed within 1 km of a major marine port.
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6.3. Abiotic suitability

Khapra beetle is typically a pest of hot, dry climates or of commodities stored else-
where in hot dry conditions (Banks, 1977). While previous research (e.g. Banks, 1977;
Botha et al., 2005) has indicated that much of Australia’s interior, including some grain
growing regions, are likely to be climatically suitable, the pest is generally believed to
be capable of establishing in most locations. This is because: 1) the pest commonly
occurs in stored grain and food products 1, and thus, is unlikely to be subjected to am-
bient climatic conditions reflected in the parametrisation of climate suitability models;
and 2) under adverse conditions, this species can undergo significant periods of di-
apause, allowing larvae to persist for approximately 9 months without food and up
to 6 years with food (Burges, 1963). As such, for the purposes of developing a map
of establishment likelihoods, we assumed that the environmental conditions within
storage facilities containing grain and other vulnerable food commodities would be
equally suitable for khapra beetle to establish. Thus, no climatic suitability model was
constructed for this pest.

6.4. Biotic suitability

We utilised the tertiary raster layer of the Australian Land Use and Management Clas-
sification (ALUMC version 8; ABARES, 2019) to define the presence and absence of
khapra beetle host material. Specifically, we created a binary raster whereby any 50 m2

grid cell likely to contain storage of commodities vulnerable to khapra beetle, such as
oilseeds, cereals or pulses (CABI), were assumed to contain host material and assigned
a value of 1 (Table 6.2). Urban areas, feedlots and other intensive animal farming (e.g.
dairy, piggeries, poultry) were also assumed to contain host material, as they are likely
to contain various quantities of local and imported stored grain and other dry food-
stuff. Crop fields of vulnerable commodities were not included as suitable locations
as there has been no documented cases of infestations on crops (CABI). All other grid
cells containing other dominant land uses were classified as 0 and assumed to contain
no khapra beetle host material. This binary raster was then converted to a 1 km grid
resolution by finding the maximum value of aggregated grid cells (Fig. 6.3).

1There have been no documented infestations of unharvested grain in and around farms (CABI).
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Table 6.2.: ALUMC landuses likely to contain khapra beetle host material.

Landuse Code

Intenstive animal production 520

Dairy sheds and yards 521

Feedlots 522

Poultry farms 523

Piggeries 524

Horse studs 526

Saleyards/stockyards 527

Abandoned intenstive animal production 528

Manufacturing and industrial 530

General purpose factory 531

Food processing factory 532

Major industrial complex 533

Bulk grain storage 534

Abandoned manufacturing and industrial 538

Residential and farm infrastructure 540

Urban residential 541

Rural residential with agriculture 542

Rural residential without agriculture 543

Remote communities 544

Farm buildings/infrastructure 545

Ports and water transport 574
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Figure 6.3.: Distribution of suitable biotic environment for khapra beetle. Estimated from
ALUMC data. Raster aggregated to a 5 km grid for presentation purposes.
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6.5. Establishment likelihoods

According to RRRA, khapra beetle is most likely to enter via five pathways: air passen-
gers (tourists & returning residents), international mail, imported fertiliser and inter-
national vessels (Table 6.1). In our establishment likelihood mapping framework, both
international mail and returning residents are distributed as a function of human pop-
ulation density. By contrast, international tourists were distributed as a function of the
density of tourist accommodation and distance from international airport, fertiliser im-
ports were distributed according to NRM usage statistics, and arrivals by vessels were
distributed as a function of the proportion of containers arriving at a port (assumed to
be correlated with number of vessels arriving) and distance from port. The implication
of these assumptions is that in the days following entry the majority of arrivals will
likely occur in major metropolitan areas that are close to ports (both air and marine),
and contain high densities of tourist accommodation. Consequently, Sydney and Mel-
bourne are expected to receive the most arrivals due to their high population density
and tourist accommodation coupled with each containing ports that receive a substan-
tial proportion of the total number of containers (and presumably international vessels)
entering Australia. In these regions it is likely that the majority of khapra beetles will
end up in residential pantries, and therefore, pose little risk of further spread and es-
tablishment. In agricultural regions, khapra beetle establishment, at least according to
RRRA, is most likely to occur in regions that use imported fertiliser. However, the like-
lihood of khapra beetle arrival and establishment in these regions is much lower than
in urban centres due to the majority of arrivals entering via international air passengers
and mail (Table 6.1).

As the locations most likely to receive khapra beetle are also those which are most
likely to contain appropriate food sources (Fig. 6.3), the establishment map (Fig. 6.4)
is largely a function of where khapra beetle is most likely to arrive. Figures 6.5–6.12
provide more detailed maps of the geographic distribution of Trogoderma granarium
establishment likelihoods around major cities and tourist locations. For finer scale (i.e.
1 km resolution) maps please see associated interactive maps attached to this report.
Interactive maps on expected number of arrivals across all pathways (not shown here)
are also included as additional files attached to this report.
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Figure 6.4.: National establishment likelihood map for khapra beetle. Raster aggregated
to a 5 km grid for presentation purposes. Only establishment scores above
10−8 plotted.
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Figure 6.5.: Khapra beetle establishment likelihood map for greater Cairns. Only estab-
lishment scores above 10−8 plotted.
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Figure 6.6.: Khapra beetle establishment likelihood map for greater Brisbane. Only es-
tablishment scores above 10−8 plotted.
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Figure 6.7.: Khapra beetle establishment likelihood map for greater Sydney. Only estab-
lishment scores above 10−8 plotted.
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Figure 6.8.: Khapra beetle establishment likelihood map for greater Melbourne. Only
establishment scores above 10−8 plotted.
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Figure 6.9.: Khapra beetle establishment likelihood map for greater Hobart. Only estab-
lishment scores above 10−8 plotted.
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Figure 6.10.: Khapra beetle establishment likelihood map for greater Adelaide. Only es-
tablishment scores above 10−8 plotted.
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Figure 6.11.: Khapra beetle establishment likelihood map for greater Perth. Only estab-
lishment scores above 10−8 plotted.
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Figure 6.12.: Khapra beetle establishment likelihood map for greater Darwin. Only es-
tablishment scores above 10−8 plotted.
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7. Case study 3: Brown marmorated

stink bug (BMSB)

Figure 7.1.: Adult brown marmorated stink bug (Halyomorpha halys). Photo by Alpsdake.

https://commons.wikimedia.org/wiki/File:Halyomorpha_halys_s2a.jpg
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7.1. Background

Brown marmorated stink bug (BMSB; Halyomorpha halys), also known as yellow-brown
stink bug, is a highly polyphagous (>100 hosts) plant pest that poses a substantial
threat to horticulture worldwide (CABI 2019). Over the last two decades, BMSB has
rapidly spread from its native range in East Asia (China, Japan, Korea and Taiwan) into
Europe, North America and Canada, and in doing so, has cause significant agricultural
losses (Rice et al., 2014; Valentin et al., 2017). Australia and New Zealand are currently
free of BMSB, despite large regions in both countries being deemed climatically suit-
able (Zhu et al., 2012; Fraser et al., 2017; Kriticos et al., 2017). However, maintaining this
pest-free status is becoming increasingly difficult as Australians import larger quanti-
ties of potentially contaminated goods from an expanding list of countries, ultimately
increasing the risk to Australia’s billion dollar horticultural industry.

Interception data coupled with expert opinion indicate that for both Australia and
New Zealand the number of BMSB arrivals and the likelihood of establishment will be
greatest when the pest over winters in the Northern Hemisphere. This is because when
BMSB over winters it aggregates in large numbers in both residential and industrial
buildings. As a consequence, BMSB is a common stowaway in passenger luggage and
imported bulk freight, cargo and vehicles (DAWR, 2017; Ormsby, 2018). Moreover,
because large numbers of this pest can be found in stowaway, successful establishment
of this pest will be more likely as it can more easily overcome possible founder effects
that inhibit the successful establishment of many other pests.

In an effort to facilitate decisions associated with allocation of finite surveillance
resources for early detection, we developed a map of establishment likelihoods for
brown marmorated stink bug (Halyomorpha halys). The details of this map, including
how it was constructed, can be found in the following sections.

7.2. High risk pathways

The Risk Return Resource Allocation Model (RRRA) identified five high risk pathways
that could allow brown marmorated stink bug (Halyomorpha halys) to enter Australia:
tourists, returning residents, imported nursery stock, machinery, and plant-based food
(Table 7.1). Based on RRRA estimates, international tourists and returning residents are
expected to be the highest risk pathways in terms of expected number of post-border
arrivals, followed by imported nursery stock and plant-based food. These estimates
appear to be in contradiction to recent interception data from both Australia and New
Zealand, which indicates that in addition to air passengers, imported machinery – par-
ticularly from Asia and Europe – is likely to be a significant pathway of entry for this
pest (DAWR, 2017; Ormsby, 2018). This contradiction between RRRA and intercep-
tion data is most likely because RRRA likelihoods for this pest are derived from an
aggregate group of pests that encompasses horticultural bugs, thrips and mites.

For the purpose of this project, we used RRRA pathway likelihoods to create a map
of establishment likelihood for this pest. However, we also included the machinery
pathway into the model, despite RRRA indicating it is responsible for a very low ex-
pected number of post-border arrivals.
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We recommend that this establishment likelihood map be interpreted with caution due to the
issues associated with pathway leakage estimates (see above), and ultimately this map should
be revised when revised pathway leakage rates become available.

Caution!

Table 7.1.: Brown marmorated stink bug pathway likelihoods with associated expected
number of entries per annum based on estimated pathway volumes. Data de-
rived from RRRA, with two-thirds of the air passenger risk assigned to tour-
sits and the remaining third assigned to returning residents.

Pathway Pr(Contamination) Units Expected entries

Tourists 1.57e− 06 13,941,270 21.900

Returning residents 7.86e− 07 15,486,050 12.200

Nursery stock 5.34e− 04 4,475 2.400

Machinery 1.40e− 09 1,216,726 0.002

Plant-based food 1.49e− 04 15,832 2.400

TOTAL 38.800

The Department of Agriculture, Water and Environment (DAWE) considered tourists en-
tering Australia to be less biosecurity aware, and thus, more likely to be carrying BMSB
contaminated goods. In order to incorporate this belief, we assumed the that two-thirds of
the RRRA air passenger risk was assigned to tourists with the remaining third assigned to
returning residents. It is expected that this weighting will be revised once empirical data
become available.

Tourist contamination likelihoods
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7.3. Abiotic suitability

The potential distribution of brown marmorated stink bug (Halyomorpha halys) has
been approximated using a variety of methods such as CLIMEX (Kriticos et al., 2017),
Maxent (Zhu et al., 2012; Fraser et al., 2017), Random forests (Fraser et al., 2017), Sup-
port Vector Machines (Fraser et al., 2017) and ensembles of multiple of these methods
(Fraser et al., 2017). Much like in the oriental fruit fly case study (Chapter 5), while
some models exhibit some similarities (e.g. eastern USA is almost always classified
as suitable) substantial differences also exist between models (Fig. 7.2 & 7.3). This
is particularly obvious when examining the distribution of suitable climate in Aus-
tralia between the models. In the CLIMEX model, much of the central and north-east
coast of Australia is estimated to be highly suitable. By contrast, the Maxent models
compiled by Zhu et al. (2012) and to a lesser degree Fraser et al. (2017) indicate that
the south-east and south-west of Australia are most optimal. Again, the reasons for
such discrepancies are many, each approach relies on different assumptions, the mod-
els were parametrised and validated using different sources of data and information,
and the choice of covariates or constraining factors differed among the models.
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CLIMEX

Figure 7.2.: Published brown marmorated stink bug (Halyomorpha halys) CLIMEX (Kriti-
cos et al., 2017) and Maxent (Zhu et al., 2012) distribution models. Darker
shades equal more suitable climate.
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Figure 7.3.: Brown marmorated stink bug (Halyomorpha halys) Random forest, Maxent
and Support Vector Machine distribution models published in Fraser et al.
(2017).
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While climatic influences on some biological processes have been estimated and
incorporated into published CLIMEX models for this pest (Kriticos et al., 2017), we
opted to use a range bagging model. We did this because while CLIMEX models do
use some biological information, they are not truly mechanistic because they still re-
quire parameter fitting via inference from the pest’s known distribution – typically via
manual tweaking of parameters. This manual tweaking of parameters introduces a
high subjectivity to the model fitting, which is exacerbated by the reliance of a single
parametrisation of the model. By contrast, range bagging, while a correlative model,
is less prone to manual tweaking of parameters and most importantly allows one to
ensemble a range of plausible models (Appendix C). Furthermore, its output is easily
interpretable with its suitability score indicating the proportion of ensembled models
that deemed a given location as climatically suitable. Lastly, the other reason we opted
for range bagging was that the estimated potential distribution from this model, rel-
ative to other published models, better matched the distribution thought probable by
DAWE in-house BMSB experts.

We used the range bagging algorithm with dimensionality set to 2 (meaning only
two covariates are fitted at a time), the number of bootstrapped models set to 100 and
the proportion of occurrence records used per model set at 0.5. We allowed the al-
gorithm to sample from all 19 WorldClim version 2 (Fick & Hijmans, 2017) bioclimatic
parameters (i.e. BIO01 to BIO19) derived from the published 10 minute (approximately
20 km resolution) raster layers. We used “simple” two-dimensional combinations in
order to minimise biases associated with model over-fitting (see Chapter 3 and Ap-
pendix C).

We sourced occurrence records of Halyomorpha halys from Kriticos et al. 2017. Prior
to running the range bagging algorithms we first cleaned these occurrence records by
using cleaning routines in the recently published CoordinateCleaner R package
(Zizka et al., 2019). Specifically, we removed records that:

1. had equal latitude and longitudes or were within 0.5 degrees radius of coordi-
nates 0,0;

2. were within a 5 km radius of a capital city centroid;1

3. were within a 10 km radius of either a country or province centroid;

4. were within a 1 degree radius around the GBIF headquarters in Copenhagen,
Denmark;

5. were within a 100 m radius around the centroids of known biodiversity institu-
tions;

6. were located in the ocean; or

7. contained mismatches between the country specified in the record and the record’s
coordinates.

1In large databases such as GBIF, if a record does not have accurate GIS coordinates, users sometimes
provide either country or capital city coordinates. While such coordinates are useful for providing
information on the country or province of the record, they are likely to be too coarse when estimating
the climatic suitability of a species, which involves mapping occurrence records onto fine-resolution
gridded climatic data.
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We also removed duplicate records and thinned them to one point per 20 km (the
resolution of the WorldClim version 2 climate data). Following this, we removed
all occurrence records that were present in countries with no known establishment
records based on CABI country-level distributional data. In addition to this, we man-
ually removed occurrences in central and western provinces of Canada (Alberta and
Saskatchewan) which have been associated with human-mediated transport from the
USA and do not represent established populations (Kriticos et al., 2017). The distribu-
tion record near Kenai (Alaska) was also removed as it is considered a vagrant obser-
vation, most likely associated with aerial transport (Kriticos et al., 2017). This cleaning
ensured that the remaining occurrences were most likely from established populations,
and thus suitable for inclusion in the range bagging analysis. Models were then fitted,
and subsequently projected and resampled to a 1 km grid – our desired map resolu-
tion. The mapped distributional data and model outputs can be seen in Figures 7.4 &
7.5. The outcome of this approach was a suitability map that appeared to be in between
the CLIMEX model and the Maxent model produced by Zhu et al. (2012).
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Figure 7.4.: Global climatic suitability of brown marmorated stink bug derived from range bagging. Blue points refer to cleaned distribu-
tional data collated from Kriticos et al. (2017). Raster resolution: 10 min (approx 20 km). Suitability is the proportion of ensembled
convex hulls that identify a location as climatically suitable across bootstrapped combinations of environmental variables.
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Figure 7.5.: Australian climatic suitability for brown marmorated stink bug derived from
range bagging. Raster aggregated to a 5 km grid for presentation purposes.
Suitability is the proportion of ensembled convex hulls that identify a lo-
cation as climatically suitable across bootstrapped combinations of environ-
mental variables.
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7.4. Biotic suitability

We utilised the tertiary raster layer of Australian Land Use and Management Classifi-
cation (ALUMC version 8; ABARES, 2019), provided by the Australian Collaborative
Land Use and Management Program, to define the presence and absence of brown
marmorated stink bug host material. Specifically, we created a binary raster whereby
any 50 m2 grid cell containing commodities vulnerable to BMSB, such as tree fruits
and nuts, vine fruits, olives, citrus and shrub berries (Table 7.2). Given the species also
feeds on many ornamental plants present in gardens and street-side vegetation (e.g.
maple and oak trees, and many flowering plants), we also included urban and rural
residential areas. All other grid cells containing other dominant land uses were classi-
fied as 0 and assumed to contain no BMSB host material. This binary raster was then
converted to a 1 km grid resolution by finding the maximum value of aggregated grid
cells. Note that this layer is an approximation of the geographic distribution of host
material, and does not account for possible native hosts, for which we currently have
incomplete distributional data.

While the ALUMC binary layer provides insights into the presence or absence of
BMSB host material, it does not provide an indication of the abundance of host material
in any given season. We approximated the host abundance (conditional on the host
being present) by multiplying the binary host presence raster with average Normalised
Difference Vegetation Index (NDVI; a measure of raster cell greenness), scaled between
0 and 1, observed between October 2018 to March 2019 (the period when the pest
would be most active; Fig. 7.6) using the same approach used in the oriental fruit fly
case study (see Section 5.4). We obtained this data from the Bureau of Meteorology at
a raster resolution of 0.05 by 0.05 degrees (approximately 5 km scale), which was then
resampled to a 1 km grid (Fig. 5.5).
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Table 7.2.: ALUMC landuses likely to contain brown marmorated stink bug host mate-
rial.

Landuse Code Landuse (cont) Code (cont)

Cereals 331 Irrigated vine fruits 444

Beverage and spice crops 332 Irrigated shrub berries and fruits 445

Pulses 338 Irrigated perennial flowers and bulbs 446

Perennial horticulture 340 Irrigated perennial vegetables and herbs 447

Perennial tree fruits 341 Irrigated citrus 448

Perennial oleaginous fruits 342 Irrigated grapes 449

Perennial tree nuts 343 Irrigated seasonal horticulture 450

Perennial vine fruits 344 Irrigated seasonal fruits 451

Perennial shrub berries and fruits 345 Irrigated seasonal flowers and bulbs 452

Perennial flowers and bulbs 346 Irrigated seasonal vegetables and herbs 453

Perennial Citrus 348 Abandoned irrigated perennial horticulture 465

Perennial Grapes 349 Intensive horticulture 510

Seasonal horticulture 350 Production nurseries 511

Seasonal fruits 351 Shadehouses 512

Seasonal flowers and bulbs 352 Glasshouses 513

Seasonal vegetables and herbs 353 Glasshouses - hydroponic 514

Irrigated cereals 431 Abandoned intensive horticulture 515

Irrigated beverage and spice crops 432 Residential and farm infrastructure 540

Irrigated pulses 438 Urban residential 541

Irrigated perennial horticulture 440 Rural residential with agriculture 542

Irrigated tree fruits 441 Rural residential without agriculture 543

Irrigated olives 442 Remote communities 544

Irrigated tree nuts 443
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Figure 7.6.: Distribution of suitable biotic environment for brown marmorated stink bug.
Estimated as a function of ALUMC and NDVI data. Raster aggregated to a 5
km grid for presentation purposes.

108



Camac et al. 2020 Cen t r e  o f  Exce l l en ce  f o r
B i o se cu r i t y  R i sk  Ana l y s i s
 

7.5. Establishment likelihoods

According to RRRA, brown marmorated stink bug is most likely to enter via five path-
ways: tourists, returning residents, imported nursery stock, imported plant-based and
to a lesser extent imported machinery2 (Table 7.1). In our establishment likelihood
mapping framework, returning residents and imported nursery stock, plant-based
food and machinery are distributed as a function of human population density. By
contrast international tourists were distributed as a function of the density of tourist
accommodation and distance from international airports. The implication of these as-
sumptions is that in the days following entry the majority of arrivals will likely occur
in major metropolitan areas that are close to airports, and contain high densities of
tourist accommodation. Consequently, cities such as Sydney and Melbourne are ex-
pected to receive the most arrivals due to their high population density and tourist
accommodation.

However, whether these arrivals are likely to result in establishment depends on
both the abiotic (e.g. climate suitability) and biotic (e.g. presence of food source) en-
vironment (Fig. 7.7). In terms of food availability (i.e. biotic suitability), all Aus-
tralian cities appear to be suitable because residents are likely to grow host plants
in backyards (e.g. citrus, olives, maple trees) and, at a broad scale, have fairly simi-
lar spring/summer NDVI. However, what differentiates establishment likelihoods be-
tween cities is the climate suitability (Fig. 7.5). Based on the range bagging model,
northern Australia contains mostly unsuitable climate for BMSB, meaning that arrivals
in places such as Darwin have a lower likelihood of establishment. By contrast, cities
such as Brisbane, Sydney, Perth and to a lesser degree Melbourne (i.e. the cities ex-
pected to receive the greatest number of arrivals based on population and tourist ac-
commodation) appear to contain optimal climate, and thus, arrivals in these cities are
unlikely to be impeded by climate (Fig. 7.8). Figures 7.9–7.16 provide more detailed
maps of the geographic distribution of brown marmorated stink bug establishment
likelihoods around major cities and tourist locations. For finer scale (i.e. 1 km resolu-
tion) maps please see associated interactive maps attached to this report. Interactive
maps on expected number of arrivals across all pathways (not shown here) are also
included as additional files attached to this report.

2Although there is contradictory evidence to suggest the expected number of arrivals via the im-
ported machinery pathway is much higher than estimated in RRRA.
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Figure 7.7.: Estimated environmental suitability for brown marmorated stink bug. Suit-
ability is defined as the product of abiotic (i.e. climate suitability) and biotic
(i.e. host presence × NDVI) suitability. Raster aggregated to a 5 km grid for
presentation purposes.
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Figure 7.8.: National establishment likelihood map for brown marmorated stink bug.
Raster aggregated to a 5 km grid for presentation purposes. Only establish-
ment scores above 10−8 plotted.
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Figure 7.9.: Brown marmorated stink bug establishment likelihood map for greater
Cairns. Only establishment scores above 10−8 plotted.
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Figure 7.10.: Brown marmorated stink bug likelihood of establishment map for greater
Brisbane. Only establishment scores above 10−8 plotted.
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Figure 7.11.: Brown marmorated stink bug establishment likelihood map for greater Syd-
ney. Only establishment scores above 10−8 plotted.
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Figure 7.12.: Brown marmorated stink bug establishment likelihood map for greater Mel-
bourne. Only establishment scores above 10−8 plotted.
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Figure 7.13.: Brown marmorated stink bug establishment likelihood map for greater Ho-
bart. Only establishment scores above 10−8 plotted.
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Figure 7.14.: Brown marmorated stink bug establishment likelihood map for greater
Adelaide. Only establishment scores above 10−8 plotted.
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Figure 7.15.: Brown marmorated stink bug establishment likelihood map for greater
Perth. Only establishment scores above 10−8 plotted.
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Figure 7.16.: Brown marmorated stink bug establishment likelihood map for greater Dar-
win. Only establishment scores above 10−8 plotted.
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8. Case study 4: Gypsy moth

Figure 8.1.: Female Asian gypsy moth (Lymantria dispar asiatica). Photo by Alexander
Schintlmeister.
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8.1. Background

Gypsy moth (Lymantria dispar) is a highly polyphagous insect defoliator consisting of
three sub-species: Asian gypsy moth (Lymantria dispar asiatica), Japanese gypsy moth
(Lymantria dispar japonica), and European gypsy moth (Lymantria dispar dispar). Field
and laboratory tests conducted in North America (Liebhold et al., 1995) and Australia
(Matsuki et al., 2001) show that more than 650 species of trees and shrubs across as
many as 53 families are susceptible to gypsy moth defoliation, including many Aus-
tralian endemic Acacias and Eucalyptus. Native to Eurasia, the species complex has
successfully established in eastern USA, and in doing so has caused significant damage
to many important North American tree species with more than 34 × 106 ha of forest
being defoliated since 1924 (Tobin et al., 2007).

Gypsy moths are currently absent from both Australia and New Zealand. How-
ever, the species poses a significant threat to much of Australia’s native vegetation and
commericial plantation industry (Matsuki et al., 2001). Thus, in an effort to facilitate
decisions associated with where finite surveillance resources should be undertaken for
early detection, we developed a map of establishment likelihoods for gypsy moth (Ly-
mantria dispar). The details of this map, including how it was constructed, can be found
in the following sections.

8.2. High risk pathways

The Risk Return Resource Allocation Model (RRRA) identified three high risk path-
ways that could allow gypsy moth to enter Australia: imported machinery, containers
and vessels (Table 8.1). For details on how units associated with each pathway were
distributed post-border see Chapter 4. For the purpose of this analysis, we assumed
that arrivals associated with vessels would decay exponentially with distance, such
that 50% of the arrivals would occur within 1 km of the port of arrival (i.e. β was
assigned as − log(0.5)/1 = −0.693; See section 4.2.5; Figure 8.2). We deemed this as ap-
propriate, because the two primary modes of dispersal for this species from vessels is
short distance: 1) wind-borne passive movement of first instars (Liebhold et al., 1992);
and 2) hitch-hiking events from goods/luggage taken from vessels.

Table 8.1.: Gypsy moth pathway likelihoods with associated expected number of entries
per annum based on estimated pathway volumes. Data derived from RRRA.

Pathway Pr(Contamination) Units Expected entries

Machinery 1.11e− 05 1,216,726 13.5

Containers 6.26e− 07 5,125,422 3.2

Vessels 3.45e− 05 18,612 0.6
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Figure 8.2.: Log10 vessel pathway distance decay weights for gypsy moth. A negative
exponential decay function was used where 50% of arrivals from vessels
would be distributed within 1 km of a major marine port.
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8.3. Abiotic suitability

The potential distribution of gypsy moth has been approximated using a variety of
CLIMEX models, however, the majority of these have focused explicitly on particular
areas of interest (e.g. USA and Europe) with few predicting the global distribution of
suitable climate for this species. The two exceptions to this were the CLIMEX model
recently published by Paini et al. (2018) and the GARP ensemble model published by
Peterson et al. (2007). Much like in the other case studies these different models exhib-
ited some similarities (e.g. eastern USA and Europe exhibiting highly suitable climate)
but also some differences (e.g. central Africa and South America; Fig. 8.3). In terms of
Australia, these models exhibited somewhat similar results, with both indicating that
the south-west and south-east contained suitable climate.

While climatic influences on some biological processes have been estimated and in-
corporated into published CLIMEX models for this pest (Paini et al., 2018), we opted to
use a range bagging model. We did this because while CLIMEX models do use some
biological information, they are not truly mechanistic because they still require pa-
rameter fitting via inference from the pest’s known distribution – typically via manual
tweaking of parameters. This manual tweaking of parameters introduces a high sub-
jectivity to the model fitting, which is exacerbated by the reliance on a single parametri-
sation of the model. By contrast, range bagging, while a correlative model, is less prone
to manual tweaking of parameters, allows one to ensemble across a range of plausible
models (Appendix C), and has an output that is readily interpretable and comparable
across species – the proportion of ensembled models that deem a location climatically
suitable.

Specifically, we used the range bagging algorithm with dimensionality set to 2 (mean-
ing only two covariates are fitted at a time), the number of bootstrapped models set to
100 and the proportion of occurrence records used per model set at 0.5. We allowed
the algorithm to sample from all 19 WorldClim version 2 (Fick & Hijmans, 2017) bio-
climatic parameters (i.e. BIO01 to BIO19) derived from the published 10 minute (ap-
proximately 20 km resolution) raster layers. We used “simple” two-dimensional com-
binations in order to minimise biases associated with model over-fitting (Chapter 3 &
Appendix C).

We sourced occurrence records for Lymantria dispar directly from GBIF. Prior to run-
ning the range bagging algorithms we first cleaned these occurrence records by using
cleaning routines in the recently published CoordinateCleaner R package (Zizka
et al., 2019). Specifically, we removed records that:

1. had equal latitude and longitudes or were within 0.5-degrees radius of coordi-
nates 0,0;

2. were within a 5 km radius of a capital city centroid;1

3. were within a 10 km radius of either a country or province centroid;

4. were within a 1 degree radius around the GBIF headquarters in Copenhagen,
Denmark;

1In large databases such as GBIF, if a record does not have accurate GIS coordinates, users some-
times provide country and capital city coordinates. While such coordinates are useful for providing
information on the country or province of the record, they are likely to be too course when estimating
the climatic suitability of a species, which involves mapping occurrence records onto fine-resolution
gridded climatic data.

123



Camac et al. 2020 Cen t r e  o f  Exce l l en ce  f o r
B i o se cu r i t y  R i sk  Ana l y s i s
 

5. were within a 100 m radius around the centroids of known biodiversity institu-
tions;

6. were located in the ocean; or

7. contained mismatches between the country specified in the record and the record’s
coordinates.

We also removed duplicate records and thinned them to one point per 20 km (the
resolution of the WorldClim version 2 climate data). Following this, we removed all
occurrence records that were present in countries with no known establishment records
based on CABI country-level distributional data. This ensured that the remaining oc-
currences were most likely from established populations, and thus suitable for inclu-
sion in the range bagging analysis. Models were then fitted, and subsequently pro-
jected and resampled to 1 km grid – our desired map resolution. The mapped distribu-
tional data and model outputs can be seen in Figures 8.4 & 8.5. Broadly, the outcome of
this modelling approach was a suitability map that was similar to the CLIMEX model
published by Paini et al. (2018), whereby both south-west and south-east coastlines of
Australia were deemed climatically suitable.
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Figure 8.3.: Published gypsy moth CLIMEX (Paini et al., 2018) and GARP ensemble (Pe-
terson et al., 2007) distribution models. Darker shades indicate more suitable
climate.
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Figure 8.4.: Global climatic suitability for gypsy moth, derived from range bagging. Blue points refer to cleaned distributional data collated
from GBIF. Raster resolution: 10 minutes (approx 20 km). Suitability is the proportion of ensembled convex hulls that identify a
location as climatically suitable across bootstrapped combinations of environmental variables.
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Figure 8.5.: Australian climatic suitability for gypsy moth derived from range bagging.
Raster aggregated to a 5 km grid for presentation purposes. Suitability is the
proportion of ensembled convex hulls that identify a location as climatically
suitable across bootstrapped combinations of environmental variables.
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8.4. Biotic suitability

We utilised the tertiary raster layer of Australian Land Use and Management Classi-
fication (ALUMC version 8; ABARES, 2019), provided by the Australian Collabora-
tive Land Use and Management Program, to define the presence and absence of gypsy
moth host material. Specifically, we created a binary raster whereby any 50 m2 grid cell
likely to contain a vulnerable landuse (e.g. those containing susceptible endemic, orna-
mental and wood/food production tree species) such as nature conservation, national
parks, wood production forestry, plantation forests, tree fruits and tree nuts (Table 8.2).
Given the species also feeds on many ornamental plants present in gardens and street-
side vegetation (e.g. maple and oak trees), we also included urban and rural residential
areas. All other grid cells containing other dominant land uses were classified as 0 and
assumed to contain no BMSB host material. This binary raster was then converted to a
1 km grid resolution by finding the maximum value of aggregated grid cells.

Table 8.2.: ALUMC landuses likely to contain Gyspy moth host material.

Landuse Code Landuse (cont) Code (cont)

Nature conservation 110 Plantation forests 310

Strict nature reserves 111 Hardwood plantation forestry 311

Wilderness area 112 Softwood plantation forestry 312

National park 113 Other forest plantation 313

Natural feature protection 114 Environmental forest plantation 314

Habitat/species management area 115 Beverage and spice crops 332

Protected landscape 116 Perennial tree fruits 341

Other conserved area 117 Perennial tree nuts 343

Managed resource protection 120 Perennial shrub berries and fruits 345

Managed biodiversity 121 Perennial flowers and bulbs 346

Managed surface water supply 122 Irrigated plantation forests 410

Managed groundwater 123 Irrigated hardwood plantation forestry 411

Managed landscape 124 rrigated softwood plantation forestry 412

Traditional indigenous uses 125 Irrigated other forest plantation 413

Other minimal use 130 Irrigated environmental forest plantation 414

Defence land - natural areas 131 Irrigated beverage and spice crops 432

Stock route 132 Irrigated tree fruits 441

Residual native cover 133 Irrigated tree nuts 443

Rehabilitation 134 Irrigated shrub berries and fruits 445

Grazing native vegetation 210 Irrigated perennial flowers and bulbs 446

Production native forests 220 Urban residential 541

Wood production forestry 221 Rural residential with agriculture 542

Other forest production 222 Rural residential without agriculture 543
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While this raster provides an indication of the extent of host material across Aus-
tralia, it is likely to be an over-estimate because not all natural and conservation lan-
duses will contain vulnerable tree or shrub species (e.g. Grasslands, sedgelands etc.).
As such, we further masked areas of natural vegetation that are unlikely to contain
Acacia or Eucalyptus species (two genera shown to contain susceptible species Lieb-
hold et al. 1995). We did this by using the National Vegetation Information System;
(NVIS) – A 100 m raster that attributes each cell to one of up to 89 vegetation classes
defined by vegetation structure and dominant species. To mask the 1 km landuse layer.
We first created a binary NVIS layer by identifying all vegetation types likely to contain
vulnerable species (Table 8.3). Specifically, any vegetation type that explicitly included
Acacia or Eucalyptus as dominant species, or were likely to contain these species as
sub-dominants (e.g. Open woodlands) were classified as 1. We also included cleared,
non-native vegetation and buildings to ensure susceptible agricultural landuses were
not masked. We then aggregated the raster to a 1 km grid by finding the maximum
value of aggregated grid cells. The landuse and NVIS rasters were then multiplied to
provide a host distribution raster

However, while the above raster provided details about the presence and absence
of host material it does not provide an indication of its abundance in any given sea-
son. We approximated the host abundance (conditional on the host being present) by
further multiplying the binary host presence raster with the Min-Maxed2 normalised
average Normalised Difference Vegetation Index (NDVI; a measure of raster cell green-
ness) observed between October 2018 to March 2019 (The period when the pest would
be most active; Fig. 8.6). We obtained this data from the Bureau of Meteorology at a
raster resolution of 0.05 by 0.05 degrees (approximately 5 km scale), which was then
resampled to a 1 km grid (Fig. 5.5).

Biotic suitabilityi =Vulnerable landuse (ACLUM)i×

Vulnerable vegetation (NVIS)i×

NDVIi −min(NDVIi)

max(NDVIi)−min(NDVIi)

(8.1)

2To ensure index was appropriately scaled between 0 and 1
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Table 8.3.: NVIS vegetation classes likely to contain Gyspy moth host material.

Vegetation Code

Cool temperate rainforest 1

Tropical or sub-tropical rainforest 2

Eucalyptus (+/- tall) open forest with a dense broad-leaved and/or tree-fern understorey (wet sclerophyll) 3

Eucalyptus open forests with a shrubby understorey 4

Eucalyptus open forests with a grassy understorey 5

Warm temperate rainforest 6

Tropical Eucalyptus open forests and woodlands with a tall annual grassy understorey 7

Eucalyptus woodlands with a shrubby understorey 8

Eucalyptus woodlands with a tussock grass understorey 9

Eucalyptus woodlands with a hummock grass understorey 10

Tropical mixed spp forests and woodlands 11

Brigalow (Acacia harpophylla) forests and woodlands 13

Other Acacia forests and woodlands 14

Other forests and woodlands 16

Eucalyptus low open woodlands with hummock grass 18

Eucalyptus low open woodlands with tussock grass 19

Mulga (Acacia aneura) woodlands +/- tussock grass +/- forbs 20

Other Acacia tall open shrublands and [tall] shrublands 21

Acacia (+/- low) open woodlands and shrublands with chenopods 22

Acacia (+/- low) open woodlands and shrublands with hummock grass 23

Acacia (+/- low) open woodlands and shrublands +/- tussock grass 24

Acacia (+/- low) open woodlands and sparse shrublands with a shrubby understorey 25

Mallee with hummock grass 27

Low closed forest or tall closed shrublands (including Acacia, Melaleuca and Banksia) 28

Mallee with a dense shrubby understorey 29
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Table 8.3.: (continued)

Vegetation Code

Mulga (Acacia aneura) open woodlands and sparse shrublands +/- tussock grass 45

Eucalyptus open woodlands with shrubby understorey 47

Eucalyptus open woodlands with a grassy understorey 48

Mulga (Acacia aneura) woodlands and shrublands with hummock grass 51

Mulga (Acacia aneura) open woodlands and sparse shrublands with hummock grass 52

Eucalyptus low open woodlands with a shrubby understorey 53

Eucalyptus tall open forest with a fine-leaved shrubby understorey 54

Mallee with an open shrubby understorey 55

Eucalyptus (+/- low) open woodlands with a chenopod or samphire understorey 56

Eucalyptus woodlands with ferns, herbs, sedges, rushes or wet tussock grassland 59

Eucalyptus tall open forests and open forests with ferns, herbs, sedges, rushes or wet tussock grasses 60

Mallee with a tussock grass understorey 61

Dry rainforest or vine thickets 62

Eucalyptus woodlands with a chenopod or samphire understorey 65

Open mallee woodlands and sparse mallee shrublands with a hummock grass understorey 66
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Table 8.3.: (continued)

Vegetation Code

Open mallee woodlands and sparse mallee shrublands with a tussock grass understorey 67

Open mallee woodlands and sparse mallee shrublands with an open shrubby understorey 68

Open mallee woodlands and sparse mallee shrublands with a dense shrubby understorey 69

Other open Woodlands 79

Other sparse shrublands and sparse heathlands 80

Regrowth or modified forests and woodlands 90

Regrowth or modified shrublands 91

Unclassified forest 96

Unclassified native vegetation 97

Cleared, non-native vegetation, buildings 98

Unknown/No data 99
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Figure 8.6.: Distribution of suitable biotic environment for gypsy moth. Estimated as a
function of ALUMC, NVIS and NDVI data. Raster aggregated to a 5 km grid
for presentation purposes.

8.5. Establishment likelihoods

According to RRRA, gypsy moth is most likely to enter via three pathways: imported
machinery, containers and vessels (Table 8.1). In our establishment likelihood map-
ping framework, imported machinery (i.e. largely new and used cars and parts) is dis-
tributed as a function of human population density. By contrast, shipping containers
are distributed based on ABS final postcode destination data, and arrivals via vessels
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is distributed as a function of distance from marine port and the quantity of containers
arriving at that port. The implication of these assumptions is that in the days following
entry, the majority of arrivals will occur in major metropolitan areas that are close to
marine ports and that receive large quantities of shipping containers.
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Figure 8.7.: Estimated environmental suitability for gypsy moth. Suitability is defined as
the product of abiotic (i.e. climate suitability) and biotic suitability (i.e. host
presence × NDVI × NVIS). Raster aggregated to a 5 km grid for presentation
purposes.

However, whether these arrivals are likely to result in establishment depends on
both the abiotic (e.g. climate suitability) and biotic (e.g. presence of food source) envi-
ronment (Fig. 8.7). In terms of food availability (i.e. biotic suitability), all Australian
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cities appear to be suitable (i.e. contain appropriate hosts) and, at a broad scale, have
fairly similar spring/summer NDVI. However, based on the range bagging climate
suitability model (Fig. 8.5), gypsy moth appears to have a narrow climatic niche in
parts of the east coast and south-west of Australia. Thus, the success of arrivals com-
ing into Australia is likely to be restricted to these regions that contain high population
density and receive shipping containers, such as Sydney, Perth and Melbourne (Fig.
8.8). Figures 8.9–8.16 provide more detailed maps of the geographic distribution of
gypsy moth establishment likelihoods around major cities and tourist locations. For
finer scale (i.e. 1 km resolution) maps please see associated interactive maps attached
to this report. Interactive maps showing the expected number of arrivals across all
pathways (not shown here) are also included as additional files attached to this report.
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Figure 8.8.: National establishment likelihood map for gypsy moth. Raster aggregated
to a 5 km grid for presentation purposes. Only establishment scores above
10−8 plotted.
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Figure 8.9.: Gypsy moth establishment likelihood map for greater Cairns. Only estab-
lishment scores above 10−8 plotted.
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Figure 8.10.: Gypsy moth establishment likelihood map for greater Brisbane. Only estab-
lishment scores above 10−8 plotted.
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Figure 8.11.: Gypsy moth establishment likelihood map for greater Sydney. Only estab-
lishment scores above 10−8 plotted.
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Figure 8.12.: Gypsy moth establishment likelihood map for greater Melbourne. Only es-
tablishment scores above 10−8 plotted.
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Figure 8.13.: Gypsy moth establishment likelihood map for greater Hobart. Only estab-
lishment scores above 10−8 plotted.
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Figure 8.14.: Gypsy moth establishment likelihood map for greater Adelaide. Only es-
tablishment scores above 10−8 plotted.
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Figure 8.15.: Gypsy moth establishment likelihood map for greater Perth. Only estab-
lishment scores above 10−8 plotted.

143



Camac et al. 2020 Cen t r e  o f  Exce l l en ce  f o r
B i o se cu r i t y  R i sk  Ana l y s i s
 

0 10 20 30 40 km

N

log10(EL 1km)

−8 −7 −6 −5 −4 −3 −2

Figure 8.16.: Gypsy moth establishment likelihood map for greater Darwin. Only estab-
lishment scores above 10−8 plotted.
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9. Informing biosecurity decisions

Maps of pest establishment likelihoods are a fundamental decision support tool used to
inform many biosecurity decisions. Commonly, such maps are based on pathway anal-
yses that determine the likelihood of entry at various points locations (e.g. ports and
airports) or are based on the geographic distribution of suitable abiotic and/or biotic
environmental conditions. However, these methods are rarely integrated to provide
a more holistic measure of establishment potential. That is they rarely account for the
three fundamental geographic barriers to establishment: 1) the ability of a pest/disease
to arrive at a given location; 2) the abiotic suitability of the location; and 3) the biotic
suitability of the location.

The establishment likelihood mapping framework outlined in Chapter 4 and imple-
mented in chapters 5–8, encapsulates these three fundamental geographic barriers to
establishment. In the following sections we briefly outline how these maps can be used
to:

1. inform where to conduct surveillance for early detection;

2. estimate surveillance coverage relative to total regional establishment likelihoods;

3. inform likelihoods of area freedom;

4. inform incursion seeds in pest/disease spread modelling; and

5. develop true risk maps.
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9.1. Utility 1: Informing where to conduct surveillance

for early detection

A primary purpose for maps of pest/disease establishment likelihoods is to inform
where to conduct surveillance for early detection, and thus minimise the spread, and
economic, societal and environmental consequences that might otherwise arise from
an incursion. In this context, the surveillance for early detection should be prioritised
in areas where the likelihood of establishment is highest.

The outputs of the mapping framework outlined in Chapter 4 allow this to be readily
done by using the following steps:

• Step 1: Determine the management scale at which a surveillance program will
be implemented. For example, surveillance may be coordinated in terms of a
national grid where each grid cell has a specific area (e.g. 5 km2) or it may be in
terms of geographic management units such as Natural Resource Management
(NRM) regions.

• Step 2: Aggregate establishment scores to the management unit scale. This can
be done by calculating the summed (if management units have equal area) or
median (when management units have unequal area) establishment score across
1 km2 grid cells (the default resolution of outputs) that fall within each manage-
ment unit.

• Step 3: Allocate finite surveillance resources proportional to the establishment
scores estimated in management units.

• Step 4: Use the raw 1 km2 resolution establishment likelihood map to distribute
surveillance within a management unit proportional to the establishment likeli-
hood estimated at grid cells.

This approach is a first approximation for determining where to conduct surveillance for early
detection. It does not, however, inform the optimal allocation of surveillance. To do so would
require minimising the net expected costs of conducting surveillance. That is, the optimal
surveillance effort is that which minimises the sum of the costs of surveillance and the expected
costs (e.g. eradication costs and market losses) of failing to detect an incursion.

Caution!
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9.2. Utility 2: Surveillance coverage relative to total

establishment likelihood

The maps of establishment likelihoods can also be used to assess how much of the
national (or jurisdictional) establishment likelihood is captured by surveillance.

This can be achieved by:

• Step 1: Determining the spatial scale at which a surveillance unit (e.g. trap, sur-
vey or surveillance) is deemed to be representative. For example, an area of 5 km2

would be set if this was the scale at which a network of pheromone traps or sur-
veys were used to inform the status of a pest/disease.

• Step 2: Aggregate (i.e. by summing), the establishment likelihood map (default
resolution is 1 km2) to the desired spatial scale defined above.

• Step 3: Calculate the proportion of establishment potential captured in grid cells
with surveillance relative to the summed total establishment likelihood estimated
in the region of interest.

A similar approach can also be used to determine the maximum proportion of geo-
graphic risk that could be captured, given a particular amount of area surveyed. Here,
the maximum proportion of risk captured is estimated by assuming that finite surveil-
lance resources are always allocated to the highest risk locations1.

To illustrate this, let’s assume that the surveillance for each of the four case study
pests, oriental fruit fly (Bactrocera dorsalis), khapra beetle (Trogoderma granarium), brown
marmorated stink bug (BMSB; Halyomorpha halys) and gypsy moth (Lymantria dispar))
were designed to inform pest status at a 5 km scale. Furthermore, lets assume there
was a national budget to survey up to 50,000 km2 (i.e. 2,000 × 5 km2) for each pest.
We could examine how changes in surveyed area affect the maximum proportion of
establishment potential sampled, by simply taking the raw 1 km2 map of establish-
ment likelihoods for each pest and aggregating (summing) the establishment scores to
a 5 km2 grid. Surveillance resources could then be allocated to highest establishment
score cells in descending order until the surveillance budget is exhausted (i.e. when
2,000 cells have been sampled). One can then plot how the proportion of establish-
ment potential captured varies with area sampled (e.g. see Fig. 9.1). The steepness
of the curves will be determined by the extent to which risk is spatially aggregated.
For example, based on these conditions, oriental fruit fly has the most aggregated risk,
and thus, requires the lowest area surveyed (233 grid cells) to reach 80% establishment
potential coverage. By contrast, gypsy moth has the most dispersed establishment
likelihoods, predominately because of its wide host distribution coupled with widely
dispersed pathway carriers (e.g. containers), which as a result requires the most area
(1451 grid cells) surveyed to reach 80% establishment potential coverage.

1In practice, if high risk locations are not aggregated in geographic space, then achieving the max-
imum proportion of geographic risk for a given amount of surveillance area may be difficult due to
logistical and time constraints associated with travel.
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Figure 9.1.: The relationship between the proportion of national establishment likelihood
captured and the number of 5 km grid cells surveyed for each of the four case
study pests. A) Oriental fruit fly; B) Khapra beetle; C) Brown marmorated
stink bug; D) Gypsy moth. Dotted line represents the point at which 80% of
the national establishment potential is captured under the assumptions that
surveillance is prioritised to cells with high establishment likelihoods and
that surveillance effort within each cell is sufficiently high to reliably detect
the pest. Further details on how establishment likelihood was estimated for
each pest can be found in Chapters 5–8.
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9.3. Utility 3: Informing likelihoods of area freedom

General and targeted surveillance programs are an integral component of any biosecu-
rity system. Typically focussing on areas of high establishment likelihood or high con-
sequence (Hauser & McCarthy, 2009; Stanaway et al., 2011), they are used to inform the
status (presence or absence) of pests and diseases that affect economic, environmental
and societal values in both pre- and post-outbreak conditions. In countries where a
plant pest or disease is capable of establishing, internationally recognised surveillance
programs (e.g., ISPM26; International Plant Protection Convention 2006) are used to
determine pest freedom in high-value agricultural and urban centres (International
Atomic Engergy Agency, 2003). In these landscapes, if surveillance programs do not
detect a plant pest, then pest freedom is often assumed, allowing the export country to
gain or maintain market access with other World Trade Organisation (WTO) countries
without the need for additional phytosanitary procedures (e.g., International Plant Pro-
tection Convention 1995, 1998).

A fundamental problem with declaring pest freedom based solely on the absence of
any detections is that it assumes the surveillance program has perfect sensitivity. That
is, if the pest is present, then the surveillance program will always detect it. In real-
ity, however, surveillance programs almost never have perfect sensitivity (Kery, 2002;
Royle & Link, 2006; Hauser & McCarthy, 2009). The complication of imperfect sen-
sitivity means that the lack of detections from a surveillance program can arise from
one of two processes: 1) the pest is absent; or 2) the pest is present but the surveillance
program failed to detect it (i.e. a false negative; Fig. 9.2). This is problematic, as unlike
false positives, which can be double-checked and verified, it is impossible to be abso-
lutely certain a pest is absent (Wintle et al., 2004, 2012; Martin, 2017). Rather, absence
can only be inferred in terms of likelihoods.

The traditional approach to estimating likelihoods of absence is based on the con-
fidence of rejecting the null hypothesis that a pest or disease is present. Here, confi-
dence, a, is defined by the probability a surveillance program detects a pest or disease.
Typically, this is estimated as a function of the sensitivity of a surveillance component
(e.g. diagnostic test, trap or survey), S, to detect the object of interest, at some pre-
determined prevalence level, p, and some amount of surveillance effort (e.g. number
of tests, traps or repeat surveys), Neffort:

a = 1− (1− p× S)Neffort (9.1)

Absence is then inferred if no detection was recorded and the confidence of detec-
tion, a, is at or above some pre-defined tolerance of being wrong (typically 0.05; Can-
non 2002; Ormsby 2016). For example, if our tolerance for being wrong is 0.05 (i.e.
wrong 5 times in every 100), then we’d need our confidence to be 0.95 or higher in or-
der to reject the null hypothesis that the pest is present, and declare a pest absent. This
approach has been used in ecology to determine the absence of rare species (McArdle,
1990; Kery, 2002) as well as other disciplines such as demonstrating absence in live-
stock disease (Cannon, 2002), plant pests (Ormsby, 2016) and inspecting consignments
(International Plant Protection Convention, 2008).

While the null hypothesis approach described above provides a measure of confi-
dence in pest absence, it does so solely as a function of surveillance sensitivity at some
pre-defined prevalence and some amount of surveillance effort. It therefore ignores
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Figure 9.2.: Scenario tree outlining the possible ways an absence can arise when surveil-
lance sensitivity and specificity are imperfect.

possible differential likelihoods of pest establishment across geographic space. For
example, it does not include information about the likely barriers faced by a pest in
arriving and successfully establishing — Can it get there? Is the climate suitable? Is
there a food source? This is particularly problematic if trying to estimate likelihoods
of absence over a large geographic extent because if these barriers are not accounted
for, then confidence is likely to be underestimated in locations where these barriers are
formidable, and overestimated in locations where barriers are weak or non-existent.

Recently, Camac et al. (2019) proposed using Bayes’ theorem as an alternative ap-
proach to quantifying the likelihood a pest or disease is absent (eqn 9.2). There are
several advantages of using Bayes’ theorem over null hypothesis testing. First, the
likelihood of pest absence is measured on a more logical scale — probabilities of ab-
sence. This is in contrast to the null hypothesis approach (described above) which does
not estimate probabilities of absence but rather infers absence based on the conditional
probability of detection assuming the object of interest is present (Cannon, 2002; Bar-
rett et al., 2010). While this might sound like a subtle difference, the two approaches
estimate quite different quantities, and calculating them with the same data can give
different results (Rout, 2017).

Pr(Absencei) = 1−
(1− Pr(Detectioni))Priori

(1− Priori) + (1− Pr(Detectioni))Priori
(9.2)

Pr(Detectioni) = 1− (1− Pr(sensitivity))Nefforti

Prior = Pr(Presenti)
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However, the most notable advantage of the Bayesian approach is that it can directly
incorporate additional sources of information that are otherwise ignored by the null
hypothesis approach. It achieves this using a model parameter known as the prior
(McCarthy, 2007). In the context of estimating likelihoods of pest absence, the prior
describes the belief that a pest or disease is present at a location. This is where maps of
establishment likelihoods come into play.

The establishment likelihood maps derived from this framework encompass the
three major geographic barriers faced by pests when arriving and establishing — Can
it get there? Is the climate suitable? Is there a food source? As such they can be used
to account for these geographic barriers by acting as a spatially explicit prior probabil-
ity of pest/disease presence. A major practical advantage of this is that the amount
of surveillance required to declare freedom at a given level (e.g. 0.95) will now be
informed by the establishment likelihood at that location. This means that locations
deemed to have low establishment likelihoods will require less surveillance effort to
achieve a desired probability of absence compared to regions of high establishment
potential – thus focusing finite surveillance resources where they are needed most. To
use these maps in this framework the following steps should be taken:

• Step 1: Determine the spatial scale at which surveillance infrastructure is used to
inform pest/disease absence. For example, an area of 5 km2 would be set if this
was the scale at which a network of pheromone traps or surveys were used to
informs the status of a pest/disease.

• Step 2: Aggregate (i.e. by summing), the establishment likelihood map (default
resolution is 1 km2) to the desired spatial scale defined above.

• Step 3: Convert grid cell establishment likelihoods to relative probabilities by
dividing scores by the summed total establishment likelihood of the region of
interest2.

• Step 4: Estimate the probability of detection (i.e. Pr(Detectioni)) for each grid
cell, i, by specifying the known sensitivity of a surveillance unit as well as the
amount of surveillance effort conducted in each grid cell (i.e. Nefforti).

• Step 5: Calculate probabilities of absence for each grid cell, i, by using estimated
establishment probabilities as the prior (Priori) in equation 9.2.

Before applying this approach it is strongly recommended that users consult Camac et al.
(2019) which goes into the assumptions and limitations of the approach more thoroughly.

Caution!

2This step is needed because the establishment likelihoods are not probabilities but rather weighted
expected number of arrivals per year.
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9.4. Utility 4: Informing seeds in pest/disease spread

modelling

The Australian Animal Disease Model (AADIS) has recently been extended to simulate
the spread and control of plant pests, on both a regional and national scale (Bradhurst
et al., 2019). The new model is called APPDIS – the Australian Plant Pest and Dis-
ease model (Figure 9.3). APPDIS is an agent-based spread model that can represent a
plant pest population as a point incursion, an established population at specified loca-
tions, or as a mechanistic estimation based on configurable environmental criteria. It is
particularly useful for simulating possible incursions and how different management
strategies may affect subsequent spread and eradication success.

Currently, APPDIS simulates initial incursions and subsequent spread based on ei-
ther a user-defined point locality of incursion, or a random seed which may occur in
any cell with host material. Greater biological realism can be incorporated into APPDIS
by sampling these seeds probabilistically, directly from the maps of establishment like-
lihoods derived from the framework outlined in Chapter 4. The consequence of this
will be that APPDIS will simulate spread and management strategies in regions where
incursions are more likely to occur, and thus, allow decision-makers to better anticipate
and manage future incursions.

Figure 9.3.: The Australian Plant Pest and Disease model (APPDIS) simulating the
spread of tramp ant near Cairns.
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9.5. Utility 5: Developing true risk maps

Currently the mapping framework developed in this project estimates establishment
likelihoods (i.e expected number of arrivals weighted by abiotic and biotic suitability).
While this is extremely useful for informing where to conduct surveillance for early
detection, it does not inform where to conduct surveillance in order to minimise risk
(i.e. likelihood × consequence). For this to occur we also need estimates of how eco-
nomic, environmental and societal values vary across geographic space as well as an
understanding of how a pest or disease may impact such values.

Recently, as part of estimating the Value of Australia’s biosecurity system (Dodd et al.,
2019), the Centre of Excellence for Biosecurity Risk Analysis (CEBRA) has developed
spatially explicit value estimates for a range of asset classes. These include3:

• Provisioning assets (agriculture [cropping/grazing/horticulture]; forestry; wa-
ter provisioning and filtration; indigenous subsistence);

• Regulatory services (erosion control; flood mitigation; toxin mediation; carbon
sequestration; genepool/pollination);

• Cultural services (domestic recreation/amenity; international tourism; existence/bequest;
indigenous cultural value);

• Infrastructure assets (residential dwellings);

• Companion animal assets (domestic animals [dogs/cats/fish/birds/etc.]; horses
[recreational use])

These layers could be combined with estimates of the proportional reduction in
value caused by a pest or disease outbreak to derive spatially explicit consequence
layers. These consequence layers can be multiplied by the establishment likelihood
maps4 to construct true risk maps. These maps can then be used to identify areas that
exhibit both high establishment likelihoods and high consequences, and thus, where
to allocate surveillance for risk mitigation.

3Each of the items in parentheses are a separate value layer.
4Assuming expected weighted arrivals are converted to proportions
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10. Future research needs and

extensions

Several future research opportunities and extensions became apparent during the de-
velopment of the framework for estimating the spatial distribution of establishment
likelihoods. We briefly document some of these in the following sections.

10.1. Major review of RRRA

RRRA is currently Australia’s most comprehensive database on pest by pathway ar-
rival likelihoods. However, during the development of this project it became apparent
that in some cases RRRA pathway likelihoods were inconsistent with both contempo-
rary knowledge and interception data on what were the high risk pathways of entry
for specific pests. Perhaps the clearest example of this was for brown marmorated stink
bug. According to RRRA estimates, BMSB had a very low likelihood of entry via im-
ported machinery (i.e. 0.002 entries per year), vessels and shipping containers. How-
ever, contemporary interception data collated in Australia (DAWR, 2017) and New
Zealand (Ormsby, 2018) contradicts this, with both highlighting several BMSB inter-
ceptions in imported machinery (e.g. new and used cars), vessels and other imported
goods. This contradiction between RRRA and interception data is most likely because
RRRA likelihoods for this pest are derived from an aggregate group of pests that en-
compass horticultural bugs, thrips and mites. Another possible explanation is that
pathway entry likelihoods may have changed since 2015 when the majority of RRRA
likelihoods were initially quantified.

We therefore recommend a major review of RRRA pathway leakage rates (and the
methods used to estimate them) for all Australian priority plant pests. We also recom-
mend that interception databases be integrated with RRRA such that contemporary
pathway likelihoods can be estimated and possibly allow likelihoods to vary by coun-
try of origin.

10.2. Collecting empirical data for pathway post-border

movements

Further research is also required to better understand the post-border movements of
high risk pathway carriers.

For example, an assumption used in our mapping framework was that tourists are
distributed as a function of tourist accommodation and distance from international
airports. While we had spatially explicit empirical data to approximate the density of
tourist accommodation, the distance from airport decay function was not informed by
empirical data. Information obtained from Incoming Passenger Cards (IPC), could be
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particularly useful for determining the proportion of passengers intending to reside in
each suburb or postcode. It can also be used to estimate these proportions by country
of residence or to estimate distance decay functions describing tourist distribution with
respect to international airports.

Figure 10.1.: An example of an Australian Incoming Passenger Card.

Updated analyses of shipping container post-border movements are also required.
Currently, the latest analysis of shipping container movements comes from an experi-
mental ABS dataset conducted on 2009–2010 data (ABS Cat. 1270.0.55.003). More con-
temporary data will likely provide a better reflection of current movements of shipping
containers, and thus, how hitch hiker pests and diseases on this pathway are currently
being distributed across Australia.

Lastly, research is required into the time spent by pathway carriers in areas of low
and high establishment likelihoods. This information will aid in determining the a
pest’s exposure to suitable conditions and potentially whether it is likely to survive the
journey.
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10.3. Accounting for uncertainty

Currently, the mapping framework does not incorporate uncertainties in either path-
way leakage rates or post-border movements. This is partly because such uncertainties
were either not known, or were computationally difficult to propagate at large spatial
scales (i.e. national level). We therefore recommend that future work should be di-
rected at estimating these uncertainties and adding computationally efficient function-
ality for propagating and mapping multiple sources of uncertainty within the frame-
work. Adding such functionality will improve biosecurity decisions by allowing decision-
makers to assess the range of plausible establishment likelihoods that could exist given
current knowledge and uncertainties.

10.4. Aggregating maps

There is some interest in designing early detection surveillance programs for groups of
pests as opposed to species-specific programs. One advantage of group-level surveil-
lance is that, relative to species-level surveillance, it may reduce costs by focussing
more on regions where the establishment likelihoods are high for multiple pests or
diseases.

In the course of this project, some have asked whether the establishment likelihood
maps can be combined across multiple pests in order to inform group-level decisions
about where to allocate early detection surveillance. In practice, aggregating estab-
lishment likelihood maps across pests can be done by simply summing the grid-cell
establishment scores across species. However, whether aggregating across a suite of
pests is appropriate will likely depend on whether:

1. they share the same pathways of entry and whether the ranking of pathway like-
lihoods is the same;

2. they utilise the same host material; and

3. they have similar distributions of climatic suitability.

If the group of pests do not meet the above conditions then the derived aggregated
map is unlikely to be useful in informing where to conduct surveillance. For example,
we would advise against aggregating oriental fruit fly and BMSB because while they
may share many hosts, areas of climatic suitability differ greatly (one being tropical the
other being more temperate), and they can enter via different pathways. As such, fu-
ture research should be done to determine which combinations of pests are appropriate
to aggregate.
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10.5. Predicting future establishment likelihoods

It is also important to examine how establishment likelihoods may change in the fu-
ture, especially in order to design adaptive and robust early detection surveillance
programs. This would require building models that can forecast:

• changes in both passenger volumes and commercial trade among countries un-
der different climate and trade scenarios;

• changes in pest/disease climate suitability under climate change;

• changes in host material distribution caused by both climate change and other
human activities;

• changes in which countries are infected with the pest/disease; and

• changes in pathway leakage likelihoods.

10.6. Virtual analytics platform

We have endeavoured to design a generalisable and transparent framework for map-
ping establishment likelihoods for plant pests that can be readily implemented in R.
In order to minimise user error we have packaged the code into an R package called
edmaps (i.e. Early Detection Maps). We have also provided functions that allow users
to automate the workflow by pointing the mapping framework to a structured Excel
spreadsheet and running a single command in R. However, implementing and using
the outputs of this software will likely still be limited by the user’s: 1) ability to install
software dependencies; 2) computational resources; and 3) ability to interact with out-
puts. In order to mitigate these issues and improve user uptake, more work should
be done to improve accessibility and users’ ability to tap into other data sources both
within and outside the Department.

One solution is to develop a biosecurity-focused online virtual analytics platform
(i.e. a cloud-based workspace) that provides practitioners with a “one stop modelling
shop” that will not only greatly simplify the access and integration of multiple sources
of commonly used information (available both within and outside Departmental sys-
tems) but also provide users with a central repository of state-of-the-art analytical
workflows that can inform scientifically robust policy- and decision-making. The Bio-
diversity and Climate Change Virtual Laboratory (BCCVL) is one such online environ-
ment where researchers can access and integrate multiple sources of data and use a
range of analytical methods to inform conservation-based decision-making.

Another fundamental advantage of such an online platform is that it can provide
a coherent environment for integrating modelled outputs commonly used along the
invasion continuum from pre-border to post-border. For example, real-time intercep-
tion data could feed directly into the RRRA module and thereby provide contempo-
rary national pathway leakage likelihoods required in mapping post-border pest es-
tablishment likelihoods. These maps of establishment likelihood, in turn, could then
be combined with other data sources and analytical tools to inform probabilities of area
freedom (Camac et al., 2019), spread modelling (APPDIS; Bradhurst et al., 2019), opti-
mal surveillance (Kompas & Che, 2009; Kompas et al., 2017) and constructing spatially
explicit risk maps (i.e. maps of likelihoods × consequences).
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1

Executive summary

Over the last two decades, pest risk maps have been used as a decision support tool
for informing strategic and tactical decisions about where to allocate finite surveillance
resources, international and domestic trade restrictions, and cost sharing between ju-
risdictions. However, no standardised approach currently exists, with pest risk maps
varying in the stage/barriers of the invasion continuum they incorporate (i.e. entry,
establishment, spread), which risk attributes they use (e.g. climate suitability, host
availability, trade), what scale they are estimated at (e.g. region, cities, ports), and
whether outputs are qualitative, quantitative, or include impacts.

Here we conducted a systematic review of grey and peer-reviewed literature that ex-
amined what data sources, methods and barriers to establishment and spread were
commonly incorporated into pest risk maps. In total, we reviewed 74 peer-reviewed
and grey literature documents published between 1991 and 2018.

We found that plant pest risk maps varied substantially in the methods, data sources
and establishment barriers incorporated. The vast majority focused on estimating
establishment potential (96%) via climatic suitability modelling (75%) and/or host
distribution (69%), typically under the implicit assumption that likelihoods of arrival
were uniform across the geographic space of interest.

By contrast, when entry or arrival likelihoods were estimated (44% of risk maps) –
typically using trade patterns in pathway models – focus was predominately on major
points of entry (e.g. ports) with most models not incorporating spread beyond these
points or attempts to infer establishment potential.

Lastly, we found that only a small percentage of plant pest risk maps incorporated
spatially explicit measures of impacts/consequences of an incursion (4%). This meant
that the majority of reviewed pest risk maps did not explicitly measure risk (conventially
defined as: likelihood × consequence).

We strongly advocate for more integration of methods used to estimate entry and spread
with tools commonly used to inform establishment potential. Specifically, we call for
pest risk maps to explicitly incorporate estimates of the three fundamental factors
governing pest establishment and spread; namely: arrival rates, abiotic suitability and
biotic suitability. Furthermore, economic tools must be integrated with the above
in order to estimate spatially explicit consequences of pest outbreaks, and thus, true
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measures of risk in which to prioritise pests and allocate finite biosecurity resources.
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2

Introduction

Globalisation of human movement and trade has dramatically increased the exposure
of countries to new pests and diseases that may have devastating economic, environ-
mental and social impacts [1]. As a consequence, governments must now contend with
allocating finite risk mitigation resources to an ever increasing number of potential
threats that may enter a country.

Traditionally, pests and diseases have been prioritised based on methods that account
for life history traits, species geography and some measure of potential economic,
environmental and/or social harm. An exemplar of this type of prioritisation has been
the "Weed Risk Assessment" [2]. While these methods have been shown to be effective
in prioritising existing and potential threats, they rarely identify which regions are
most exposed to emerging threats, and therefore, do not inform where to allocate finite
post-border surveillance, especially for maximising early detection.

Over the last two decades, risk maps have been developed for many plant pests and
diseases [3–6]. These maps have been used in plant biosecurity as a decision support
tool for informing strategic and tactical decisions about where to allocate finite surveil-
lance resources, international and domestic trade restrictions, and cost sharing between
jurisdictions [3, 6]. They have also been used to inform likelihoods of pest absence [7]
and are a critical communication tool for raising public awareness in regions of high
exposure, and thus, increasing the coverage and effectiveness of public reporting of
incursions. Pest risk maps are becoming such a vital component of an effective and
efficient biosecurity system that many governments and industries are now heavily
investing into some form of risk mapping [8].

This strong interest in pest and disease risk mapping has resulted in a vast array of
methods and tools being developed. Several books and reviews have been published
to guide users through the development of such maps. However, no standardised
approach currently exists, with many pest risk maps varying in the stage/barriers of
the invasion continuum they incorporate (i.e. entry, establishment, spread), which risk
attributes they use (e.g. climate suitability, host availability, trade), what scale they are
estimated at (e.g. region, cities, ports), and whether outputs are qualitative, quantitative,
or include impacts.

In our view, pest risk maps used to inform tactical biosecurity decisions such as where
to conduct early detection surveillance or risk mitigation resources must, at their foun-
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dation, encapsulate the three fundamental barriers to pest establishment and spread
[9], namely:

1. can it reach the location of interest (i.e. arrival rate)?

2. are the abiotic conditions suitable (e.g. climate suitability)?

3. are the biotic conditions suitable (e.g. presence of host/food)?

If maps do not account for these three barriers, then estimated risks of establishment
are likely to be overstated in some regions and understated in others. For example, if a
pest risk map is based on a combination of climatic suitability and host availability, but
does not account for propagule pressure or arrival rate, it will almost certainly overstate
the expsoure risk in regions where arrival rates are low, and understate it in regions
where they are high.

In order to assess whether these three funamental barriers are routinely incorporated
into plant pest risk maps and/or risk assessments, we conducted a systematic review
of grey (i.e publicly available government reports) and peer-reviewed literature pub-
lished between 1991 and 2018. Specifically, we examined which barriers were routinely
incorporated, which data sources and tools were used to estimate them, and which, if
any, potential impacts were included.
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3

Material and Methods

Literature search

We conducted systematic searches via Google Scholar using the search term ("risk
assessment" OR "risk map") AND (pathway OR entry OR arrival) AND (map OR mapping
OR spatial OR geographic) AND (pest OR invasive). We also used references listed in
two recent meta-analyses on risk assessment [10] and pathway-models [11]. To ensure
we also obtained relevant grey literature, we also conducted searches on government
websites using the search terms "risk maps" and "plant" AND "risk assessment". All
searches were conducted between October and December 2018. Non-English literature
was not examined in this review.

In total, we compiled 74 articles and reports published between 1991 and 2018. Geo-
graphic zones spanned from Antarctica [12] to the tropics (Fig. 3.1), with the majority
of reports/studies originating from Europe and the USA. A majority of risk analyses
collated in this review followed various guidelines [e.g. 13–22]. A synthesis of these
reviews can be found in [23]. Broadly, these guidelines advised on: 1) what were main
components of risk assessment; 2) how to source relevant data and information; and 3)
how to deal with uncertainty.

Data inclusion and exclusion

In total, we inspected the full text of 136 articles/reports/maps. Individual studies had
to satisfy the following criteria to be included in our review: 1) report a quantitative or
qualitative estimate of at least one of pest entry, establishment, spread, and/or impacts;
and 2) focus on plant pests or their specific pathways of entry. We excluded studies
with an emphasis on pest ranking for priority lists as our focus was on risk assessments
used for informing post-border early detection and control measures [e.g. 24]. In each
document, we recorded which components (i.e. stages) of the invasion process were
included (i.e. entry, establishment and spread), what risk attributes were used and
whether impacts or consequences were estimated. We also recorded the location of the
risk assessment, the type of spatial data used (see Section 3.1), and what methods and
data were used.
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Figure 3.1: Geographical distribution of risk assessments collated in this report.

3.1 Definitions

Risk analysis and risk assessment

In this report the terms "risk assessment" or "risk analysis" (RA) refer to any documents
(maps, reports, articles) that attempt to measure risk associated with entry, establish-
ment, spread or impact of plant pests.

Spatially implicit versus spatially explicit

We found three types of pest risk assessments: 1) geographically neutral, when spatial
considerations are not taken into account for any risk attribute; 2) spatially implicit,
where regional differences are taken into account, but actual location is not important;
and 3) spatially explicit, where data inputs or processes are spatially explicit and where
the geographic distribution of risk is important.

Entry, establishment, spread and impact

Pest risk assessments were generally decomposed into quantitative or qualitative scores
of pest entry, establishment, spread and impact. However, some authors used different
demarcations. For example, some used the terminology "introduction" to refer to both
"entry" and "establishment" [25–30], while others used it to refer to "establishment" and
"spread" [31]. Here, we used the terminology entry, establishment, spread and impact,
and reassigned others terminologies following IPCC definitions [32] (Table 3.1).

Methods used to develop risk maps

We identified three categories of methods: 1) methods used to estimate geographic risk
components; 2) methods used to integrate multiple risk components (i.e. entry, estab-
lishment, spread and impact) or attributes (e.g. habitat suitability, host distribution) on
a map, and 3) methods used to combine both risk and uncertainty on a map.
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We reported nine types of methods used to estimate the geographic risk component;
these ranged from weighted rules applied to risk sub-components to complex process-
based species distribution models (Table 3.2). We also reported four methods used
to integrate multiple risk components on a map (Table 3.3), and an additional three
methods used to account for risk uncertainty (i.e. integrating both risk and incertainty
on a map, Table 3.4).

Raster data, points/lines/nodes, polygons/centroids

We reported which format of spatial data was used to address the spatial heterogeneity
in risk. Data have been attributed to three main categories (Table 3.5): 1) vector data as
points, lines or nodes; 2) vector data as polygons or centroids; and 3) raster data. Vector
data represent features as discrete points, lines (or arcs, i.e. connection between two
points), and polygons (i.e. areas with closed boundary) or centroids (i.e. areas around
a point, see Table 3.5). Raster data represent the landscape as a rectangular matrix of
square cells (grid, see Table 3.5). We also reported cases when the risk was spatially
implicit.
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Table 3.1: Definition of the risk of entry, establishment, spread and impact, based on IPCC terminology [32].

Components of
risk

Definition

Entry Movement of a pest into an area where it is not yet present, or present but
not widely distributed and being officially controlled.

Establishment Perpetuation, for the foreseeable future, of a pest within an area after entry.
Spread Expansion of the geographical distribution of a pest within an area.
Impact Adverse consequences of pests, including those concerning unculti-

vated/unmanaged plants, wild flora, habitats and ecosystems.
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Table 3.2: Commonly used methods to estimate components of risk.

Method Definition References
Correlative species
distribution models

Models (e.g. MaxEnt, CLIMEX, CLIMATCH, BIOCLIM, GLMs, BRTs, GARP)
that focus on correlating occurrence records with spatially explicit environ-
mental data. These models implicitly capture processes delimiting the distri-
bution of a species.

[33–35]

Process-based species
distribution models

Models (e.g. degree-day models, NAPPFAST, CLIMEX, NicheMapper) that
explicitly model the physiological processes governining a species’ distribtion.

[4, 27, 33, 35]

Weighted-rules The weighted multiplication of standardised risk attributes. Here weights
represent the relative importance of each risk attribute. Weights are commonly
derived from expert judgement.

[33, 36, 37]

Pathway models Models that predict the movement of propagules or vectors from source lo-
cations to points of entry (e.g. ports). Commonly, these models are based on
trade networks and can be either spatially implicit or explicit.

[11, 38, 39]

Distance-decay
functions

Functions that assume risk or likelihoods decay with distances from high risk
locations (e.g. points of entry & established populations). These functions are
frequently used by USDA forest service in developing pest risk maps.

[37]

Statistical methods Various statistical methods such as linear regression, or probability distribu-
tions (Poisson, binomial function) have been used to estimate components of
risk.

[40, 41]

Maximum
overlay

A process in which multiple risk sub-components are overlayed and the max-
imum score used.

[42]

Population models Models that predict changes in population dynamics over time, including how
their size and composition changes (e.g. Leslie matrices, mortality models,
Ricker models). While these can be made spatially explicit, the vast majority
are spatially implicit.

[40, 43–47]

Dispersal models Models that predict the dispersal dynamics of a species (e.g. kernels, gravity
models, linear models, jump diffusion). These model can be stochastic or
deterministic.

[46, 48]
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Table 3.3: Methods used to integrate multiple risk components or attributes when forming risk maps.

Method Definition References
Map overlays & masking Two approaches are encapsulated here. The first works by map-

ping a risk attribute (e.g. entry likelihoods) and then masking ar-
eas considered low risk or unsuitable (e.g. via information about
climatic suitability or host distribution). An alternative is to not
combine risk attributes but rather plot them independently and
allow users to examine the geographic distribution of each risk
measure.

[42, 49, 50]

Weighted-rules The weighted multiplication (or summation) of standardised risk
attributes in geographic space.

[33, 36, 37]

Spatial models All key risk attributes and processes are modelled in a single
spatially explicit model. Commonly, these models incorporate
stochastic processes such that uncertainties can also be explicitly
accounted for.

[51–55].

Pareto dominance A game theory method that uses multiple criteria to inform deci-
sion making. The method works by iteratively ranking locations
based on their multi-criteria risk scores.

[4, 56]
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Table 3.4: Methods used to account for risk uncertainty

Method Definition References
Thresholding Areas of high uncertainty are masked in the mapping procedure.

The threshold of what constitutes high uncertainty should align
with the level of uncertainty that is acceptable to the risk manager.

[33]

Categorisation Risk classification systems that partition risk scores based on both
their expectation and associated uncertainty. For example, a clas-
sification such as "high risk; high certainty" and "high risk; low
uncertainty".

[57]

Optimisation Methods that rank locations according to both risk and its uncer-
tainty.

mean variance approach:
[53] ; second-degree
stochastic dominance [52,
53]; hyper-volume based
approach [54, 55]
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Table 3.5: Definition of the format of spatial data reported to address spatial heterogeneity in risk.

Spatial data Definition Used to represent features such as
Vector data as points
or lines

Points are XY coordinates, lines (or arcs) are
pairs of coordinates, nodes are the intersec-
tion points where two or more lines meet.
They represent a common XY coordinate
pairs between intersecting lines. Generally,
XY coordinates are a latitude and longitude.

Points: ports ([38]), major cities ([58]),
distribution centres ([59]).
Lines: road segments ([38, 48]), rivers
([60]).
Nodes: retailers, nurseries ([44]), ma-
jor cities ([38]) in a transport network.

Vector data as poly-
gons or centroids

Polygons are areas with a closed boundary
created by multiple lines. A centroid is gen-
erally the centre of a polygon or area.

Polygons: regions ([33]), shires ([40]),
provinces ([39]).
Centroids: ZIP Code area centroids
([61]).

Raster data (grid) The landscape is represented as a rectangu-
lar matrix of square cells (grid), where each
cell has a value (e.g. satellite images, aerial
photographs, digitised maps).

Grids: climatic maps, but also vege-
tation cover (satellite images in [33]),
metropolitan area (nightime view by
satellites images in [62, 63]), edaphic
conditions (digitised maps in [64]).
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4

Results

4.1 Description of the studies reported

In total, we identified 74 relevant documents published between 1991 and 2018. These
documents came from both grey literature (i.e. government and international organ-
isation reports, 47%), and peer-reviewed literature (53%). These documents came in
a variety of formats such as scientific journal articles, technical reports, maps, books,
and guidelines (Fig. 4.1). Guidelines and theoretical papers with no working examples
were excluded from subsequent analyses (i.e. 16% of studies).

Book Chapter

Review

Guideline

Map

Report

Article

0 10 20 30 40 50

Percentage of study

Figure 4.1: Type of documents reported in this review. Guideline refers to RA framework
provided by governmental or intergovernmental agencies.

We found that while the majority of pest RAs focused on a particular species or disease
(90%), others focused on modelling pathways irrespective of the species. Risk assess-
ments on arthropods were the most common, followed by fungi and protists, plants,
nematodes and molluscs, and bacteria (Fig. 4.2). Most risk assessments were single
species (73%), however, others included as many as 800 species [65].

Both quantitative and qualitative methods appear to be equally represented within the
risk assessment literature. However, over the last decade, the average trend suggests
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that quantitative approaches are becoming increasingly used (though this trend is not
significant; Fig. 4.3).

Pest risk assessments commonly reported on one (31%) or two (35%) stages of the
invasion process (i.e. entry, establishment, spread and impact). Fewer reported on
three (15%) or all (24%) components. Establishment component is the most commonly
estimated (in 89% of RAs), followed by entry (66%), spread (45%), and impact (32%).

4.2 Description of risk maps

Most RAs (82%) were spatially explicit, 16% were spatially implicit, and 3% geograph-
ically neutral. Some studies contained both spatially explicit and implicit examples.
Almost all spatially explicit RAs provided a risk map; 2% reported results in another
media [e.g. 58].

Risk maps were commonly in the form of semi-quantitative rank scores (54%), but
quantitative (26%) and exclusively qualitative (i.e. low vs high risk, 20%) approaches
were also commonly used.

Risk maps either integrated one (56%) or multiple stages of invasion risk (44%, Fig. 4.4).
Depending on the stage of invasion considered, maps used a variety of metrics such as
the likelihood of pest entry, the potential impact of a pest establishment, or projected
resource at risk (i.e. the distribution of timber volumes of potential tree hosts at risk of
infestation). Methods used to integrate several components on a risk map varied from
simple overlays of maps, sometimes with weighting rules, to highly complex spatial
models or optimisation procedures (Fig. 4.5 a, Table 3.4).

Only 2% of risk maps accounted for uncertainty in measured risk. The three main meth-
ods for accounting for uncertainty were: threshold mapping, uncertainty classification
and optimisation procedures (Fig. 4.5 b, Table 3.5).

Unspecified

Bacteria

Nematods and Moluscs

Multiple taxa

Plants

Fungi and Protists

Arthropods

0 10 20 30

Number of study

Figure 4.2: Risk assessments by taxa. Unspecified refers to cases where no examples – and
thus no taxa – were reported.
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Figure 4.3: The use of quantitative and qualitative methods in plant pest risk assessment
over the last 28 years. Lines show the average number of studies by year (± 95% CI).
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Figure 4.4: Stages of invasion process encapsulated as either a single risk map or a map
that integrates multiple stages.
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Figure 4.5: Methods used to create risk maps: a) Common methods used to integrate
multiple risk components or attributes; b) Methods used to account for uncertainty; c)
Methods used to estimate risk at each step of the invasion process.
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Figure 4.6: Risk attributes commonly defined in pest risk assessments for each stage of
the invasion process (including impact). Grey = Non-spatial risk attributes; shades of
blue = spatial data. Different blue colours signify the formats of spatial data commonly
used.

4.2.1 Entry risk

Entry risk was incorporated in 44% of risk maps. Entry risk was commonly inferred
directly from trade data (86%, Fig. 4.6), followed by natural spread (14%), international
travellers (i.e. airlines passengers, 9%), and pests escaping from human facilities (e.g.
urban areas, landfills, quarantine zones), 9%).

Entry risk was typically reported as either likelihoods of entry or as the number of en-
tering propagules. Commonly, these methods assumed entry likelihoods were strongly
correlated with trade volumes [e.g. 33, 55], or the density of importers [e.g. the number
of nurseries within a territory 34].

Commonly, entry risk models contained a large number of attributes describing likeli-
hoods of survival, dispersal and/or transportation. However, the vast majority of these
likelihoods were spatially neutral (Fig. 4.6). For example, a species’ dispersal limit was
commonly assumed to not vary across geographic or environmental space.

Several methods have been used to estimate entry risk (Fig. 4.5 c): weighted-rules (45%),
pathway models (36%) and distance-decay functions (41%) were the most used.
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Figure 4.7: Type of data used to estimate risk in pest risk maps.

Most RAs used databases on trade to estimate entry risk (77%, Fig. 4.7). However,
expert elicitation and data derived from the literature were also commonly used 86%.
In general most data was readily available online. In total we found 107 databases
were used to estimate risks associated with entry, establishment, spread and impact. A
complete list can be found in Table 5.1.

Entry risk was mostly estimated at points of entry (e.g. ports) but also at high risk
areas such as markets, distribution centres and urban area (Fig. 4.8). However, in some
cases, some analyses estimated territory or national arrival rates, and then distributed
them within the region of interest using risk proxies such as human population density,
housing density (see city lights data [66]), employees numbers, or traffic survey data.

4.2.2 Establishment risk

Most risk maps incorporated some measure of establishment likelihood (96%, Fig. 4.4).
Typically, this was done as a function of climate (75%, Fig. 4.6), but also included the
distribution of hosts (69%), land cover (33%) and other abiotic factors such as elevation
and disturbance (29%). Plant species richness and phenology were also sometimes
used (in less than 6%). In the vast majority of cases, these factors were used in raster
format (i.e. mapped as a grid, Fig. 4.5). While establishment risk was mostly considered
a spatially explicit problem, spatially implicit examples did exist. For example, some
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Figure 4.8: Points of entry commonly used in pest risk maps.
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risk assessments either estimated establishment risk as a proportion of suitable area for
establishment [e.g. 30], or more simply, assumed a country or region was at high risk if
it contained any suitable environment [e.g. 67].

Climate and habitat suitability was mostly inferred via niche modelling (54%); with cor-
relative and process-based models being equally used (Fig. 4.5 c). Thus, establishment
risk was often provided as a suitability index, rather than a likelihood of establishment
– however, users typically inferred that high suitability equalled high establishment
risk. Data used to parameterise these models mostly originated from online climate
(e.g. WorldClim: http://www.worldclim.org, CRU: http://www.cru.uea.ac.uk and
CliMond: https://www.climond.org) and biological (e.g. GBIF; https://www.gbif.
org) databases (83%), but also from the literature (especially for process-based param-
eters; 42%).

4.2.3 Spread risk and impact

Estimates of spread risk were found in 22% of plant pest risk assessments (Fig. 4.4). Pop-
ulation and dispersal models were commonly used to estimate spread risk (Fig. 4.5).
However, pathway models that encapsulated both entry and establishment risk at-
tributes were also used. In most cases, two types of spread were encapsultated in these
models: human-assisted spread (64%, Fig. 4.6) and natural spread (36%). Data used
to parametrise these models came mainly from biological databases of pest occurence
(e.g. National Gypsy Moth Slow the Spread (STS) program; http://www.gmsts.org,
GBIF), and from literature review. Very few risk assessments for plant pests explic-
itly estimated impact (4% of RAs). When a risk assessment did incorporate impacts,
they were mostly associated with economic impacts (i.e. crop yield and at industry
level), followed by environmental (e.g. impacts on ecosystem services or biodiver-
sity components) and societal impacts of plant pests (Fig. 4.6). Thus data used came
mainly from literature review, and databases about land uses (e.g. ABARES catchment-
scale land use dataset; http://www.agriculture.gov.au/abares/aclump/land-use/

catchment-scale-land-use-reports).
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5

Discussion

5.1 Accounting for conditional dependencies and impacts

A vast majority of RAs provides risk maps (81%). Ideally, pest risk maps used to
inform post-border surveillance should 1) estimate likelihoods of establishment and
subsequent spread conditioned on spatially explicit arrival probabilities, and 2) include
measures of potential impact. In practice, such risk maps are exceedingly rare [6].
In our review we found that only 4% of maps met this standard. Specifically, we
found that while most risk assessments incorporated some spatially explicit information
about entry and establishment, most treated these two components independently and
did not incorporate any measure of impact. For example, half the risk assessments
reviewed here either inferred establishment risk directly from a niche model without
any consideration of arrival rates or simply overlayed estimated arrival rates onto some
form of habitat suitability model and inferred risk without any formal integration of
these scores [50].

This approach to risk without accounting for the conditional dependencies between en-
try and establishment or accounting for impact is unsurprising [19]. The development
of a comprehensive risk map requires integration of sophisticated modelling techniques
from multiple disciplines. Specifically, a pathway analysis is required to estimate ar-
rival rates at various points of entry and beyond. Following this, detailed biological
knowledge and possibly habitat suitability models are required to infer likelihoods of
establishment given estimated arrivals. And lastly, economic and spread modelling
are needed to infer potential econonomic, societal and environmental impacts across
space given estimated establishment likelihoods. Sourcing data and integrating these
methods into a spatially explicit model is no easy task (but see [57]), which likely ex-
plains why few plant risk assessments appriopriately acknowledge conditionals along
the invasion process or account for potential impacts.

5.2 Accounting for uncertainty

Risk uncertainties occur at all stages of the invasion process [68], and commonly arise
due to knowledge gaps, model uncertainty and the robustness of assumptions made (see
a list in [19]). Quantifying and understanding how these uncertainties propagate from
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entry through to establishment, spread and impact is of vital importance in informing
policy and management decisions in biosecurity.

We found that most plant pest risk assessments incorporated some measure of uncer-
tainty when communicating the conclusion of the assessment. However, few accounted
for uncertainties on derived risk maps (2%), and those that did focused mainly on model
uncertainty. When uncertainty was accounted for on maps, three approaches were
commonly used: 1) high uncertainty areas were masked (or highlighted) (e.g. [33]);
2) categorical scoring systems that included uncertainty levels were used (e.g. high
risk; low uncertainty, high risk; high uncertainty) [57]; or 3) optimisation methods (e.g.
mean-variance, hyper-volume based approach, second-degree stochastic dominance
[52–55]). Each method has advantages: thresholding for mapping, and classification,
are both relatively easy to implement, whereas results from optimisation techniques
are simple to interpret.

5.3 Estimating entry risk

Understanding entry risk is of critical importance for managing and mitigating risk
hitting the border, and for informing post-border surveillance [69]. However, 45% of
risk assessments reported here did not explicitly estimate entry likelihoods. Entry
risk was not assessed in RA when 1) the pest was already present in the territory
(see guidelines [17]), 2) the pest was intentionally released for the control of another
invasive pest [70], 3) the pest is not known to exist outside the examined territory [41],
or 4) in academic studies interested in developing better analytical method to estimate
estblishment or spread risks.

Unsurprisingly, entry via trade was the main factor used to estimate entry risk (51% of
RAs). International trade is often considered a good predictor of the number of invasive
species found within a country’s borders [71–75]. Entry risk via trade was estimated
at marine ports. This is likely because 90% of world trade is carried across sea [76],
and consequently passes through marine ports. However, the increasing proportion of
overseas shipments that are containerised and transferred “door to door” (i.e. they are
sealed at origin, opened at the final destination, and they do not have to be opened or
reloaded at a port) emphasises a need to consider additional entry points distributed
away from ports. Thus, several RAs also distributed entry risk away from ports, by
urban areas, distribution centres or markets within a territory.

Most of the quantitative information on trade flow or on pest interception rates comes
from national or international database on agricultural (fruits, plants) or production
(e.g. EUROSTAT, FAOSTAT, Army Corps of Engineer, Waterborne Commerce, For-
eign Cargo Statistics, National transportation Database, Transport Canada, EURO-
PHYT, Agricultural Quarantine Inspection Monitoring [AQIM]) databases (see Table
5.1). Studies distributing entry risk at a finer geographic scale required detailed knowl-
edge on the movement of specific commodities within the territory. Yet, data on the
volume of trade distributed by urban areas or distribution centres are not always ac-
cessible. Thus, in general, the distribution of entry risk within a territory required the
use of proxies such as human population density [27, 33, 42, 77], housing density [62,
63, 66], or information on transport networks [77–79]. The critical assumption with this
approach is that higher values of these metrics increase propagule pressure.
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Pests generally have a notable dispersal capacity. Yet, entry via natural spread (i.e.
wind) was estimated in only 14% of the risk maps reported. We could hypothesise that
in a majority of studies entry via natural spread was not considered because 1) natural
spread was not expected to be a major pathway [17], or 2) the distance of the territory
from a source of infestation was higher than the pest’s dispersal range [33, 80]. When
entry via natural spread was estimated, risk assessors had to 1) identify the factors
that support migration, and 2) model the process, adding complexity and increasing
the work load for the risk assessment. For instance, [33] studied the potential for
Spodoptera frugiperda to arrive in Europe. In the course of their study, they performed
a model entry via migration based on wind trajectories and corn crop availability
from North African countries. This choice was based on an analysis of the literature
review, suggesting that migration of S. frugiperda in the USA was supported by corn
availability and wind patterns. Thus, they implemented a hysplit (Hybrid Single
Particle Lagrangian Integrated Trajectory) trajectory model for S. frugiperda to describe
where wind trajectories might carry species of concern from source to Europe and in
what numbers. This model was spatially explicit because entry rate via migration was
distributed in Europe according to the establishment index.

International travellers (i.e. airlines, rivers) and their baggage are known to be a potential
pathway for pest species [81]. Yet, entry via international travellers was addressed in
only 9% of the risk maps reported. We could hypothesise that in a majority of studies,
entry via international travellers was not considered because 1) international travellers
were not expected to be a major pathway for the pest, or 2) data on the rate of baggage
interception was not always available (though most countries, including USA and
Australia, have interception rates on airline baggages). For instance, [12], studied the
risk for the establishment of nonindigenous species in Antarctica. They considered the
entry risk via air passengers, but they estimated the number of propagules per visitor
by collecting seeds from their outer clothing, footwear, walking poles, day packs, and
camera bags. Entry risk via international travellers could be spatially distributed by
airports, or along a distance from major transport axes (e.g. Danube river in [48]).

Three important factors were also often used to estimate entry risk: 1) pest traits
(flight range, growth rate), 2) probability of pest transfer to a host during transport or
at destination, and 3) probability of pest survival during harvesting, transportation,
consignment and use (in 29%, 9%, and 5% of RAs reported, respectively). Yet, spatial
variation in the value of these factors was never taken into account. At best, a centroid
curvilinear distance decay value was assigned at points of entry (e.g. port or distribution
centres) to delineate the potential flight range of the pest. But there was no geographical
variation in pest traits (flight range) and consequently in the distance decay value across
points of entry [e.g. 37]. In [82], the “probability of pest transfer to a host” was reported
as spatially explicit (by regions). In fact, the probability of transfer depends on the
vulnerability of the EU regions, and varied across the European territory according to:
1) the size of the area occupied by vulnerable hosts – the greater the area occupied, the
more likely there is an opportunity for pest contact; and 2) the mobility of the pest –
the greater the mobility of the pest, the greater is the opportunity for pest contact.

Pathways models were the main method used to estimates entry risk. This is coherent
with a shift in the focus of plant biosecurity programs away from control at international
borders and towards pathway-based pest risk assessment [83]. Pathway models varied
greatly in mathematical form and level of detail (see [11]), but invariably they focused
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on the means by which a species might arrive in the area of concern. For instance, EFSA
often used pathway models in their risk assessment: the assessment of entry is made
separately for each pathway for a pest, and the entry for each pathway is assessed in
successive steps from the source abroad to one or more points within the European
territory [e.g. 39].

Pathway models used in RAs could be either spatially explicit or implicit. In spatially
explict pathway models, entry risk was distributed by regions [e.g. 46, 67, 84], or urban
area [51]. In spatially implicit pathway models, regional differences could matter, but
not the precise location of entry points. For instance, in [67] three classes of countries
are distinguished according to the reported pest prevalence (higher prevalence, lower
prevalence and absent), and calculations are made for each category. The spatial
resolution is thus at the levels of the country class, but the precise location of the
countries had no importance for the model.

5.4 Estimating establishment risk

Modelling establishment risk in a spatially explicit manner is very informative for risk
managers because it clarifies in which areas establishment may occur. Establishment
risk was almost always estimated in risk maps using habitat suitability, and often host
distribution, abiotic factors and land cover (e.g. forest cover, urban forest).

Habitat suitability was modelled using either correlative distribution models, and/or
process-based models that integrate distribution data with some expert estimates on
physiological parameters (e.g. CLIMEX). The result was often a map that ranks each
site in a geographical region by the relative suitability for the species. Effects of several
environmental variables such as host distribution, or land cover were often combined
in a summarised map. Factors were combined within a weighted overlay or simple
multiplication (i.e. all the same weight), followed by a summation of the results [e.g.
37, 59, 85, 86].

It is surprising that a large range of countries (e.g. Australia, New Zealand, USA, South
Africa, Europe) used species distribution modelling, despite a lack of data on species’
distribution and environmental covariates [6]. In fact, while most of the data on pest
species’ distributions and environmental covariates came from databases (GBIF, CABI,
EPPO Global Database, Early Detection and Distribution Mapping System [EDDMaps],
Invasive Plant Atlas of the United States), some studies (42%) also integrated data from
the literature. Risk assessors conducted literature searches and combined data from
local surveys or museum occurrences datasets [e.g. 33, 64].

5.5 Estimating spread risk and impact

Spread was addressed in 22% of the risk maps. Natural and human-assisted spread
were the most studied aspects of spread risk (in 36% and 64% RAs, respectively, Fig. 4.6).
In some cases, spread risk was spatially explicit using dispersal models [46, 58] or fitting
equations to historical data in order to estimate the rate of spread [41].

Economic (i.e. crop yield and at industry level) and environmental (e.g. impacts on
ecosystem services or biodiversity components) impacts were addressed in less than
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4% of the risk maps. A lot of information is required to estimate the impact of a
pest. Indeed, impact depends on factors such as expected yield losses, change in crop
quality, biodiversity losses, and also on pest abundance. However, in general, the
geographical heterogeneity of impact risk was related to differences in distribution of
crops/protected habitats within a territory.

5.6 Conclusion

Pest risk maps are a powerful decision support tool used in biosecurity to inform strate-
gic and tactical decisions about pest invasion. However, complete, spatially explicit
characterisation of risk is rare; most risk maps are still used to inform only a single
step of the invasion process. In ideal cases, pest risk maps should 1) integrate all steps
of the invasion process and their consequences, or at a minimum, entry and establish-
ment; 2) take into account potential interdependencies between the main steps of the
invasion process; and 3) simultaneously integrate and convey both risk and uncertainty
into maps. Pest risk mapping remains challenging compared to spatially implicit or
geographical neutral RAs, because it requires additional knowledge on the pest (e.g.
distribution of entry within the territory), entails added complexity, and increases the
work load. However, several techniques have been developed recently to help risk
assessors to better integrate spatial components into RAs.
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Table 5.1: Database

Risk of Data for Location Database
Entry trade volume and

movement
Europe EUROSTAT, EUROSTAT Nimexe database (1967-1987),

EUROSTAT Comext database (since 1988)
Europe FAOSTAT
Europe Comtrade
Europe ISEFOR trade data
Europe Cargo Handbook Transport of commodities
Canada Canadian roadside survey (CRS) database maintained by

Transport Canada
Canada Canadian roadside survey (CRS) database maintained by

Transport Canada
Canada StatsCan, Canadian Freight Analysis Framework
USA TrafficMetrix database
USA US Department of Transportation’s freight analysis frame-

work (FAF)
USA, Alaska Foreign Cargo Statistics, U.S. Army Corps of Engineer, Wa-

terborne Commerce
USA, Alaska U.S. National Transportation Atlas Database (NTAD)

interception data Europe EUROPHYT
USA Animal and Plant Health Inspection Service (APHIS), U.S.

Department of Agriculture
location of businesses USA, Alaska ReferenceUSA database
location of nursery
stock, retailers

UK Grid square agricultural census data for England, Scotland
and Wales

location of retailers UK Inspection records of Plant Health and Seeds Inspectorate
(PHSI)

location of marketing
groups for growers

UK 2006 HortWeek Suppliers Guide

location of cities Worldwide Environmental Systems Research Institute Inc. (ESRI)’s
GIS mapping

location of urban area USA, Alaska World at Night Environmental Research Institute (ESRI) in
Redlands, California (see Imhoff et al. 1997)

26



Continuation of Table 5.1
Risk of Data for Location Database

USA, Alaska USA cities lity lights dataset National Oceanic and Atmo-
spheric Administration’s National Geophysical Data Cen-
ter (NOAAINGDC) (see Imhoff et al. 1997)

number of employees
in business

USA, Alaska North American Industry Classification System (NAICS),
Business and Industry, U.S. Census Bureau

population density Europe EUROSTAT
USA US Census Bureau
USA California GAP dataset

road density USA California GAP dataset
USA Tele Atlas Dynamap Transportation

quantity of municipal
solid waste

USA USA New York Department of Sanitation

mail data USA USA Forwarding data compiled by United States Postal
Service (USPS)

natural spread (wind
trajectories)

Europe International Research Institute for Climate and Society
(Earth Institute) Columbia University, New York, NY,
NOAA

Establishment climatic data Antarctica NASA Global Modelling and Assimilation Office
Australia,
Europe

CLIMEX

Europe European Climate data website
Europe Meteorological Data Base, from Join Research Center (JRC),

Monitoring Agricultural Resources (MARS) unit, Euro-
pean Commission

Europe,
worldwide

Climatic Research Unit (CRU) database

South Africa Computing Centre for Water Research (CCWR), University
of Natal, Pietermaritzburg

UK UK meteorological office
USA USA California Geoportal
USA USADaymet model
USA NAPPFAST pest database (pest database threshold and

growing degree days)
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Continuation of Table 5.1
Risk of Data for Location Database

USA USA PRISM Climate Group from Spatial Climate Analysis
Service at Oregon State University

USA, Eu-
rope, UK

World Clim

Antarctica CSIRO Mk3.5 Climate Model
host / pest distribution
or information

UK British Society of Britain and Ireland (BSBI)

UK maps from Little’s Atlas of United States, trees’ series
USA NYC Street Tree and Forest Surveys
USA Monterey Pine data, Remote Sensing Lab, Sacramento, CA,

USDA Forest Service.
USA USDA National Arboretum
USA The Jepson Online Interchange for California Floristics
USA Biota of North America Program (BONAP), North Ameri-

can Plant Atlas
USA USA Early Detection and Distribution Mapping System

(EDDMaps), from the University of Georgia - Center for
Invasive Species and Ecosystem Health

USA Invasive Plant Atlas of the US
USA, Alaska Forest Inventory and Analysis (FIA) data, U.S. Forest Ser-

vice
USA, Alaska USDA Plants Herbarium data
USA, Alaska USDA Plants database
USA, Europe Centre for Agriculture and Bioscience International (CABI)
Europe EPPO Global Database
Europe Fauna Europaea vector distribution
UK, Europe,
worldwide

Global Biodiversity Information facility (GBIF)

worldwide PRECIS database from South African National Biodiversity
Institute (SANBI)

worldwide Seed Information Database
forest damage Alaska Alaska Department of Natural Resources, USDA Forest Ser-

vice Forest Health Protection, State and Private Forest
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Continuation of Table 5.1
Risk of Data for Location Database

USA USA National Park services
drought USA Forest Inventory and Analysis (FIA) data, U.S. Forest Ser-

vice
fire Alaska Alaska Fire Service

USA NASA Goddard Space Flight Center
USA Program for Climate, Ecosystem and Fire Applications

(CEFA) from Desert Research Institute (DRI)
lightening USA NASA Lightning Imaging Sensor (LIS) / Optical Transient

Detector (OTD)
tornadoes and hurri-
canes and maximum
winds

USA National Climate Atlas of the United States

geochemical data Europe Geochemical Database of europe
hydric soil layer USA USDA, Natural Resources Conservation Service (NRCS)
incoming solar radia-
tion

USA Surface Radar Topography Mission (SRTM), SRTM 90m
DEM Digital Elevation Database

soil data Europe European soil database, from the Joint Research Center
(JRC) and the european soil data centre (ESDAC)

USA Natural Resources Conservation Service (NRCS) soils data
soil wetness dryness
index

USA State Soil Geographic (STATSGO) Database, from USDA
Natural Resources Conservation Service (NRCS)

surface hydrology
data

Australia Surface Hydrology Data, from the Australian National Sur-
face Water Information, Geoscience Australia

topology USA California Geoportal
USA USA global digital elevation model (DEM) - Global 30 Arc-

Second Elevation (GTOPO30)
USA PRISM Climate Group, from Spatial Climate Analysis Ser-

vice at Oregon State University
USA PRISM Climate Group, from Spatial Climate Analysis Ser-

vice at Oregon State University
USA Surface Radar Topography Mission (SRTM), SRTM 90m

DEM Digital Elevation Database
USA US National Map, from U.S. Geological Survey’s (USGS)

National Geospatial Program
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Continuation of Table 5.1
Risk of Data for Location Database

land cover Alaska Alaska Geospatial Data Committee
Antarctica Antarctic Digital Database, from the Australian Antarctic

Data Centre
Europe Corine Land Cover data
Europe European Space Agency’s Global Land Cover 2000 project
USA CALVEG database
USA Global land cover facilities
USA Multiresolution Land Characteristics Consortium (MLRC)
USA National Agriculture Imagery Program (NAIP), from

USDA’s Farm Service Agency (FSA)
USA US National Land Cover Data (NLCD)

vegetation index USA NASA MODIS Vegetation Index Products (NDVI and EVI)
vegetation index UK Countryside Information System (CIS) Datasets, land clas-

sification for the UK, England, Scotland and Wales
phenology USA NASA MODIS land surface phenology
protected area Europe Natura 2000 databases, European Commission

UK Site of Special Scientific interest, from Scottish Natural Her-
itage

Spread USA National Gypsy Moth Slow the Spread (STS) program, U.S.
Forest Service

Impact land use (crop distri-
bution, production)

Australia ABARES catchment-scale land use dataset (ABARES), De-
partment of Agriculture and Water resources, Australia

Europe EPPO Global Database
Europe EUROSTAT
USA Census of Agriculture, from USDA National Agricultural

Statistics services
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B. Workshop

On the 11th of October 2018, CEBRA held a workshop in Canberra. In total 21 partici-
pants from various government agencies, academic institutions and private enterprises
attended the workshop (Table B.1). These participants had a diverse range of exper-
tise including: expert biological knowledge of various high priority plant pests and
diseases, expertise in designing and implementing biosecurity surveillance programs,
expertise in developing biosecurity policy and technical expertise in developing and
using species distribution models. This diversity of expertise provided us with the
ideal opportunity to elicit 1) how biosecurity practitioners currently estimate the po-
tential distribution of pests and diseases that are not currently present in a country;
and 2) what were the major areas of uncertainty they faced when developing and us-
ing such models to inform biosecurity policy and management.
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Table B.1.: List of workshop attendees

Participant Affiliation

Andrew Robinson CEBRA

James Camac CEBRA

Jane Elith University of Melbourne

Elise Gould University of Melbourne

Ranjith Subasinghe Department of Agriculture

Kylie Calhoun Department of Agriculture

Sophie Peterson Department of Agriculture

Carrina Moeller Department of Agriculture

Catherine Mathenge Department of Agriculture

Christine Bennett Department of Agriculture

Nathaniel Bloomfield ABARES

Simon Barry CSIRO

Peter Caley CSIRO

Matt Hill CSIRO

Louise Shuey QDAFF

Rebecca Laws QDAFF

Peter Whittle AgKonect

John Weiss DEDJTR

Martin Mebalds DEDJTR

Craig Phillips AgResearch
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To elicit this information, we first asked all participants to identify the major uncer-
tainties they faced at each of the five stages of model development and utility when
estimating a pest’s climate suitability. A summary of these uncertainties can be found
within figure B.1.

Data Sourcing
Model 

Development
Model 

Checking

Model 

Utility
Data cleaning

1. What data sources are 
commonly  available to 
biosecurity 

practitioners?

2. What are the strengths 
and weakness of 
identified data sources?

1. How are sourced data 
commonly cleaned?

2. Should data be 
restricted to a 

particular region (e.g. 
native region)?

1. What modelling 
techniques are 
commonly used?

2. What are the strengths 

and weaknesses of 
each approach?

3. How are model 
parameters or 

covariates 
determined?

1. How does one validate 
a model?

1. How to choose 
between competing 
models?

2. When should model 

outputs be 
thresholded?

Figure B.1.: The five stages of invasive species distribution model development and util-
ity

Once major uncertainties were identified, participants were split into four roughly
equal groups (three groups of 5 and one group of 6). To ensure each group contained
a range of expertise and that discussions stayed on point, we ensured each group
had a facilitator and at least one technical and policy person. Groups then discussed
each point of uncertainty and presented these discussions to members of different
groups. Group facilitators then presented a summary of these discussions to members
of other groups, who provided feedback, and where warranted, requested clarification
or greater justification for how various uncertainties are or could be tackled. In the fol-
lowing sections we provide a brief summary of these discussions associated with each
point of uncertainty identified in Fig. B.1.

Data sourcing

Group discussions revealed that several data sources have either been used, or theo-
retically could be used, and each contained a variety of strengths and weaknesses (Ta-
ble B.2). These included online databases, peer-reviewed and grey literature, expert-
derived data, surveillance data, museum and herbarium collections.

Online databases

General consensus among participants was that large online databases such as the
Global Biodiversity Information Facility (GBIF – https://www.gbif.org) and the
Centre for Agriculture and Bioscience International (CABI – https://www.cabi.

org/isc) were commonly used for parametrising and validating potential distribu-
tion models informing pest climatic suitability. This was because they are easy to ac-
cess, contained vast amounts of data for many species have large spatial coverage.

Participants highlighted that GBIF was most commonly used for sourcing data for
parametrising correlative models or validating mechanistic models. The primary ad-
vantage of GBIF is that it is currently the most comprehensive global database with
over 1 billion occurrence records from more than one million species (See Fig 3.2).
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Moreover, GBIF contains highly accurate spatial coordinates, making it more useful
for correlating occurrences with various climate rasters.

Information found in CABI was also commonly used in developing potential dis-
tribution models for pests and disease. CABI contains a large collection of pest data
sheets that are compiled by experts. These data sheets provide up to date informa-
tion on what is known about pest biology, distribution and spread pathways and
many other risk factors. An example of the brown marmorated stink bug (BMSB) data
sheet can be found at https://www.cabi.org/isc/datasheet/27377. Partic-
ipants stated that CABI summaries were useful in finding relevant information for
parametrising mechanistic models such as CLIMEX, or narrowing down the covari-
ates used in correlative models. However, CABI distributional data was rarely used
to parametrise correlative models because occurrence records were typically at coun-
try or county accuracy. Rather, participants tended to use CABI distributional data
to examine the completeness of GBIF records (i.e. whether there were records in all
countries with known established populations), as well as identifying records from
countries with no known established populations that may require further scrutiny
(see data cleaning).

Participants acknowledged that large biodiversity databases are commonly riddled
with taxonomic and geographic errors and can sometimes source data from potentially
dubious sources. However, most databases contain extensive record meta data that can
be used to remove dubious or erroneous records. Moreover, because of the large user-
base, there are many online tutorials and functions that have been developed to aid in
flagging and removing erroneous or dubious records.
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Table B.2.: Data sources identified by participants with associated strengths and weaknesses and whether they are commonly used

Data source Online Databases Literature Experts Surveillance Collections

Example GBIF & CABI
Scientific journals
Government reports
Grey literature

Expert elicitation
Interception &
Eradication data
(e.g. GERDA)

Museums &
Herbariums

Strengths 1. Easily accessible
2. Cover large extents
3. Large volumes of data

for many species
4. Collation &

standardisation of
multiple datasets

5. Some data cleaning
& verification done

6. High spatial resolution
7. Historical records

1. Scientifically
peer-reviewed

2. Detailed pest biology
& distribution data

3. Peer-reviewed
distribution models

4. Published data

1. Readily obtainable
2. Multiple elicitation

methods exist
3. Useful for

filling data gaps
4. Useful for informing

parameter selection
5. Useful for

model validation

1. Records of
pest establishment

2. Identifies
pathway risk

3. Use for model
validation

1. Historical records
2. Contains specimens

for verification
3. Often catalogued in

large online databases
(e.g. GBIF)

Weaknesses 1. Validity records not
always known

2. Can contain GPS &
taxonomic errors

3. Location data may at
city or country level
(e.g. CABI)

4. Survey effort
often unknown

5. Geographically &
temporally biased

6. Records may not
represent successful
establishment

7. Duplicate records

1. Can be difficult to
reproduce
(Raw data often not
supplied with papers)

2. Time consuming to
conduct literature review

3. Government agencies may
not have access

4. Literature may be
restricted in space,

time or scope
5. Lack of standardisation
6. Grey literature

difficult to find & access
7. Language barriers formidable

1. Reliability unknown &
difficult to verify

2. May not contain
uncertainty

3. Difficulties in
defining an expert

4. Distrust in
expert-derived data

5. Answers are dependent on
how questions are asked

1. Absences rarely recorded
2. Restricted in space & time
3. Reliability dependent on

detection probabilities,
pest prevalence &
surveillance effort

1. Requires networking
(i.e. Who to contact?)

2. Locations may be
inaccurate or coarse

3. Survey effort unknown

Commonly
used?

Yes extensively Yes Sometimes Not often Yes, but mostly
from online databases
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Literature

Participants all agreed that the first step in developing any type of climate suitability
model for invasive species should be to first conduct a literature review of both the
peer-reviewed and grey literature. This is because such reviews provides invaluable
information on:

• Pest biology (e.g. physiological tolerances)

• Susceptible hosts

• Risk pathways

• Existing species distribution models; and

• Up to date occurrence records and physiological processes

Published species distribution models were considered to be particularly valuable
to biosecurity practitioners. This was because they contain the additional scientific
rigour of being peer-reviewed by experts in the field, and therefore, were generally
held in higher regard when used to inform biosecurity policy and management deci-
sions. Also, if two more more models are published, differences between outputs can
be used to highlight uncertainties. Moreover, using published models ultimately re-
duces the financial and time burdens faced by government agencies when developing
climate suitability models, especially if a department lacks the required expertise.

Grey literature, such as those found in academic theses or governments reports,
were also considered an invaluable source of information and data. This is because
these documents often contain important details associated with pest/disease biology
or country status (i.e. presence/absence, localised or widespread) that may not be pub-
lished in traditional academic journals.

However, participants raised several issues commonly faced when conducting liter-
ature reviews. First, extensive literature reviews often take several weeks to months to
conduct, making them prohibitively time consuming when departments are required
to build models and make decisions over very short time periods (e.g. following an
outbreak).

Second, many government departments do not have access to pay walled peer-
reviewed literature. As such, government staff are often reliant on directly contacting
authors1 or relying on their networks within academic institutions to provide them
with required materials. Access to grey literature, especially those authored by gov-
ernments of other countries, was also considered difficult to find and access. More-
over, grey literature from other countries may require translation further adding to
the barriers faced to information uptake. Again, government participants highlighted
that it was of vital importance to maintain and build international networks with both
academic and government institutions in order to remain up to date with latest grey
literature.

Lastly, most reports and many scientific publications do not include the raw data
required to validate physiological parameters or reproduce models2. This is particu-
larly problematic with species distribution papers because they generally summarise

1Requiring author contact details provided on manuscripts to be up-to-date.
2Note that within the academic literature there has been a strong to improve the access to data with

some journals requiring data to be uploaded to an online repository prior to publication.
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results as maps and do not provide the mathematical functions used to derive these
maps. Also, methods are often not adequately reported and so can’t be scrutinised. As
a consequence, biosecurity practitioners and academics are unable to reproduce these
analyses at the desired resolution and extent required to inform management and pol-
icy.

Experts

Workshop participants indicated that both technical and biological experts are often
consulted when developing species distribution models for use in informing biosecu-
rity management. Specifically, experts were asked to provide advice on methodolog-
ical approaches, covariate selection, whether model outputs were biologically plausi-
ble, and in some cases, make recommendations between competing models.

As a data source, experts were also commonly used to fill information gaps such
as providing parameter estimates (or parameter uncertainty/ranges) in mechanistic
models that that were otherwise unpublished or not known. In rare circumstances,
when there is a paucity of data to parametrise correlative (e.g. few occurrence records)
or mechanistic models (i.e. few parameter estimates), or when an appropriate congener
species does not exist, potential distributions of pests and diseases can also be derived
solely from expert judgements.

While expert-derived data is considered to be a useful and timely means of obtain-
ing parameter estimates that are otherwise unknown, general consensus was that such
data should only be used as a last resort – when there is insufficient data to fit a cor-
relative or mechanistic model. Moreover, some participants highlighted that there are
several issues related to using expert-derived data. These included:

• Difficulties in defining who is an expert

• Difficulties in examining expert reliability

• Expert answers may be highly dependent on how a question is asked; and

• A general distrust in the community of expert-derived data.

Expert elicitation is a science in of itself, and as such, several techniques have been
developed increase scientific rigour and tackle some of these concerns (e.g. IDEA pro-
tocol; Hemming et al. 2017). Because of the issues raised above, several participants
recommended that such techniques be used whenever eliciting information from ex-
perts.

Surveillance

Some participants raised that a wealth of information is collected as part of formal
surveillance and eradication programs, and that these may provide an important data
source for estimating the potential distribution of pests and diseases. For example, ab-
sence data derived from targeted surveillance programs can be used for determining
the likelihood of pest absence in the region in which they were collected. The global
eradication and response database (GERDA; http://b3.net.nz/gerda/faq.php)
was also raised as an important data source on determining which countries currently
have (or have had) an eradication program, and consequently, which countries are
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pest-free. However, many participants acknowledged that such data sources are rarely
used in quantifying a pest or disease’s potential distribution. This is most likely be-
cause such data:

• are typically highly restricted in space;

• are focused on delimiting incursion boundaries, eradication success or pest sta-
tus, as opposed inferring potential distributions as a function of climate or habitat
characteristics;

• are difficult to access from other countries (e.g. country targeted surveillance
data);

• are highly dependent on surveillance effort and detection rates3.

Collections

Collections from museums, herbaria or experts were also considered an invaluable
source of information that can be used to parametrise correlative models or validate
mechanistic models. A major advantage of these data are is that they are either expert-
verified or are often accompanied by voucher specimens that can be used to verify
record taxonomy – especially geographic outliers. However, participants acknowl-
edged sourcing these data directly is becoming less common due to the rise of large
online databases such as GBIF which often source and collate such data. Moreover,
data that is not currently present in online databases are often difficult to find and/or
access, typically requiring substantial international networks with various museums,
institutions and experts.

Data cleaning

The decisions made throughout the data cleaning process are likely to contribute to
model uncertainty. This is because different decisions made throughout will ultimately
emphasis different aspects of the data and lead to varying parametrisations of the mod-
els and consequently differing model outputs. To better understand how biosecurity
practitioners process their data for use in correlative and mechanistic modelling, we
asked them to describe the workflows they typically implement when cleaning data.
We also asked participants whether they tended to parametrise correlative models us-
ing a subset of occurrence records (e.g. native only records), how they assessed data
sufficiency and what they did in situations when there was inadequate data. A sum-
mary of these discussions are found below.

How are sourced data commonly cleaned by biosecurity practitioners?

Most discussions about data cleaning tended to focus on removing erroneous and ir-
relevant occurrence records, identifying and removing occurrence records that had in-
accurate GIS coordinates, identifying geographic outliers and determining whether
records were likely to be from established populations. Here, occurrence records are

3Technically this is true of other data sources too
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directly used to parametrise correlative models (e.g. Maxent, GAMS, GLMS and cli-
mate matching algorithms) and can be used to validate the accuracy of mechanistic
models.

A consolidated list of data cleaning steps commonly used by participants are listed
below:

1. Remove erroneous occurrence records

a) Records not on landmass (assuming terrestrial pest)

b) Records not within or near documented country (if supplied)

c) Records with high spatial error (if documented)4

d) Records centred on country centroids (indicative of country-level spatial ac-
curacy)

e) Records in outlier/unusual locations with limited or no supportive informa-
tion

2. Remove irrelevant records

a) Documented fossil records

b) Documented cultivated specimens

c) Data from dubious/untrustworthy sources

d) Duplicate records

3. Verify records are likely from established populations

a) Cross reference records with CABI country status

b) Cross reference occurrence records with biological experts

Participants highlighted that much of the occurrence data used to parametrise and
validate species distribution models is often sourced directly from GBIF. In terms of
data cleaning, a major advantage of these databases is that they commonly contain
meta data associated with each record which can then be used to identify errors or
possible issues. GBIF in particular has invested significant resources in developing al-
gorithms for flagging potentially erroneous data and include this flag under the named
field "issues" – A full list of GBIF issues can be found at:
https://gbif.github.io/gbif-api/apidocs/org/gbif/api/vocabulary/

OccurrenceIssue.html. Another advantage is that these databases have a large
user-base, and as such comprehensive tutorials and functions for flagging and remov-
ing common errors are readily available. For example, a comprehensive tutorial on
how to clean data from GBIF (and other databases) using R can be found at:
https://ropensci.github.io/CoordinateCleaner/articles/Cleaning_GBIF_

data_with_CoordinateCleaner.html.
Some participants also highlighted that occurrence records from databases such as

GBIF should ideally be cross referenced against published CABI country pest statuses.
The reasoning here is that CABI distributional data contains detailed information on
how widespread a pest is within a given country, and thus, whether that country

4The definition of what is an acceptable error will depend on the spatial resolution one wishes to fit
and project their model onto
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has established populations. Consequently, some participants use CABI distributional
data to remove GBIF records in countries with no known established population, thus,
maximising the likelihood that occurrence records are representative of suitable loca-
tions for pest establishment.

Cleaning data for parametrising mechanistic models was not raised by directly par-
ticipants. Presumably this could be due to these models being less frequently used by
biosecurity practitioners, and because such data are generally sourced directly from
published literature.

Should data be restricted to a particular region

Given that there are varied opinions as to whether correlative models should be parametrised
using data from 1) the native regions only; 2) native + long-invaded regions; 3) invaded
region; or 4) the entire known distribution, we asked participants whether they sub-
setted their distributional data prior to model fitting.

Many participants indicated that their preference was to use the entire distribution
of cleaned known pest establishment records when parametrising correlative invasive
species distribution models. The primary reason for this view was that such models
would more closely approximate the fundamental niche of a species. However, tech-
nical experts highlighted that the use of occurrence records from the invaded range
is often a double-edge sword. While they agreed that the inclusion of such records
will likely increase the representation of suitable environments, it will also invariably
create difficulties in determining appropriate background points for commonly used
two-class models such as Maxent because of almost certain violations of the equilib-
rium assumption near invasion fronts and differential survey effort between native
and invaded ranges. Technical experts then outlined a variety of sophisticated ap-
proaches that could be implemented to reduce sampling biases and assumption viola-
tions. These included:

• Using Target Group Sampling (TGS): Presence locations of taxonomically related
species obtained using the same survey techniques and usually collated using the
same database are used to estimate the geographic distribution of sampling bias;

• Sampling background points from a buffer around each and every occurrence
data point;

• Sampling background points according to bioregions;

• Use ordination analysis to examine whether there were any significant groupings
among occurrence records

How to assess data sufficiency for correlative models?

Participants raised several practical approaches for examining data sufficiency for fit-
ting correlative models. Mostly, these approaches focused on examining the adequacy
of geographic coverage, with participants highlighting that the extent of collated oc-
currences could be compared with published range maps or CABI distributional data.
Some participants used rules of thumbs such as requiring a minimum of 30 occurrences
distributed across the known species range before they would consider fitting correl-
ative models. The presumption here was that this minimum number was required to
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obtain a reasonable estimate of a species’ response. However, it acknowledged that
they were unaware where this rule of thumb originated and whether it had been scien-
tifically verified. Lastly, some participants took a more statistical approach and either
examined data sufficiency as a function of a model’s capability of accurately predicting
the suitability of locations that once contained established populations or how influen-
tial individual occurrence points were on model predictions.

What to do when there is too little data?

Participants provided various answers as to what they did when there was inadequate
data to parametrise correlative or mechanistic models of pest/disease climate suitabil-
ity. These included:

• Don’t attempt to estimate climate suitability, but rather develop maps as a func-
tion of other attributes of risk (e.g. arrival rates or host presence);

• Estimate climate suitability using data from an exemplar species (i.e. a species
from a similar taxonomic family or that has a similar suite of physiological or
morphological traits);

• Use expert elicitation approaches to construct physiological models and define
environmental thresholds;

• Develop sophisticated trait-based models whereby a pest’s climate suitability is
determined as a function of its morphological traits5.

Model development

Once data has been compiled and cleaned, modellers are faced with a range of deci-
sions as to how to estimate the potential distribution of a pest or disease. Fundamental
among these decisions is determining which modelling method to use6, and if using a
correlative approach, which covariates to include.

As there is no single ’best’ method or approach for modelling the potential distribu-
tion of invasive species (Barry et al., 2015), we asked workshop participants to outline
the methods (and associated strengths and weaknesses) they commonly used when
estimating the potential distribution of a species.

Which modelling approaches are commonly used in biosecurity?

Participants identified three broad approaches that are (or have been) used by biose-
curity agencies to estimate the potential distribution of pests and diseases (Table B.3).

First there were correlative methods which included regression approaches (e.g.
GLMs, GAMs), machine learning algorithms (e.g. Maxent, Boosted Regression Trees
(BRTs)), climatic envelopes (e.g. BIOCLIM) and climate matching algorithms (e.g. CLIMEX
and CLIMATCH). Broadly, these methods work by relating occurrence records to spa-
tially explicit covariates (commonly climatic variables). Both climate matching and

5The trait-based model was raised by some technical experts and but was rarely, if ever, used to
inform biosecurity policy and management policy, presumably due to the additional expertise required
to parametrise such a model

6And consequently, which assumptions they were willing to make
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Maxent approaches were thought to be some of the most commonly used methods in
Australian biosecurity because these methods are fast and easy to implement and be-
cause they can be parametrised using data readily available in online databases such
as GBIF. However, while these models contain many strengths, they also contained
several weaknesses including: issues with sampling biases, difficulties in selecting ap-
propriate background points and covariates, and extrapolation issues when predicting
into novel environments.

Participants also highlighted the increasingly use of the commercial software CLIMEX.
Unlike most correlative methods, CLIMEX was specifically developed for modelling
the potential distributions of invasive species (Kriticos et al., 2015). CLIMEX contains a
sub-routine that conducts a climate matching analysis based on locations of persistent
populations. However, it also contains a sophisticated sub-routine that allows one to
specify physiological thresholds associated with temperature, moisture, radiation, sub-
strate, light and diapause. Most participants generally considered CLIMEX’s physio-
logical threshold model to be an example of a process-based model. As such, we’ve in-
cluded it as an example of process-based models. However, in practice CLIMEX mod-
els are not entirely process-based because they commonly require subjective tweaking
of experimentally-derived stress parameters so that they are relevant to the long-term
averaged climate data used in CLIMEX or parameters are inferred based on the known
distribution of the pest of interest (Kriticos et al., 2015). Commonly, this is done by iter-
atively running the model and comparing outputs to occurrences of known persistent
populations. The increasing use of CLIMEX in biosecurity is thought to be due its ease
of use coupled with the perception that models with more process-based components
will result in more biologically plausible models of a pest’s fundamental niche. In fact,
general consensus among participants was that process-based models such as CLIMEX
should be preferentially selected ahead of other forms if there was sufficient data to es-
timate the relevant physiological parameters. However, some participants highlighted
that these models also suffer from a variety of weaknesses such as the need for sub-
jective tweaking of parameters, whether experimental-derived parameters are repre-
sentative of a species response in the natural environment and that commonly there is
insufficient physiological data to parametrise such models for most pests of concern.

Lastly, participants raised the utility of expert-based models. General perceptions
were that these types of models were infrequently used to predict the potential dis-
tribution of pests. Mostly, this was because these models were considered to be a
last resort, and only implemented when there was insufficient data to fit correlative
or process-based models or an adequate congener species did not exist. However,
some participants highlighted the utility of this approach in increasing stakeholder
engagement in the modelling process and subsequently increasing stakeholder confi-
dence/belief in the model outputs.
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Table B.3.: Commonly used modelling methods for estimating the distribution of pest climatic suitability identified by workshop partici-
pants

Method class Correlative Process-based Experts-based

Commonly used Maxent, GAMS, BIOCLIM,
BRTs, CLIMATCH, CLIMEX

CLIMEX Custom-built models

Strengths 1. Easy & fast to implement
2. Data often readily available from

large online databases (e.g. GBIF)
3. Wide variety of methods available

1. Models processes governing
species distributions

2. Theoretically more likely to
approximate fundamental niche

3. More likely to predict reliably
in novel environmental conditions

4. Perceived as more accurate & reliable
relative to other methods

5. Can easily be validated using
existing occurrence records

1. Useful when data is unavailable
to parametrise other methods

2. Can readily incorporate
unpublished information/knowledge

3. Useful for approximating rare events
that are otherwise difficult
to estimate using empirical data

4. Allows for a diversity of expert
opinions to be accounted for

5. Rigorous methods exist
(e.g. IDEA protocol)

Weaknesses 1. Predictions into novel
environmental unreliable

2. Proximal variables typically unavailable
at relevant spatial scale or extent

3. Susceptible to sampling biases
4. Model complexity limited

by amount of data
5. Relies on unrealistic

assumption of equilibrium
6. Model outputs affected

by choice of background points
(two-class models)

7. Some methods do not
propagate uncertainty

8. Typically do not account
for adaptation

1. Difficult & slow to parametrise
2. Requires high level of

biological & technical knowledge
3. Data only available for

a limited number of species
4. Parameter estimates often derived

from experiments which may not be
transferable to natural environment

5. Parameter estimates may not be
representative of species

6. Often involves parameter tweaking
7. Often do not contain

parameter uncertainty
8. Typically does not account

for adaptation

1. Difficulties in defining an expert
2. General distrust in

expert-derived data and models
3. Often categorical
4. Typically does not account

for adaptation
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How are covariates selected (correlative models)

Participants highlighted that the determination of which covariates to include in cor-
relative models was a major source of model uncertainty. A primary reason for this
is that in most cases the proximal variables governing a species distribution are not
known, and when they are, they are often not available at the spatial resolution or
extent required for estimating pest potential distributions (Barry et al., 2015).

We therefore asked participants to outline how they commonly selected model co-
variates when fitting correlative species distribution models. Below is a brief summary
of the standard approaches used by participants.

Participants all agreed that the first step would be to conduct a literature review to
determine what factors are known (or considered) to govern species distributions or
individual vital rates. In particular, CABI data sheets, published species distribution
models and published experiments were considered a highly useful for informing the
types of variables to include in a model.

In situations where there was either insufficient information, or there was no con-
sensus on which factors govern a species distribution (e.g. multiple species distribu-
tion models using different covariates), participants used a number of approaches for
identifying which parameters and interactions to include in a model. These methods
ranged from directly seeking expert advice to conducting various statistical analyses.
The primary methods used are summaries below:

• Selecting covariates based on expert biological advice;

• Using ordination techniques for selecting covariates and reducing dimensional-
ity;

• Examining correlation between covariates and in situations where there are high
correlations, select those that are considered to be more proximal based on either
literature or expert advice;

• Fit combinations of simple (2 or 3 covariate models)7, then remove models that
fail to predict the fitted or test data above some performance threshold and either
ensemble the remaining models or use identified covariates in a range bagging
(Drake, 2015) or convex hull approach (Blonder et al., 2017);

• Use all available covariates and then conduct a backwards selection process;

• Fit all possible combinations in a cross-validated framework and then select the
model(s) that best predict the test (i.e. heldout) data.

Model validation

Another area of uncertainty raised by participants was how to validate model outputs.
This was of a particular concern among many biosecurity practitioners because they
wished to use these methods to to predict into regions where the pest currently does
not occur in order to inform where surveillance should occur for early detection.

Below is a summary of the types of validation approaches either recommended or
used by participants for both correlative and process-based models:

Correlative Models:
7Simple models are less likely to over fit data and are often more conservative in their predictions
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• Fit multiple plausible models and choose the model that best predicts the fitted
data.8

• Fit competing models and use a cross-validation approach (e.g. k-fold) to com-
pare model performance;

• Provide model outputs and meta data to experts to endorse or identify possible
errors or areas of uncertainty;

• Identify areas of novel environment and mask (or identify) these areas on suit-
ability maps.

CLIMEX (physiological model)

• Compare model output to contemporary occurrence data;

• Provide model output & meta data to experts for verification/endorsement

Model utility

Workshop participants also raised several important issues faced by policy staff when
using models to inform biosecurity policy and management. Key among these were
associated with uncertainties in regards to: 1) how to interpret and use the model; 2)
Choosing between competing models; 3) Whether model outputs can be thresholded.

Communication of model to policy staff

A problem raised by some policy participants was that handover between model de-
velopers (internal or external) and policy staff was insufficient. Often handover was
done as a once-off procedure involving a lengthy technical report. However, policy
participants noted that often such models were done as external consultations and
required additional work so that they could be fully integrated into departmental pro-
cedures and operations.

Some participants recommended that both internal and external based projects should
have a "decoder" (i.e. a staff member with both technical and policy experience) in-
volved in quantitative projects to ensure it can be integrated into existing operations
and procedures and so that fundamental technical details are appropriately commu-
nicated to policy makers. Specifically, on completion of the model, a short summary
document is created that outlines 1) how the model was parametrised, 2) what are
the key assumptions made; 3) how it can be incorporated into existing departmental
systems; and 4) how to appropriately interpret the model output.

How to choose between competing models

Another difficulty raised by participants was associated with the uncertainty in choos-
ing between competing published models. For many high profile plant pests, multiple

8Technical experts raised that while performance in the fitted region may be correlated with its
predictive capacity in the predicted range, this isn’t always the case because models may be over fitted
(i.e. they may be modelling noise in the data, rather then species responses);
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peer-reviewed distribution models may exist. These models are often parametrised us-
ing different tools (e.g. Maxent, CLIMEX, GAM, GARP), parameters/covariates, data
sources and data cleaning methods.

Workshop participants suggested that this could be resolved by carefully summaris-
ing the methods associated with each published model. Specifically, a summary docu-
ment that emphasises 1) where data was sourced and how it was cleaned; 2) whether
the occurrence records and model predictions were representative of currently known
distribution; 3) What tool was used to fit the model; 4) the covariates/parameters used;
and 5) the key assumptions the model makes. This summary document could then
be used by technical and biological experts in determining which model(s) are most
appropriate for the context in which they are used9. In the cases, where experts be-
lieve multiple models are equally probable, models could be ensembles (i.e. model
averaged) or used to propagate uncertainty in the potential distribution of the pest or
disease of interest.

Should a model output be thresholded?

Multiple discussions were had by participants about the utility of thresholding con-
tinuous model outputs into a binary or categorical score system (e.g. Suitable/Not
suitable or Low/Medium/High).

On one side of the argument, some participants indicated that categorised risk was
more easily handled in various economic analyses and also simplified the decision-
making process (e.g. where to put finite surveillance resources). More importantly,
however, categorised risk was easier to communicate to the public, other government
agencies and to stakeholders.

Technical experts, however, cautioned against the use of risk thresholding for vari-
ous biosecurity decision-making. Their reasons included:

• Leads to a loss of information which hinders model utility in a variety of other
decision-making scenarios (e.g. estimating proof of freedom, spread modelling,
post-border prioritization)

• Degrades estimates of potential area of occupancy

• Not valid for informing optimal surveillance programs as it fails to acknowledge
uncertainty in pest presence to evaluated trade-offs in expected costs.

• Tolerance to risk will vary over time, and as such the points which are used to
define binary or categorical risk will likely change.

9In essence the same material required to appropriately communicate model to policy makers
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Summary

Predicting the novel ranges of non-native species is critical to understanding the biosecurity risk
posed by pests and diseases. Species distribution models (SDMs) are typically employed to
predict the potential ranges of non-native species in novel environments and geographic space.
Researchers have focussed on issues around model complexity and specifics relevant to the data
typically available for modelling, including the size of the geographic area to be considered and
how the choice of model impacts results. These investigations are coupled with considerable
examination of how model evaluation methods and test scores are influenced by these choices. An
area that remains challenging and under-discussed is methods to choose predictive variables that
will result in models that transfer between regions. This is challenging as non-causal variables
may still show significant associations with observed species distributions.

Here we propose methods to finesse this problem by using multiple simple models to search for
the most appropriate (transferable) variables from a given set, and then apply them as two
variable envelopes in an ensemble approach. We apply these methods to both virtual species and
real species data, and find that our method generally performs well against conventional
approaches for statistically fitting numerous variables in a single model. While our methods only
consider simple ecological relationships of species to environmental predictors, they allow for
increased model transferability (ability of model to be extrapolated to a new region) as they
largely avoid over-fitting, background selection and collinearity issues. Simple models are also
likely to be more conservative (over-predict potential distributions) relative to complex models
containing many covariates. The approach we have explored transforms a model selection
problem, for which there is no true correct answer amongst the typically distal covariates on
offer, to one of model uncertainty. We argue that increased model transferability at the expense
of model interpretability is perhaps more important for effective rapid predictions and
management of non-native species and biological invasions.

2 | Dealing with uncertainty in predictor selection © 2020 CSIRO
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1 Introduction

Evaluating the risk of establishment and potential impact of exotic pest and pathogen species
requires an accurate prediction of their potential distribution. A typical avenue for predicting the
novel ranges of non-native or range-expanding species is using species distribution models
(SDMs). Making inference on the distribution and abundance of a potentially invasive species in
a new environment is a fundamental question in invasion ecology, as it is with ecology more
generally (Krebs, 2009). Species distribution models aim to characterise the limits and response
of species to a range of environmental covariates (or predictors), in order to predict whether a
species can persist in a given environmental range. The diversity of SDM techniques available,
and range of opinions on how to apply them, makes defining best practice across the variety of
model applications challenging (Barry et al., 2015).

While SDM methods are particularly useful for many applications, model transferability is an
area where they continue to perform unreliably. Transferability describes the ability of a model
built for one situation (a given species, in a given area, for a given time span) to predict to
another (e.g. under a climate change scenario, or in a new continent)(Sequeira et al., 2018)). For
pest and pathogen species this may be thought of as extrapolating a model built on the native
(or another established invasive range) to predict a novel area that may be at risk of that species
establishing. Inherently, transferability is highly important to biosecurity, as the ability of models
to predict under new scenarios forms the baseline of many risk assessments and for setting
management priorities (e.g. surveillance allocation). There are many components that affect the
ability of models to transfer well (as discussed in detail in Sequeira et al. (2018); Table 1), but
one that is often not dealt with is choice of predictor variables.

For predicting the distribution of species to novel environmental space, such as for non-native
species or under climate change scenarios, causal variables are ideally required (Varela et al.,
2011; Austin and Van Niel, 2011; Fourcade et al., 2017). If the predictor variables chosen are only
indirectly associated with defining the species’ niche, then SDMs will be only be able to predict
the populations they were characterised on (Austin, 2002), leading to poor transferability
(Randin et al., 2006). Further, correlation structures between variables can change between
geographic locations(Dormann et al., 2013), and therefore challenge model transferability.
However, as we can never truly ‘know’ all the variables that define species distributions,
determining which predictors should be used and how best to justify them can be a major
challenge. Limited knowledge of the ecology and physiology of the species make its harder to
identify which variables may be more proximal (how directly the organism responds to a given
variable), and even then such variables may be unavailable for SDM purposes. A range of studies
have attempted to determine which predictor variables are best to include, and in lieu of truly
causal predictors, how proximal these variables may be (for a review, see Barry et al., 2015).
Despite this, there has been little attempt to review or develop methods to simply identify “good
predictive variables” from those typically available to modellers and how to best use them to
reduce errors associated with model transferability.

Typically, species occurrence data used in SDMs are ad hoc observations of species presence,
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with sampling biases due to a number of reasons that result in poor or patchy species records.
For the typical amounts of species data available and for the typical modelling challenge of fitting
a model to only part of a species’ niche (that part observed in its native range), this is a strong
argument for focussing on simple models. Complex models fitted to such data may be prone to
fitting noise and describe erroneous patterns in data that may be due to limited or missing
important relationships (often the case for species of biosecurity concern) (Merow et al., 2014).
Envelope based methods provide the simplest forms of SDMs, with simple functions (e.g. bounds
and step features) defining their response variables (Elith et al., 2005; Merow et al., 2014), and
while they may not be as ecologically interpretable as fitted response curves in regression
methods, they should not be as prone to overfitting.

To address these issues of selecting proximal variables and increasing transferability, it may be
practical to select appropriate predictors based on how useful the variables are at defining the
species distribution based on known presences, and then represent uncertainty across these
putative proximal variable sets. In a recent paper, Breiner et al. (2015) used “ensembles of small
models” to predict the distributions of rare species. Breiner et al. (2015) found that using an
array of small models, each with only two variables, outperformed standard SDM methods.
While these models were not tested for transferability into novel environments, it demonstrated
that the use of many small models was able to outperform fitting a single, more complex, model.
It follows then, that by “mining” for the most useful variables using simple models it should be
possible to identify those predictors that perform better and select a subset of simple models to
combine into an ensemble. This approach may avoid some of the issues associated with
transferability, multi-dimensionality and correlation issues that “complex” SDMs often exhibit.

Here we examine the ability of an approach that incorporates an ensemble of simple models and
envelopes to account for predictor uncertainty. Our approach ultimately recasts the process of
constructing a useful SDM as a predictor selection uncertainty problem, as opposed to one of
model selection (with the implicit paradigm that there exists a “best” model to be found). We
first make use of virtual species so that we can define environmental limits and therefore assess
model transferability against truth. We then extend this to look at data for a number of insect
species (including plant pests) that have successfully invaded new geographic regions. These data
allow us to examine transferability and quantify uncertainty, and to formulate recommendations
for SDM methods when extrapolation is required.
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2 Methods

2.1 Environmental predictors

There are a number of different environmental predictors convenient for use in SDMs, and many
of these are based around climate. While different landscape and types of anthropogenic variables
are often used too, climate serves as a particularly good indicator of species distributions at a
broad geographic scale when little is known about the species biology and ecology. Employing
climate in this way assumes that some of the climate variables are proximal to processes defining
the species distribution, without knowing which variables, and how they affect those processes.
Several databases provide long-term climatic records as gridded datasets of maximum and
minimum temperatures, as well as precipitation, appropriate for species distribution modelling at
large geographic scales. For this study, the environmental data obtained was the 19 bioclimatic
variables from WorldClim 2.0 (Fick and Hijmans, 2017) at a 10’ resolution. From here on we call
these data the “bioclim” set, as they are derived as part of the BIOCLIM (Nix, 1986)package.
BIOCLIM (from here on “BIOCLIM” refers to the modelling method) was instrumental in not
only defining the role of SDMs, but also in the description of these variables that are used widely
today (Booth et al., 2014), although now more typically outside of the BIOCLIM environment
itself. These data provide an easily accessible, and therefore commonly employed modelling
resource. The scale here is also relevant to the question of transferability between large, distinct,
geographical regions.

2.2 Model construction

Here our goal was to build models to predict an invasive (or non-native) range from the native
range data alone. While there are good arguments for using both native and invasive range data
together to predict potential distributions, here we are concerned about the ability of different
modelling approaches to predict distributions from native range data alone. To investigate
transferability across a range of approaches, we constructed SDMs using a number of different
methods, which fell into two broad categories: ensembles of simple models, and single
multivariate models. We applied all methods to two sets of data, first virtual species data
(simulation) and second, actual species data that has been used previously in the investigation of
SDM performance for invasive species.

2.2.1 CHE: convex hull ensembles

To construct our ensembles, we chose simple “envelope” methods that classify environments
(predictor variable ranges) as either suitable (inside the envelope) or unsuitable (outside the
envelope). Generally, we constructed many two variable envelopes of species presence within their
native range using pairwise combinations from the bioclim variable set. Instead of using all
combinations of variables, we restricted the combinations to one temperature (bioclim 1-11) and
one precipitation (bioclim 12-19) variable. The rationale here being that at least one aspect of
temperature and one aspect of precipitation is likely to be limiting (Figure 2.1).
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In order to find which variables appear most closely related to the distribution of the species in
its native range, we fitted a regression model. More specifically, for the native range data we
fitted many two-variable models, using a Generalized Additive Model (GAM) implementation of
a Point Process Model (PPM) for presence-only data (Renner and Warton, 2013; Renner et al.,
2015). GAMs were constructed as a down-weighted Poisson regression (DWPR) and smooth
terms were restricted to the 2nd order polynomial at the most, to facilitate simple curves for
fitted responses. Terms were either fitted additively or jointly. Joint fits allow interactions
between predictors, and can be achieved in the mgcv package in R by fitting a smooth surface in
two dimensions over the chosen variables rather than two one-dimensional fits, one for each
variable. We built models using presence-background data, which are typically the most readily
available data for non-native species. Background points provide a sample of the environment in
the region from which presence points are available, here they were all the cells across the
geographic extent of the calibration (or native) range.

Figure 2.1: Schematic of new ensemble modelling technique. A. Variable pairs of temperature and precipitation
using the bioclim variable are used in simple GAMs and then assessed for relative model fit using AUC (and other
metrics, see text). Green squares are the pairs kept, red squares with crosses are omitted. B. The variable pairs
selected are used to create two-dimensional environmental envelopes capturing all the presence points (green points)
inside all available environments (green + orange points), using a minimum convex polygon (convex hulls (CHE)),
or by use of bounding boxes defined through the BIOCLIM algorithm (BBE). C. Each of the two-variable envelopes
from B are projected to a new geographical surface (as a gridded raster) and then stacked (summed. The results
are then averaged, and the resulting surface is a continuous scale from 0-1 reflecting the level of certainty (closer to
1) that a given raster cell falls in the environmental limits across the given predictor variables.

We evaluated the relative performance of GAMs constructed using the different variable pairs
across all possible predictor combinations. That is to say, we are comparing the performance of
variable pairs only against one another, and not on the absolute predictive performance of the
model (which is akin to model selection). To determine performance of variable pairs, we
calculated AUC for each variable pair, and then discounted the “worst” performing models by
discarding the bottom quantile (25%) of variable pairs.

Using the retained variable pairs, we then used two different envelope methods to classify the
environmental space within each predictor pair. The first of these approaches was to use convex
hulls (CHE: convex hull ensembles). We created convex hulls around the presence points (of the
training, native range data) in environmental space, and then projected these envelopes onto the
geographic space of the native range, and the invasive (non-native) range. Each envelope gives
binary values of 1 for inside the hull, and 0 for outside of the hull. The resulting geographic layers
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for each model pair were combined together and then averaged to produce a single, continuous,
prediction between 0 and 1 for the CHE. Here 0 means that a grid cell is outside all of the
available pair-based envelopes (not suitable), and 1 means that the grid cell has environmental
space inside all of the pair-based envelopes (highly suitable).

2.2.2 BBE: bounding box ensembles

To further examine the ensemble approach we used bounding boxes (BBE: bounding box
ensembles), drawing from one of the early SDM methods, BIOCLIM (Nix, 1986). BIOCLIM
works by creating a bounding box in multidimensional environmental space, and defines core and
marginal environments for the species in relation to the predictors used by examining percentile
distributions. Core environments are defined as the environments in which all points fall inside
the 5 and 95 percentile range for all the predictors used (from an available set of 12 in the case of
Nix (1986), later extended to 19 and then 35 (Booth et al., 2014)). Marginal environments are
defined as where the values fall outside the 5 and 95 percentile range, but not the limits, for one
or more of the predictors. In this way, the distribution is driven by the most limiting variable.
BIOCLIM is typically used with several predictor variables, and here we started again with the
19 available from WorldClim (Fick and Hijmans, 2017). We used the implementation of
BIOCLIM in the dismo package in R (Hijmans et al., 2015), to create multiple, two-variable
models, using a pairwise approach across the bioclim variables available (one from 1-11, one from
12-19) (Figure 2.1). We used the AUC scores from the GAMs again to omit the bottom 25% of
performing variable pairs.

To compare how the BBE approach may perform in regards to a ‘default’ BIOCLIM model, we
also ran a BIOCLIM model using all 19 available predictors and projected this to the non-native
range.

2.2.3 Maxent

To compare how our approaches stack up against a popular SDM approach, we ran three types of
Maxent models Phillips et al. (2006) using version 3.4.0. Firstly, we ran a model with all 19
bioclim variables (for the virtual species, it was 17 as we left out the two causal variables).
Maxent has internal predictor selection mechanisms, and although we expect a complex model
like this to be overfitted, it should provide a good comparison based on making no choice in
predictor inclusion. Secondly, we ran Maxent models using eight predictor variables that have
been used elsewhere for invertebrates (see Hill et al. (2017)), sometimes referred to as “state of
the art” (Petitpierre et al., 2017). While the fit and performance of Maxent models can be
improved through exploration of different features and parameters, we chose to leave all at
default for this exercise for two reasons: to provide a baseline, and because default settings are
used throughout the literature. Thirdly, we used Maxent to build simple two-variable models in
the same framework as our CHE and BBE approaches. In an attempt to avoid overfitting for
these models, we did not allow hinge, product or threshold features (models could only use linear
or quadratic terms). The same variable restrictions (one temperature, one precipitation) and
performance assessment using AUC scores on the GAMs also applied, and the resulting single
layer was an average across all retained Maxent models.

© 2020 CSIRO Dealing with uncertainty in predictor selection | 9



2.2.4 Range bagging

Range bagging was recently proposed by Drake (2015). This algorithm uses presence-only data to
estimate the environmental limits of species habitat by subsetting the multidimensional
environments (to user-defined levels of dimensionality), and then using convex hulls to estimate
boundaries in each subset of environmental dimensions. Range bagging fits models to the
individual samples and averages the outcome by using votes (how often a given environment
occurs inside niche boundaries) on the ranges of convex hulls obtained from bootstrap samples
across all the environmental dimensions. In this way, it is an approach that shares some
similarities with our CHE and BBE methods, however an important difference here is that the
range bagging method does not use the GAMs to rank variables.

The approach has seen recent applications to invasion biology, and appears promising for
biosecurity applications. Part of the appeal for this approach is that only presence data are
needed, and no absences or background data are required, and thus, reduces the number of
subjective decisions required in the modelling process. We fit range bagging models using
supplied code Drake (2015), using for the presence-only data of the native range, and set range
bagging to subset using only two dimensions to be consistent with our other approaches. In
addition to running range bagging at default settings (all variables pairwise, and in two
dimensions) using code as supplied by Drake (2015), we made one modification to the range
bagging method, and required it to use variable pairs in the same way as our convex hull and
BIOCLIM ensemble methods (1 from the bioclim temperature variables 1-11, and 1 from the
bioclim precipitation variables 12-19). We then projected our range bagging model to the
non-native region for each species

2.3 Virtual species data

To test how different modelling approaches may perform in regards to predictor selection, we
generated virtual species. The goal here was not to create ‘realistic’ species distributions, but
rather geographical expressions of limits set within environmental ranges, to investigate how
different modelling approaches perform for a predictor selection task. Defining virtual species
allows us to know the “truth” behind a distribution in both “native” and “non-native” (i.e.
invaded) ranges, and use SDM methods to model that niche and assess the transferability of the
modelling methods. There are a number of ways for generating virtual species distribution across
the landscape (e.g. Leroy et al. (2016), but as we were interested in creating bounding boxes in
environmental space between pairs of variables, we simulated species occurrences by setting
upper and lower limits for each variable. South America provides a range of climates that are
both analogous and non-analogous to Australia. This allows us to test transferability across a
range of environmental conditions and ensured that variables were not set outside of the range
present across South America. We chose a temperature variable from the bioclim set (1-11) and a
moisture variable (12-19). Virtual species distributions were created by taking the upper and
lower limits of the entire surface area, and selecting random uniform distributions inside these to
give upper and lower ranges for each variable. We enforced that the lower and upper bounds of
the environmental range had to be taken from the respective sides of the mean, and at least one
standard deviation existed between upper and lower bounds, to ensure there was at least some
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expression of that niche in geographic space. Within these limits (a box in the environmental
space of these two variables) the species is always capable of being present. By contrast, outside
of the box the species is always absent. Thus these virtual species exhibit pure niches, with no
biotic interactions, and they have no stochastic element, i.e. the probability of presence is zero or
one. The limits were set based on a random selection across the global range of environments.
These “niches” were then realised in South America and Australia, which makes it possible to
examine geographic ranges of environmental similarity between ranges.

For assessing how well the ensemble approach could predict the distribution (or geographical
representation of the true niche) in the non-native range (Australia), we followed the general
framework but importantly, left out the two variables that were used to create the true niche.
This means that we are acknowledging that we will never know the “true niche” but can only
make approximations of it, based on variables that range from proximal to distal. As they are all
different patterns they are likely to be highly correlated in some form.

2.4 Real species data

We also examined the performance of different modelling approaches using occurrence records for
the 22 invasive insect species dataset from Hill et al. (2017) (see Table 3.1). Many of these species
are priority plant pests, disease vectors or nuisance pests. These species were chosen as they have
all successfully established in new geographic locations, and provide data for both “native” and
“non-native” regions to train and test models with. While these species were chosen as they have
occurrences for both native and non-native regions, the underlying data are inherently biased in
the way they have been sampled across different regions. These biases include under-sampling
across the total range of environments, and increased sampling in areas where the species are
noted pests. The result is patchy data that poses challenges to fitting SDMs on a single range,
but this is typical of many priority plant pests. We applied the same methodology for each of the
species in order to see how different methods performed across a group of species of varying
range size and data availability.

We defined backgrounds by selecting all unique biomes that occurence points intersected with
(see Olson et al., 2001), as this has proved to be a useful extent for modelling these species (Hill
et al., 2017). To help limit sampling bias, the presence data were rescaled to the level of the grid
cell data (10’), so that there was only one occurrence per grid cell. The background was selected
as all available cells in the model training region, or 50,000 random cells across this area,
whichever was fewer.

To demonstrate how the different methods perform in practice, we selected three case studies
from this dataset of species that have had numerous SDMs developed, and are considered highly
invasive; the red imported fire ant, Solenpsis invicta; the Oriental fruit fly, Bactrocera dorsalis;
and the Asian tiger mosquito, Aedes albopictus.These three species were chosen as they are
widely distributed globally, and have all successfully arrived in Australia (and established in the
case of Solenpsis invicta).
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2.5 Assessing model transferability

To examine how models performed in predicting the non-native ranges, we employed three
different measures. As we had independent datasets (non-native range) for each species to
evaluate the models, we first employed AUC on this test dataset to assess performance. The AUC
score was calculated using the non-native range distribution and the associated background (i.e.
the geographical boundaries defined by the definitions of either continents, or biomes).

As different evaluation techniques may yield different results, we further looked at the Boyce
index (Boyce et al., 2002), and sensitivity (see Petitpierre et al., 2017), as measures for the final
surfaces projected into the novel ranges. The Boyce index is a presence-only evaluation technique
and measures how much model predictions differ from a random distribution of observed
presences across a prediction gradient (Hirzel et al., 2006). The Boyce index partitions the total
habitat suitability range into a set of bins, and for each of these calculates the predicted to
expected ratio, using the Spearman rank correlation coefficient (Hirzel et al., 2006). The Boyce
index ranges from -1 to 1, with positive values indicating good model performance, values near 0
indicating models no better than random and negative values indicating prediction of poor
suitability where there are presences (Di Cola et al., 2017). Sensitivity is the percentage of true
presences correctly predicted by the model.
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3 Results

3.1 Virtual species

There was some variation in the ability of different modelling approaches trained in South
America to transfer across to Australia. The different applications of Maxent (using all variables,
using a pairwise approach) had high AUC and Boyce index scores, whereas there was more
variation in these scores for the other approaches (Fig. 3.1). Sensitivity was highly variable for all
of the approaches, although the two Maxent approaches gave the highest sensitivity values,
indicating that they were correctly predicting true presences (sites inside the niche in Australia).

Figure 3.1: Evaluation scores for a comparison of the different SDM methods for virtual species: CHE = convex hulls
ensembles; BBE = bounding box ensembles; BIOCLIM = BIOCLIM algorithm using all 19 bioclim variables (with
two causal variables omitted); Range Bagging [PW] = default Range Bagging algorithm with dimensions set at two
and selection of only one temperature and one precipitation variable at a time, leaving out the two causal variables;
Maxent [PW] = ensemble of simple Maxent models and selection of only one temperature and one precipitation
variable at a time, leaving out the two casual variables; Maxent [All] = Maxent using default settings and all 19
bioclim variables

In addition to the two Maxent approaches, the BBE approach also worked well for these virtual
species, with high Boyce and good AUC (Fig. 3.1). Similarly, the CHE approach also worked
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reasonably well for the evaulation scores, but there was more variation for the Boyce scores than
for BBE. The two range bagging approaches had the largest amounts of variation across the
three evaluation techniques, and consequently the lowest mean scores (Fig. 3.1). BIOCLIM had
good Boyce scores, however the AUC and Sensitivity were variable and lower than the best
performing methods.

3.2 Real species

Table 3.1: List of species used in this study. ‘Aus native’ are species which are native to Australia. ‘Aus present’
and ‘Aus absent’ refer to reported occurrences of the species in Australia

Common Name Species Aus native Aus present Aus absent
Asian tiger mosquito Aedes albopictus *
Asian longhorned beetle Anoplophora glabripennis *
Weevil species Atrichonotus taeniatulus *
Weevil species Aramigus tessellatus *
Oriental fruit fly Bactrocera dorsalis *
Mediterranean fruit fly Ceratitis capitata *
Light brown apple moth Epiphyas postvittana *
Harlequin ladybeetle Harmonia axyridis *
Redlegged earth mite Halotydeus destructor *
Colorado potato beetle Leptinotarsa decemlineata *
Argentine ant Linepithema humile *
Asian needle ant Pachycondyla chinensis *
Cassava mealybug Phenacoccus manihoti *
African big-headed ant Pheidole megacephala *
Red imported fire ant Solenopsis invicta *
Marsh crane fly Tipula oleracea *
European crane fly Tipula paludosa *
Bronze bug Thaumastocoris peregrinus *
Pavement ant Tetramorium sp. E *
Japanese pavement ant Tetramorium tsushimae *
Electric ant Wasmannia auropunctata *
African fig fly Zaprionus indianus *

The real species data provides a test of projecting an incomplete understanding of the niche and
the associated distributions to a novel geographic range. Seven of the 22 species have already
established in Australia (Atrichonotus taeniatulus, Ceratitis capitata, Halotydeus destructor,
Linepithema humile, Pheidole megacephala, Solenopsis invicta, Wasmannia auropunctata), and
two (Epiphyas postvittana and Thaumastocoris peregrinus) originate from Australia (Table 3.1).
The remaining 13 species have varying degrees of risk for establishment in Australia. Here the
models were calibrated on only the native range and then projected to the invasive range.
Normally it would be better practise to include the invasive range in the model training
(Broennimann and Guisan, 2008) — however here we are providing a test of the ability of models
to project from limited data rather than a description of the entire niche. Another important
caveat is that Hill et al. (2017) found evidence of ‘niche shift’ (adapted or expanded to novel
environments), in a number of these species, suggesting that the distributions in the novel ranges
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may extend outside of what is predictable from training on the native range alone. Bearing that
in mind, the trends presented do encapsulate what may be expected from a dataset of actual
species data, complete with inherent bias in sampling effort and geographical extent.

Figure 3.2: Evaluation scores for a comparison of the different SDM methods for the 22 invasive insects species data:
CHE = convex hulls ensembles; BBE = bounding box ensembles; BIOCLIM = BIOCLIM algorithm using all 19
bioclim variables; Range Bagging = default Range Bagging algorithm with dimensions set at two; Range Bagging
[PW] = default Range Bagging algorithm with dimensions set at two and selection of only one temperature and
one precipitation variable at a time; Maxent [PW] = ensemble of simple Maxent models and selection of only one
temperature and one precipitation variable at a time; Maxent [Expert] = Maxent using default settings and eight
predictor variables described as useful for predicting insect distributions; Maxent [All] = Maxent using default
settings and all 19 bioclim variables

Figure 3.2 shows the evaluation scores for the different SDM techniques we employed for these
real species data. While there is some variation, across the methods the distribution of AUC is
fairly similar (assessed on the non-native distribution and range). Likewise, Sensitivity is above
0.8 for most species and methods (except BIOCLIM) which may be considered as “being
transferable” (Petitpierre et al., 2017)). The greatest variation is in the Boyce score, which places
the CHE and Maxent[PW] methods as better performing than the other approaches Fig. 3.2). On
balance across the evaluation techniques, The Maxent[PW], CHE and BBE approaches appear to
work well according to all the evaluation methods employed here (Fig. 3.2), although most of the
approaches here could are performing except for BIOCLIM and perhaps Maxent [All] which also
has low Boyce scores. The range bagging approaches were similar, with the default
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implementation performing slightly better than the pairwise approach for AUC and sensitivity
(Fig. 3.2).

Next, we look in detail at three case studies; A. albopictus, Solenopsis invicta, Bactrocera
dorsalis. These represent three ‘globally’ invasive species, with S. invicta and A. albopictus both
demonstrating niche shift in previous studies (see Hill et al. (2017)), whereas B. dorsalis has
demonstrated broad niche conservatism. The species also differ in their results, highlighting the
need for further scrutiny to be placed on model selection for these species.

16 | Dealing with uncertainty in predictor selection © 2020 CSIRO



3.2.1 Case study 1: Aedes albopictus, Asian tiger mosquito

Aedes albopictus is a globally invasive mosquito, and an important vector of human diseases,
including dengue and chikungunya. Aedes albopictus has been able to establish in many regions
of the world, by being transported as both eggs and larvae aboard ships (Tatem et al., 2006), and
poses a current risk for Australia. The species has had numerous modelling attempts, and which
amongst other things, has demonstrated both an expansion and a shift in the occupied
environments

When assessed across the non-native range for A. albopictus, AUC and Sensitivity were fairly
consistent across approaches, however there was substantial variation for the Boyce scores (Table
3.2). The CHE approach appears to have worked well for this species, with high AUC, Boyce and
Senstivity scores. Range bagging (PW) also performed reasonably well with high AUC and
Sensitivity scores, but only moderate Boyce scores. BIOCLIM has the lowest performance scores
for this species. Four of the different approaches (BBE, BIOCLIM, Maxent[Expert] and Maxent
[All] had negative Boyce scores, indicating these models were not always capturing presences in
the test dataset.

Table 3.2: Evaluation scores of the different modelling methods for Aedes albopictus developed in native ranges and
projected to invaded range(s).

Method AUC Boyce Sensitivity
CHE 0.82 0.87 0.82
BBE 0.78 -0.32 0.78
BIOCLIM 0.6 -0.14 0.6
Range Bagging 0.8 0.51 0.8
Range Bagging [PW] 0.81 0.62 0.81
Maxent [PW] 0.74 0.01 0.74
Maxent [Expert] 0.79 -0.67 0.79
Maxent [All] 0.82 -0.42 0.83

In terms of spatial predictions, the CHE and Range Bagging [PW] approaches gave similar
patterns of prediction, and the BBE approach gave the narrowest prediction in terms of area
(Figure 3.3). For the test data, particularly in North America, the CHE and range bagging [PW]
gave broader predictions than the other approaches.
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Figure 3.3: A. Distribution data for Aedes albopictus in its native (blue dots) and introduced (red dots) ranges. B.
Model projections for different methods: CHE = convex hulls ensembles; BBE = bounding box ensembles; BIOCLIM
= BIOCLIM algorithm using all 19 bioclim variables; Range Bagging [PW] = default Range Bagging algorithm
with dimensions set at two and selection of only one temperature and one precipitation variable at a time; Maxent
[PW] = ensemble of simple Maxent models and selection of only one temperature and one precipitation variable
at a time; Maxent [Expert] = Maxent using default settings and eight predictor variables described as useful for
predicting insect distributions; Maxent [All] = Maxent using default settings and all 19 bioclim variables. Note:
Suitability refers to slightly different processes as part of the respective modelling approaches - the scores are not
directly comparable, but are useful for examining congruence in patterns of prediction.
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3.2.2 Case study 2: Solenopsis invicta, red imported fire ant.

Solenopsis invicta is a highly successful invasive ant species that can have great ecological
impacts through predation and outcompeting native species, as well as causing nuisance issues
due to their bites. Solenopsis invicta is a useful test species due to the quality of data available,
and distribution across four continents (North and South America (native range), Asia and
Australia) as well as island populations. There have been a number of attempts to model the
distribution of this species as it is a high profile invasive species with sometimes large impacts
(Fitzpatrick et al., 2007; Broennimann et al., 2007; Hill et al., 2017).

Table 3.3 shows which of the methods performed best for S. invicta. Overall, all methods except
BIOCLIM and Maxent [All] achieved a model with good AUC, Boyce and sensitivity scores. On
balance between the three evaluation methods, the Maxent [PW] approach worked best for this
species, the range bagging approahces also performed well, and the CHE and BBE approaches
had good AUC and sensitivity, but lower Boyce scores (Table 3.3).

Table 3.3: Evaluation scores of the different modelling methods for Solenopsis invicta developed in native ranges
and projected to invaded range(s).

Method AUC Boyce Sensitivity
CHE 0.86 0.5 0.86
BBE 0.87 0.41 0.87
BIOCLIM 0.54 -0.38 0.55
Range Bagging 0.87 0.67 0.87
Range Bagging [PW] 0.87 0.66 0.87
Maxent [PW] 0.9 0.92 0.9
Maxent [Expert] 0.87 0.66 0.88
Maxent [All] 0.79 0.04 0.79

Spatially, the CHE, Range Bagging and Maxent [PW] approaches again gave broader predictions
than the other two methods (Figure 3.4). These methods also captured the invasive distribution
in North America better.
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Figure 3.4: A. Distribution data for Solenopsis invicta in its native (blue dots) and introduced (red dots) ranges. B.
Model projections for different methods: CHE = convex hulls ensembles; BBE = bounding box ensembles; BIOCLIM
= BIOCLIM algorithm using all 19 bioclim variables; Range Bagging [PW] = default Range Bagging algorithm
with dimensions set at two and selection of only one temperature and one precipitation variable at a time; Maxent
[PW] = ensemble of simple Maxent models and selection of only one temperature and one precipitation variable
at a time; Maxent [Expert] = Maxent using default settings and eight predictor variables described as useful for
predicting insect distributions; Maxent [All] = Maxent using default settings and all 19 bioclim variables. Note:
Suitability refers to slightly different processes as part of the respective modelling approaches - the scores are not
directly comparable, but are useful for examining congruence in patterns of prediction.
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3.2.3 Case study 3: Bactrocera dorsalis, Oriental fruit fly

Bactrocera dorsalis is a highly polyphagous tropical fruit fly that has successfully established
across Asia, Pacific islands and into Africa. It has been successfully eradicated following and
outbreak in Australia. Bactrocera dorsalis is a good example of a species with a reasonably
“stable” distribution, though it is widespread through tropical and subtropical areas. There have
also been a number of attempts to model the distribution of this species (four or five to date).
Table 3.4 shows that here that the Maxent [All] approach gives the best AUC, sensitivity, and a
high Boyce score. In fact, most methods perform well for this species, even the poorest
performing (BIOCLIM and BBE) yielded AUC and sensitivity evaluation scores that would be
considered “acceptable”, although the both had low Boyce scores, particularly BIOCLIM.

Table 3.4: Evaluation scores of the different modelling methods for Bactrocera dorsalis developed in native ranges
and projected to invaded range(s).

Method AUC Boyce Sensitivity
CHE 0.87 0.99 0.87
BBE 0.84 0.46 0.84
BIOCLIM 0.77 -0.01 0.77
Range Bagging 0.85 0.98 0.85
Range Bagging [PW] 0.86 0.97 0.86
Maxent [PW] 0.88 0.96 0.88
Maxent [Expert] 0.9 0.89 0.89
Maxent [All] 0.91 0.97 0.91

Overall all methods appear to do a decent job of predicting the non-native distribution of B.
dorsalis and also the potential risk for Australia (where the species has been eradicated before)
(Figure 3.5). Following on from the other two case studies, the CHE and range bagging
approaches give broader predictions than the other two methods, and in this case Maxent[PW]
also displays similar patterns.
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Figure 3.5: A. Distribution data for Bactrocera dorsalis in its native (blue dots) and introduced (red dots) ranges. B.
Model projections for different methods: CHE = convex hulls ensembles; BBE = bounding box ensembles; BIOCLIM
= BIOCLIM algorithm using all 19 bioclim variables; Range Bagging [PW] = default Range Bagging algorithm
with dimensions set at two and selection of only one temperature and one precipitation variable at a time; Maxent
[PW] = ensemble of simple Maxent models and selection of only one temperature and one precipitation variable
at a time; Maxent [Expert] = Maxent using default settings and eight predictor variables described as useful for
predicting insect distributions; Maxent [All] = Maxent using default settings and all 19 bioclim variables. Note:
Suitability refers to slightly different processes as part of the respective modelling approaches - the scores are not
directly comparable, but are useful for examining congruence in patterns of prediction.
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4 Discussion

The discussion around “best practice” for using species distribution models in pest risk mapping
is typically focused on model selection, with emphasis often placed on finding the best
performing models (by some statistical measure), and using that information as the basis for
projection to novel areas and risk assessment (e.g. Fan et al. (2018); Jiménez-Valverde et al.
(2011)). By transforming a model selection problem to one of model uncertainty across
predictors, we suggest alternative approaches that perform well against established methods, and
provide ease of interpretation through an uncertainty framework. Specifically, when the choice of
which available predictors to use is unknown or unguided, constructing an ensemble of small (two
variable) models allows for model construction to be focussed on selection of “good” performing
variables (ones that perform well in both native and non-native ranges), rather than relying on
model fit as the indication of the “best” model. Our methods allow for putatively more proximal
variables to be identified and to apply them in a simple manner to not only increase
transferability (Petitpierre et al., 2017), but provide a more tractable approach to developing risk
maps of potential non-native distributions.

Our CHE and the pairwise Maxent approaches were consistently good performers across virtual
and real species models. Previously, using a ensemble of two-variable Maxent models has yielded
useful results for predicting the distributions of rare species (Breiner et al., 2015), and here we
provide evidence that this approach can be extended to a transferable modelling framework for
non-native species.The true response to distal variables might also be complex (Merow et al.,
2014), using an ensemble of simple models are somewhat able to avoid that, and the strength is
model overfitting is avoided (Breiner et al., 2015). We also chose not to weight the different
models or predictor pairs, as has been done in elsewhere (Breiner et al., 2015), as our goals were
focussed on communicating uncertainty across available predictors in an attempt to identify
“good” predictors.

There are some important differences between the CHE and pairwise Maxent approaches that are
worth considering when making choices of appropriate modelling frameworks to apply to
non-native species. Firstly, Maxent can be thought of as modelling closer to the realised
distribution of the species, the CHE closer to the potential distribution (Jiménez-Valverde et al.,
2011). This distiction is important when considering how the species-environment relationships
are defined given the data available, and what this means for extrapolation. In our CHE
approach the relationships are simplified to environmental limits and provide a final spatial
prediction as a gridded surface that represents the frequency that a given cell fell within the
environmental space as defined by the convex hulls. This is directly related to the uncertainty in
predictor variables, with an increase in the number of times a grid cell falls within environmental
space corresponding to an increase in certainty in the predictors retained. Alternatively, the
pairwise Maxent approach models the species-environment relationships as functions in
two-dimensions at a time, and then the averaged probabilities of those relationships used to
predict distributions. Maxent fits the relationship to data, there is a chance that when projected
to a new set of environments a combination of those variables form the training data does not
exist. The CHE thus provides a more conservative approach to predicting distributions, with
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simple environmental limits, whereas the pairwise Maxent approach allows for estimation of
species’ responses to environmental predictors using probabilistic functions which may be closer
to the ecological interactions - but more prone to adverse effects of extrapolation if the training
data does not allow for the characterisation of that relationship.

The other approach we investigated, range bagging, also performed well for the real species data,
despite having highly variable performance for the virtual species. Range bagging shares some
similarities to the CHE approach, in that the environmental relationships are estimated through
the use of convex hulls across the different combinations of available predictors. This means that
the resulting predictions are able to be interpreted in the same manner as for CHE. While CHE
and rangebagging may lead to larger predictions (more conservative), this may be more
preferable for invasive species (Kramer et al., 2017). Comparing modelling performance between
methods is a lot more straightforward than explaining the reasons behind differences(Breiner
et al., 2018), but the inconsistent performance for range bagging on the virtual species may be
due to the difference in using GAMs (or Maxent) to rank variable pairs in the other approaches,
versus the range bagging method voting for variable pairs based on iterations, especially when
the causal variable pair is absent. When looking at performance for the virtual species it is
important to note that the distributions that were created are not “realistic” species
distributions, and instead are focussed on testing the ability to identify proximal variables in
absence of the causal predictors for each given virtual species.

One of the biggest challenges of using real species datasets to evaluate modelling methods is
“messy” datasets (as a result of sampling bias, under-representation of range, missing data, errors
in data). For many non-native species the data available is not sampled with the same intensity
and process across native and invasive ranges. Sampling processes under a real world situation
may only yield few occurrence points across the actual distribution, with spatial bias in
reporting. This translates into methods that may otherwise perform well, being penalised for
characterising patterns in the data that are a result of some erroneous, unobservable, or
incomplete process. This may help partly explain why there leads to a broad range of model
performance, ranging from near perfect prediction, down to no better than random. Another
issue that challenges SDM application is how different backgrounds (extent and scale) select
different variables to be included in the process. The range-bagging technique avoids this, but
future work would be to look at how sensitive the background selection is to changing modelled
performance of the GAMs that rank model inclusion that require background environmental
information. As we have focussed on non-native plant pests in this report, it is now important to
examine more datasets to see if patterns hold across different taxa, such as other animal pests,
weeds and perhaps pathogens.
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4.1 Recommendations

While we have not performed an exhaustive investigation of all modelling parameters and
decisions, our results suggest there are a few approaches that appear to be useful for predicting
non-native distributions as part of evaluating risk posed by plant pests (and other species of
concern). In particular, by being more “conservative” in the absence of knowledge of the most
proximal variables, the ensemble methods of CHE and pairwise Maxent, and the range bagging
approach, perform well. This supports that when no standardised set of predictors is required,
using iterative approaches to predictor selection can increase predictive performance Petitpierre
et al. (2017).

The decision to use CHE or pairwise Maxent may come down to the interpretation of the
outputs, as both approaches seem viable options in the absence of complete knowledge of the
most proximal variables. One advantage to using range bagging is that is does not require a
background to be specified, which may be useful when there is limited or sparsely distribution
occurrence data are available. Range bagging is also less computationally expensive than
performing multiple GAMs to rank predictor pairs, but given an appropriate background, the
convex hulls method outperforms on average. The goals of the risk mapping exercise are likely to
define what trade-off of computational time and method exploration are appropriate (Breiner
et al., 2018). An important caveat here is that for species where models projected badly, they
tended to do so regardless of the modelling approach. In these cases it is hard to justify the use
of any correlative or envelope methods to project them.

For all approaches, we also advocate for use of as much distribution data as possible, especially
when the species may be present in multiple geographical regions, to define the environmental
space more completely (Broennimann and Guisan, 2008; Hill et al., 2017). Of course data should
always be examined for environmental outliers that would particularly alter results using convex
hulls or other envelope approaches.

As the role of risk maps is in aiding industry preparedness, there is typically a preference of
predictive accuracy. Therefore, increased model transferability at the expense of model
interpretability is perhaps more important for effective rapid predictions (Merow et al., 2014),
especially in the management of non-native species and biological invasions. This is especially
important if the costs associated with overprediction (arising from more conservative models)
translates to significantly less than the cost of the species invading (Jiménez-Valverde et al.,
2011).

© 2020 CSIRO Dealing with uncertainty in predictor selection | 25



5 Acknowledgments

Daniel Heersink wrote earlier versions of some of the code used in this study. Funding was
provided by Centre for Excellence in Biosecurity Risk Analysis.

26 | Dealing with uncertainty in predictor selection © 2020 CSIRO



Bibliography
Austin, M. P. (2002). Spatial prediction of species distribution: an interface between ecological

theory and statistical modelling. Ecological modelling, 157(2-3):101–118. 5

Austin, M. P. and Van Niel, K. P. (2011). Improving species distribution models for climate
change studies: variable selection and scale: Species distribution models for climate change
studies. Journal of Biogeography, 38(1):1–8. 5

Barry, S., Elith, J., Heersink, D., Caley, P., Kearney, M., Tenant, P., and Arthur, A. (2015).
Final report: CEBRA 1402b Tools and approaches for invasive species distribution modelling
for surveillance. Technical report, CSIRO. 5

Booth, T. H., Nix, H. A., Busby, J. R., and Hutchinson, M. F. (2014). bioclim : the first species
distribution modelling package, its early applications and relevance to most current MaxEnt
studies. Diversity and Distributions, 20(1):1–9. 7, 9

Boyce, M. S., Vernier, P. R., Nielsen, S. E., and Schmiegelow, F. K. A. (2002). Evaluating
resource selection functions. Ecological Modelling, 157(2):281–300. 12

Breiner, F. T., Guisan, A., Bergamini, A., and Nobis, M. P. (2015). Overcoming limitations of
modelling rare species by using ensembles of small models. Methods in Ecology and Evolution,
6(10):1210–1218. 6, 23

Breiner, F. T., Nobis, M. P., Bergamini, A., and Guisan, A. (2018). Optimizing ensembles of
small models for predicting the distribution of species with few occurrences. Methods in
Ecology and Evolution. 24, 25

Broennimann, O. and Guisan, A. (2008). Predicting current and future biological invasions: both
native and invaded ranges matter. Biology Letters, 4(5):585–589. 14, 25

Broennimann, O., Treier, U. A., Müller‐Schärer, H., Thuiller, W., Peterson, A. T., and Guisan,
A. (2007). Evidence of climatic niche shift during biological invasion. Ecology Letters,
10(8):701–709. 19

Di Cola, V., Broennimann, O., Petitpierre, B., Breiner, F. T., D’Amen, M., Randin, C., Engler,
R., Pottier, J., Pio, D., Dubuis, A., Pellissier, L., Mateo, R. G., Hordijk, W., Salamin, N., and
Guisan, A. (2017). ecospat: an R package to support spatial analyses and modeling of species
niches and distributions. Ecography, 40(6):774–787. 12

Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G.,
Gruber, B., Lafourcade, B., Leitão, P. J., Münkemüller, T., McClean, C., Osborne, P. E.,
Reineking, B., Schröder, B., Skidmore, A. K., Zurell, D., and Lautenbach, S. (2013).
Collinearity: a review of methods to deal with it and a simulation study evaluating their
performance. Ecography, 36(1):27–46. 5

Drake, J. M. (2015). Range bagging: a new method for ecological niche modelling from
presence-only data. Journal of The Royal Society Interface, 12(107):20150086. 10

Elith, J., Ferrier, S., Huettmann, F., and Leathwick, J. (2005). The evaluation strip: A new and
robust method for plotting predicted responses from species distribution models. Ecological
Modelling, 186(3):280–289. 6

Fan, J. Y., Zhao, N. X., Li, M., Gao, W. F., Wang, M. L., and Zhu, G. P. (2018). What are the

© 2020 CSIRO Dealing with uncertainty in predictor selection | 27



best predictors for invasive potential of weeds? Transferability evaluations of model predictions
based on diverse environmental data sets for Flaveria bidentis. Weed Research, 58(2):141–149.
23

Fick, S. E. and Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces
for global land areas: NEW CLIMATE SURFACES FOR GLOBAL LAND AREAS.
International Journal of Climatology. 7, 9

Fitzpatrick, M. C., Weltzin, J. F., Sanders, N. J., and Dunn, R. R. (2007). The biogeography of
prediction error: why does the introduced range of the fire ant over-predict its native range?
Global Ecology and Biogeography, 16(1):24–33. 19

Fourcade, Y., Besnard, A. G., and Secondi, J. (2017). Paintings predict the distribution of
species, or the challenge of selecting environmental predictors and evaluation statistics. Global
Ecology and Biogeography. 5

Hijmans, R. J., Phillips, S., Leathwick, J., Elith, J., and Hijmans, M. R. J. (2015). Package
‘dismo’. 9

Hill, M. P., Gallardo, B., and Terblanche, J. S. (2017). A global assessment of climatic niche
shifts and human influence in insect invasions: HILL et al. Global Ecology and Biogeography.
9, 11, 14, 16, 19, 25

Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C., and Guisan, A. (2006). Evaluating the ability of
habitat suitability models to predict species presences. Ecological Modelling, 199(2):142–152.
12

Jiménez-Valverde, A., Peterson, A. T., Soberón, J., Overton, J. M., Aragón, P., and Lobo, J. M.
(2011). Use of niche models in invasive species risk assessments. Biological Invasions,
13(12):2785–2797. 23, 25

Kramer, A. M., Annis, G., Wittmann, M. E., Chadderton, W. L., Rutherford, E. S., Lodge,
D. M., Mason, L., Beletsky, D., Riseng, C., and Drake, J. M. (2017). Suitability of Laurentian
Great Lakes for invasive species based on global species distribution models and local habitat.
Ecosphere, 8(7):e01883. 24

Krebs, C. J. (2009). The Experimental Analysis of Distribution and Abundance. Benjamin
Cummings, 6th edition. 5

Leroy, B., Meynard, C. N., Bellard, C., and Courchamp, F. (2016). virtualspecies, an R package
to generate virtual species distributions. Ecography, 39(6):599–607. 10

Merow, C., Smith, M. J., Edwards, T. C., Guisan, A., McMahon, S. M., Normand, S., Thuiller,
W., Wüest, R. O., Zimmermann, N. E., and Elith, J. (2014). What do we gain from simplicity
versus complexity in species distribution models? Ecography, 37(12):1267–1281. 6, 23, 25

Nix, H. (1986). A biogeographic analysis of Australian elapid snakes. In Longmore, R., editor,
Atlas of Elapid Snakes of Australia, pages 4–15. Australian Government Publishing Service,
Canberra. 7, 9

Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N.,
Underwood, E. C., D’amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J.,
Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., and

28 | Dealing with uncertainty in predictor selection © 2020 CSIRO



Kassem, K. R. (2001). Terrestrial Ecoregions of the World: A New Map of Life on Earth.
BioScience, 51(11):933. 11

Petitpierre, B., Broennimann, O., Kueffer, C., Daehler, C., and Guisan, A. (2017). Selecting
predictors to maximize the transferability of species distribution models: lessons from
cross-continental plant invasions: Which predictors increase the transferability of SDMs?
Global Ecology and Biogeography, 26(3):275–287. 9, 12, 15, 23, 25

Phillips, S. J., Anderson, R. P., and Schapire, R. E. (2006). Maximum entropy modeling of
species geographic distributions. Ecological Modelling, 190(3-4):231–259. 9

Randin, C. F., Dirnböck, T., Dullinger, S., Zimmermann, N. E., Zappa, M., and Guisan, A.
(2006). Are niche-based species distribution models transferable in space? Journal of
Biogeography, 33(10):1689–1703. 5

Renner, I. W., Elith, J., Baddeley, A., Fithian, W., Hastie, T., Phillips, S. J., Popovic, G., and
Warton, D. I. (2015). Point process models for presence-only analysis. Methods in Ecology and
Evolution, 6(4):366–379. 8

Renner, I. W. and Warton, D. I. (2013). Equivalence of MAXENT and Poisson Point Process
Models for Species Distribution Modeling in Ecology: Equivalence of MAXENT and Poisson
Point Process Models. Biometrics, 69(1):274–281. 8

Sequeira, A. M. M., Bouchet, P. J., Yates, K. L., Mengersen, K., and Caley, M. J. (2018).
Transferring biodiversity models for conservation: Opportunities and challenges. Methods in
Ecology and Evolution, 9(5):1250–1264. 5

Tatem, A. J., Hay, S. I., and Rogers, D. J. (2006). Global traffic and disease vector dispersal.
Proceedings of the National Academy of Sciences, 103(16):6242–6247. 17

Varela, S., Lobo, J. M., and Hortal, J. (2011). Using species distribution models in
paleobiogeography: A matter of data, predictors and concepts. Palaeogeography,
Palaeoclimatology, Palaeoecology, 310(3-4):451–463. 5

© 2020 CSIRO Dealing with uncertainty in predictor selection | 29



CONTACT US
t 1300 363 400

+61 3 9345 2176
e enquiries@data61.csiro.au
w www.data61.csiro.au

AT CSIRO WE SHAPE THE
FUTURE
We do this by using science and
technology to solve real issues. Our
research makes a difference to
industry, people and the planet.

FOR FURTHER INFORMATION
Matt Hill, Peter Caley, James Camac, Jane Elith,
Simon Barry

e Matt.Hill@csiro.au



D. edmaps: an R package for creating

maps for early detection

The framework described in Chapter 4 has been incorporated into an R package called
edmaps (Early Detection Maps). edmaps greatly simplifies the computational steps
required for creating maps of establishment likelihood. It achieves this by taking user-
defined inputs in the form of a Microsoft Excel spreadsheet (see below) and creating
a make-like workflow that automates the entire process from raw data processing
through to the production of GeoTIFF rasters as well as presentation-quality static and
interactive maps. Users greatly benefit from workflows using edmaps because they
define the dependency structure of those objects, and ensure that after modifications
(e.g., changes to files, R objects, function arguments), any affected dependants are up-
dated. In order to create such workflows edmaps uses the drake package (Landau,
2018) for R.

In the following sections, we briefly outline the data and system requirements for
running edmaps. We then provide details on how to specify the parameters for build-
ing edmaps workflows for multiple plant pests, and lastly, we provide details on three
options for implementing edmaps on your system.

D.1. Software requirements

D.1.1. Minimum system requirements

• R version 4.0.0 (may also be compatible with more recent versions)

• RStudio (convenience, optional)

• Java (JDK)

• pandoc (allows standalone html maps; if missing, a directory of accessory files
will be created alongside the html file.)

• 16 GB available RAM

• 10 GB available hard disk space

• Internet connection

https://docs.ropensci.org/drake/
https://pandoc.org/installing.html
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D.1.1.1. Operating system specific requirements

Windows

• Rtools may be required to build packages from source.

macOS

• Command Line Tools to build packages from source when required.

• macOS is prone to errors when attempting to link R and Java. These errors can
often be resolved by running sudo R CMD javareconf in a terminal (requires
administrator privileges).

Linux
On Linux, system packages must be installed from source, meaning that additional

software and system libraries are required. The list below gives Ubuntu package names.
If using a different distribution, you will need to identify the corresponding package
names (e.g. for some distributions, dev should be replaced with devel).

• libxml2-dev

• libudunits2-dev

• libgeos-dev

• libgdal-dev

• default-jdk

• liblzma-dev

• libbz2-dev

• libicu-dev

• libpcre3-dev

• libz-dev

• libcairo2-dev

• gdal-bin

260

https://cran.r-project.org/bin/windows/Rtools/
http://osxdaily.com/2014/02/12/install-command-line-tools-mac-os-x/


Camac et al. 2020 Cen t r e  o f  Exce l l en ce  f o r
B i o se cu r i t y  R i sk  Ana l y s i s
 

D.1.2. Required R packages

The edmaps package depends upon a set of other R packages (Table D.1) in order to
calculate likelihoods of establishment. Package functionality often changes as pack-
ages evolve, so specific versions of these dependencies (i.e. current versions as at 30
September, 2019; see Table D.1) were used in the development of edmaps and its ap-
plication to the case study species explored in this report. Binaries or source tarballs of
these package versions are archived by the MRAN (Microsoft R Application Network)
Time Machine, and are available at http://cran.microsoft.com/snapshot/2020-07-14/.
To ensure expected behaviour and accurate reproduction of outputs, these package
versions are recommended. Similarly, recursive dependencies (i.e., dependencies of
the direct dependencies, and so on) should also be installed from the above snap-
shot. Installation of the appropriate versions of dependencies can be automated, as
described below.

D.1.3. Data directory

edmaps requires a data directory (approximately 0.5 GB in size, supplied with this
report) to be present on your computer. This data directory contains all the raw spatial
layers and data needed to create maps of establishment likelihood for Australia. The
general structure and content of this directory are as follows:

• risk_layers/

– abiotic/occurrences/ (user-collated occurrence records and CABI data)1

– biotic/raw_data/

– ACLUM/ (Australian landuse raster);

– NDVI/ (NDVI raster);

– NVIS_5.1/ (NVIS raster);

• pathway/raw_data/

– Containers/ (contains POA shapefile, containers_bypostcode.xls)

– Fertiliser/ (contains fertiliser use csv file, NRM shapefile)

– Major_Airports/ (Australian airport locations)

– Population/ (human population raster)

– Ports/ (port locations/use csv file)

– Tourist_Beds/ (tourist bed shapefile)

• user_input/parameters.xlsx (file for specifying global and species parame-
ters)

• edmaps_1.6.3.tar.gz (tarball for installing edmaps)

• make.R (script for running edmaps without renv)

• make_renv.R (script for running edmaps with renv)

• renv.lock (renv lock file containing package dependency details)

1Generally set up as a sub folder for each species. CABI distribution data is downloaded from CABI
datasheets in csv format. For example see here.
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This data repository currently contains the latest available spatial layers (see Chapter 4 for
details). However, we envisage that some of these spatial layers will be updated as new ver-
sions become available. For example, both CLUMC and populations layers can be replaced
when newer versions become available. Furthermore, different NDVI layers, using different
temporal periods, can be added to this data directory for use with different pests. If layers are
to be replaced it is critical that they are in the same format as the ones currently supplied in
the directory.

Handling new data
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Table D.1.: Direct R package dependencies of the edmaps R package.

Package Version

countrycode 1.2.0

CoordinateCleaner 2.0-15

dplyr 1.0.0

drake 7.12.4

fasterize 1.0.2

furrr 0.1.0

gdalUtilities 1.1.0

geometry 0.4.5

ggplot2 3.3.2

glue 1.4.1

htmlwidgets 1.5.1

leaflet 2.0.3

leaflet.opacity 0.1.0

leafem 0.1.1

magrittr 1.5

mapedit 0.6.0

purrr 0.3.4

raster 3.3-7

rasterVis 0.48

readr 1.3.1

readxl 1.3.1

rgbif 3.1.0

rlang 0.4.7

rnaturalearth 0.1.0

sf 0.9-4

sp 1.4-2

stars 0.4-3

tidyr 1.1.0

tmap 3.0

tmaptools 3.0

viridis 0.5.1

knitr 1.29

rmarkdown 2.3

testthat 2.3.2

future.callr 0.5.0

rnaturalearthdata 0.1.0

lubridate 1.7.9

styler 1.3.2

OpenStreetMap 0.3.4

rnaturalearthhires 0.2.0
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D.2. Parametrising edmaps

edmaps automates the many steps that need to be taken in order to create pest-specific
maps of establishment likelihoods (Chapter 4). Broadly, these steps are grouped as
follows:

1. Download global climate data from WorldClim;

2. Restructure large categorical raster datasets (landuse and NVIS) for efficient ac-
cess;

3. Prepare supporting datasets (e.g. a raster defining the Australian land mass);

4. Create rasters describing the geographic distribution of arrivals for each pathway
relevant to a pest;

5. Create a raster defining the expected number of arrivals across all relevant path-
ways;

6. Create a raster defining biotic suitability for the pest (i.e. geographic distribution
of host material);

7. Create a raster defining abiotic suitability for a pest (if relevant). This may in-
volve using a climate suitability layer provided by the user, or if not supplied,
occurrence data will be sourced (from user-supplied files, from GBIF, or both),
automatically cleaned, and a range bagging model will be fit and projected across
the landscape to estimate climatic suitability;

8. Create a raster defining the establishment likelihood;

9. Create a raster at coarser resolutions (for management or display purposes);

10. Create publication quality national and city-scale maps of pest establishment
likelihoods and other intermediate maps (e.g. climate suitability, host distribu-
tions etc.);

11. Create national interactive html maps of estimated total pest arrivals, environ-
mental suitability (abiotic × biotic) and establishment likelihoods; and

12. Create GeoTiffs of all output rasters.
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Which steps are implemented and how edmaps implements them is all dictated by
a single Microsoft Excel workbook found within the data subdirectory,
user_input/parameters.xlsx. This workbook contains two tabs. The first (Global
variables) defines the set of parameters that are relevant to all pests considered (Fig-
ure D.1). These include various input data paths2, the number of carriers entering
Australia per annum for each pathway, air passenger distance decay penalties, and
whether interactive html maps should be produced.

The second tab (Species-specific parameters) contains pest-specific parameters, where
each pest is a separate row in the spreadsheet (Figure D.2). These parameters encom-
pass:

• which pathways are relevant to the pest;

• whether to incorporate abiotic suitability (may not be relevant for some pests);

• whether NDVI and/or NVIS should be incorporated when estimating biotic suit-
ability;

• file paths to occurrence datasets and CABI distributional data or a user’s own
climate suitability layer;

• whether to exclude BIOCLIM variables from range bagging model (only relevant
if climate suitability file not specified);

• the probability of a pathway carrier containing the pest for each considered path-
way;

• a likelihood penalty defined by distance from ports; and

• the scale at which outputs should be aggregated.

In order to facilitate users in filling in the species-specific parameters, the spreadsheet contains
conditional formatting that will highlight columns in red if they are undefined but required
in order for edmaps to design a workflow for that pest. Columns that are white are optional
and columns that are grey are not applicable.

Note:

The Excel spreadsheet also allows users to feed in their own climate suitability layer, as op-
posed to edmaps estimating this for you. This can be done by passing the path to the layer
into parameters.xlsx via the column Climate suitability path. However, if this is done it
is critical it meets edmaps requirements. Specifically, that its score ranges between 0 and 1,
it is projected to Australian Albers (EPSG:3577), has 1000 m resolution and has the following
extent: xmin = -1888000, xmax = 2122000, ymin = -4847000, ymax = -1010000.

Supplying your own climate suitability layer

2Paths may change as newer versions of data become available.
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Figure D.1.: Global parameters tab in parameters.xlsx. Used for defining parameters
that are relevant to all pests considered.
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Figure D.2.: Species-specific parameters tab in parameters.xlsx. Used for defining species-specific parameters. Each species is a row.
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D.3. Running edmaps

As highlighted in the above sections, edmaps requires multiple software and R pack-
ages to be installed. While these can be manually installed, we advise that this is done
as a last resort. This is because each computer is different. Operating systems and
software versions are likely to vary substantially between computers. As such it is
extremely difficult ensure edmaps will run in all settings.

For this reason, and to ensure edmaps functionality into perpetuity, we strongly
recommend that edmaps is implemented in a Docker virtual machine. Docker is the
world’s leading software container platform that is used to create lightweight, self-
contained virtual Linux systems that contain all relevant open source software required
to run developed software. Unlike other virtual machines, Docker does not bundle a
full operating system. Rather it only installs libraries and settings required to make the
developed software work. This means that Docker ensures software works as expected
on any machine. The other major advantage is that it removes the need for users to
install software dependencies, as the hard work is already done.

In the following sections we outline three methods for running edmaps, given that
parameters.xlsx has been filled out. While we recommend the Docker approach,
we acknowledge that not all users will have the appropriate permissions to do so. As
such we also outline two additional approaches for implementation: one that assumes
software dependencies are correctly installed, but handles R package dependencies
(renv approach), and one that assumes all dependencies are installed, and focuses on
installation and use of edmaps.

268

https://www.docker.com/


Camac et al. 2020 Cen t r e  o f  Exce l l en ce  f o r
B i o se cu r i t y  R i sk  Ana l y s i s
 

D.3.1. Using edmaps with Docker (recommended)

We have created a Docker image that contains all the system libraries, software (e.g.
R, Java, pandoc) and R packages required to install and run workflows produced by
edmaps.

To use the image, first install Docker onto your machine. When installing Docker on
Windows, you will be prompted to select whether to use Linux or Windows containers.
Leave this at it’s default (i.e. to use Linux containers). Once installed, we recommend
users set Docker settings such that containers have access to at least 10 GB of RAM, and
a specified number of CPUs3.

Next we can download an edmaps virtual machine by entering the following into
the command line using Command Prompt or the terminal (requires internet connec-
tion):

docker pull jscamac/edmaps

Once the Docker image has been successfully downloaded, use the Command Prompt
or terminal to navigate to the local copy of the data directory outlined in section D.1.3.
Next, run the system-specific command:

macOS & Linux

docker run -d -v $(pwd):/home/ jscamac/edmaps R CMD BATCH --vanilla make.R make.log

Windows

docker run -d -v %cd%:/home/ jscamac/edmaps R CMD BATCH --vanilla make.R make.log

The above command will launch the virtual machine and run make.R in non-interactive
mode. This means that you may close the terminal or shell window and the virtual ma-
chine will continue running until all tasks have been completed upon which it will au-
tomatically shut down. The status and any error messages (if encountered) associated
with the workflow progression can be examined by opening the log file make.log.
This file will be saved in the data directory, alongside make.R. Once completed, all
static and interactive maps as well as GIS-compatible rasters (GeoTIFF) can be found
within the outputs directory.

The flag -v mounts the current directory (i.e. the data directory) into the container’s home
directory. This allows for any results produced within the container to be reflected within the
local directory. This means that you can play with the results, data and figures outside the
Docker container later.

Note:

3We recommend that users allow Docker to access up to all but one core for processing workflows
derived from edmaps, especially if being used for many pests.
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D.3.2. Using edmaps with renv

If insufficient privileges exist to use Docker, an alternative is to use a renv (reproducible
environments) workflow (Ushey, 2019). The renv R package reproduces a pre-defined
package environment, ensuring that specified package versions are used. To do this it
creates a private, isolated package library for an R project, and obtains defined versions
of packages from defined repositories. Versions and repositories are specified in a "lock
file" (renv.lock), and the lock file describing the versions used for the case studies
has been provided with this report. Since the renv package library is project-specific,
it will not overwrite or interfere with package versions used in other projects.

The most important difference between the Docker approach described above, and
renv, is that the latter manages R packages only; required system libraries and tools
must be installed manually.

Assuming software dependencies (e.g. Java, R) are available, recreating the package
environment with renv is straightforward.

First, navigate to the data directory (Section D.1.3) using Command Prompt or the
terminal. Then run:

R CMD BATCH --vanilla make_renv.R make.log

This will create the local package environment, and commence the process of re-
building the output datasets. When this process is underway, the file make.log will
be created and will contain a live log of progress. If any errors are encountered, the
error messages will be logged to this file. As the build progresses, files will be created
within various subdirectories (e.g. the outputs directory).

If you see an error message stating that R is not a recognized command, you may
need to provide the full path to the R executable, for example:

c:/Program Files/R/R-4.0.2/bin/R CMD BATCH --vanilla make_renv.R make.log

D.3.3. Using edmaps by itself

We recommend that this mode of running edmaps is only used as a last resort, or if one
can be sure that the appropriate versions of all software and R package dependencies
have been correctly installed.

Assuming all dependencies have been correctly installed, one need only install edmaps.
This can be done by using Command Prompt or the terminal to navigate to the data
directory and running:

R CMD INSTALL edmaps_1.3.0.tar.gz

Alternatively, the latest version of edmaps can be directly downloaded from GitHub
by running the following in R (assuming devtools is installed):

devtools::install_github("jscamac/edmaps")

Once edmaps has been installed, a workflow can be initiated by running:

R CMD BATCH --vanilla make.R make.log

As with other approaches, a log file (make.log) will be saved to the data directory
and can be interrogated to assess analysis progression or any errors that may have been
encountered.
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aggregate_raster Downscale raster resolution

Description

Aggregate raster cells (and optionally layers) to coarser resolution.

Usage

aggregate_raster(

rast,

outfile,

aggregate_factor,

fun = sum,

return_rast = FALSE

)

Arguments

rast Raster* object or file path to a raster file.

outfile Character. Output raster file path. If not provided, object will be returned to R.

Directory will be created recursively if it does not exist.

aggregate_factor

Integer. Aggregation factor expressed as number of cells in each direction (hor-

izontally and vertically). Or a vector of two integers (horizontal and vertical

aggregation factors) or three integers (when also aggregating over layers).

fun Function. Function used to aggregate values. Default is sum.

return_rast Logical. Should the resulting raster be returned to R? Ignored if outfile is not

provided.

Value

If outfile is specified, the resulting raster is saved as a geotiff to that path. If return_rast is TRUE

or outfile is not specified the resulting raster is returned, otherwise NULL is returned invisibly.
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arrivals_by_containers

Estimates pest arrivals by containers

Description

Estimates pest arrivals by containers.

Usage

arrivals_by_containers(

container_weights,

port_data,

template_raster,

probability,

outfile,

return_rast = FALSE

)

Arguments

container_weights

An sf object or file path to a shapefile supported by OGR, as produced by

container_weights.

port_data Character. Path to csv file containing Port Names, Port Codes, Longitude, Lati-

tude and Container volumes.

template_raster

RasterLayer or file path to a raster file. This is used to define the extent and

resolution of output. Must be in CRS EPSG:3577.

probability Numeric. The probability that a unit carries the pest.

outfile Character. Output raster file path. If not provided, raster object will be returned

to R.

return_rast Logical. Should the raster object be returned to R? Ignored if outfile is not

provided.

Value

If outfile is specified, the resulting raster is saved as a to that path. If return_rast is TRUE or

outfile is not specified the resulting raster is returned, otherwise NULL is returned invisibly.

See Also

Other functions estimating arrivals: arrivals_by_fertiliser(), arrivals_by_food(), arrivals_by_machinery(),

arrivals_by_mail(), arrivals_by_nurserystock(), arrivals_by_residents(), arrivals_by_torres(),

arrivals_by_tourists(), arrivals_by_vessels()
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arrivals_by_fertiliser

Estimates pest arrivals by fertiliser imports

Description

Estimates pest arrivals by fertiliser imports.

Usage

arrivals_by_fertiliser(

fertiliser_weight,

fertiliser_units,

probability,

outfile,

return_rast = FALSE

)

Arguments

fertiliser_weight

A RasterLayer or file path to a raster file containing weights to distribute ar-

rivals by.

fertiliser_units

Integer. The total number of fertiliser units entering country.

probability Numeric. The probability a unit carries pest.

outfile Character. Output raster file path. If not provided, raster object will be returned

to R.

return_rast Logical. Should the raster object be returned to R? Ignored if outfile is not

provided.

Value

If outfile is specified, the resulting raster is saved as a to that path. If return_rast is TRUE or

outfile is not specified the resulting raster is returned, otherwise NULL is returned invisibly.

See Also

Other functions estimating arrivals: arrivals_by_containers(), arrivals_by_food(), arrivals_by_machinery(),

arrivals_by_mail(), arrivals_by_nurserystock(), arrivals_by_residents(), arrivals_by_torres(),

arrivals_by_tourists(), arrivals_by_vessels()
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arrivals_by_food Estimates pest arrivals through imported food

Description

Estimates pest arrivals through imported food as a function of population density.

Usage

arrivals_by_food(

pop_density,

total_imports,

probability,

outfile,

return_rast = FALSE

)

Arguments

pop_density A RasterLayer or file path to a raster file containing population density.

total_imports Integer. Amount of imported food entering country.

probability Numeric. The probability a imported food item contains pest

outfile Character. Output raster file path. If not provided, raster object will be returned

to R.

return_rast Logical. Should the raster object be returned to R? Ignored if outfile is not

provided.

Value

If outfile is specified, the resulting raster is saved as a to that path. If return_rast is TRUE or

outfile is not specified the resulting raster is returned, otherwise NULL is returned invisibly.

See Also

Other functions estimating arrivals: arrivals_by_containers(), arrivals_by_fertiliser(),

arrivals_by_machinery(), arrivals_by_mail(), arrivals_by_nurserystock(), arrivals_by_residents(),

arrivals_by_torres(), arrivals_by_tourists(), arrivals_by_vessels()

arrivals_by_machinery Estimates pest arrivals through imported machinery

Description

Estimates pest arrivals through imported machinery as a function of population density.
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Usage

arrivals_by_machinery(

pop_density,

total_machinery,

probability,

outfile,

return_rast = FALSE

)

Arguments

pop_density A RasterLayer or file path to a raster file containing population density.

total_machinery

Integer. Amount of machinery entering country.

probability Numeric. The probability a machinery item contains pest.

outfile Character. Output raster file path. If not provided, raster object will be returned

to R.

return_rast Logical. Should the raster object be returned to R? Ignored if outfile is not

provided.

Details

This pathway is used under the assumption that the vast majority of imported machinery comprises

new and used motor vehicles.

Value

If outfile is specified, the resulting raster is saved as a to that path. If return_rast is TRUE or

outfile is not specified the resulting raster is returned, otherwise NULL is returned invisibly.

See Also

Other functions estimating arrivals: arrivals_by_containers(), arrivals_by_fertiliser(),

arrivals_by_food(), arrivals_by_mail(), arrivals_by_nurserystock(), arrivals_by_residents(),

arrivals_by_torres(), arrivals_by_tourists(), arrivals_by_vessels()

arrivals_by_mail Estimates pest arrivals through mail

Description

Estimates arrival rate attributable to mail as a function of population density.

Usage

arrivals_by_mail(

pop_density,

total_mail,

probability,

outfile,

return_rast = FALSE

)
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Arguments

pop_density A RasterLayer or file path to a raster file containing population density.

total_mail Integer. Amount of mail.

probability Numeric. The probability a mail item contains pest.

outfile Character. Output raster file path. If not provided, raster object will be returned

to R.

return_rast Logical. Should the raster object be returned to R? Ignored if outfile is not

provided.

Value

If outfile is specified, the resulting raster is saved as a to that path. If return_rast is TRUE or

outfile is not specified the resulting raster is returned, otherwise NULL is returned invisibly.

See Also

Other functions estimating arrivals: arrivals_by_containers(), arrivals_by_fertiliser(),

arrivals_by_food(), arrivals_by_machinery(), arrivals_by_nurserystock(), arrivals_by_residents(),

arrivals_by_torres(), arrivals_by_tourists(), arrivals_by_vessels()

arrivals_by_nurserystock

Estimates pest arrivals through imported nursery stock

Description

Estimates pest arrivals through imported nursery stock as a function of population density.

Usage

arrivals_by_nurserystock(

pop_density,

total_imports,

probability,

outfile,

return_rast = FALSE

)

Arguments

pop_density A RasterLayer or file path to a raster file containing population density.

total_imports Integer. Amount of imported nursery stock entering country.

probability Numeric. The probability a imported food item contains pest.

outfile Character. Output raster file path. If not provided, raster object will be returned

to R.

return_rast Logical. Should the raster object be returned to R? Ignored if outfile is not

provided.
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Value

If outfile is specified, the resulting raster is saved as a to that path. If return_rast is TRUE or

outfile is not specified the resulting raster is returned, otherwise NULL is returned invisibly.

See Also

Other functions estimating arrivals: arrivals_by_containers(), arrivals_by_fertiliser(),

arrivals_by_food(), arrivals_by_machinery(), arrivals_by_mail(), arrivals_by_residents(),

arrivals_by_torres(), arrivals_by_tourists(), arrivals_by_vessels()

arrivals_by_residents Estimates pest arrivals by returning residents

Description

Estimates arrival rate attributable to returning residents as a function of population density.

Usage

arrivals_by_residents(

pop_density,

total_returning,

probability,

outfile,

return_rast = FALSE

)

Arguments

pop_density A RasterLayer or file path to a raster file containing population density.

total_returning

Integer. The number of returning residents.

probability Numeric. The probability a returning resident carries pest

outfile Character. Output raster file path. If not provided, raster object will be returned

to R.

return_rast Logical. Should the raster object be returned to R? Ignored if outfile is not

provided.

Value

If outfile is specified, the resulting raster is saved as a to that path. If return_rast is TRUE or

outfile is not specified the resulting raster is returned, otherwise NULL is returned invisibly.

See Also

Other functions estimating arrivals: arrivals_by_containers(), arrivals_by_fertiliser(),

arrivals_by_food(), arrivals_by_machinery(), arrivals_by_mail(), arrivals_by_nurserystock(),

arrivals_by_torres(), arrivals_by_tourists(), arrivals_by_vessels()
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arrivals_by_torres Estimates pest arrivals due to Torres Strait air passengers

Description

Estimates pest arrivals due to Torres Strait air passengers coming into Cairns.

Usage

arrivals_by_torres(

pop_density,

airport_weight,

total_passengers,

probability,

outfile,

return_rast = FALSE

)

Arguments

pop_density A RasterLayer or file path to a raster file containing population density.

airport_weight A RasterLayer or file path to a raster file containing distance from Cairns air-

port weights.

total_passengers

Integer. The number of passengers arriving to Cairns from Torres Strait.

probability Numeric. The probability a Torres Strait passenger carries a pest.

outfile Character. Output raster file path. If not provided, raster object will be returned

to R.

return_rast Logical. Should the raster object be returned to R? Ignored if outfile is not

provided.

Value

If outfile is specified, the resulting raster is saved as a to that path. If return_rast is TRUE or

outfile is not specified the resulting raster is returned, otherwise NULL is returned invisibly.

See Also

Other functions estimating arrivals: arrivals_by_containers(), arrivals_by_fertiliser(),

arrivals_by_food(), arrivals_by_machinery(), arrivals_by_mail(), arrivals_by_nurserystock(),

arrivals_by_residents(), arrivals_by_tourists(), arrivals_by_vessels()
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arrivals_by_tourists Estimates pest arrival due to tourists

Description

Estimates pest arrival due to tourists as a function of distance from airport and tourist accommoda-

tion.

Usage

arrivals_by_tourists(

tourist_beds,

airport_weights,

total_tourists,

probability,

outfile,

return_rast = FALSE

)

Arguments

tourist_beds A RasterLayer or file path to a raster file containing tourist bed numbers.

airport_weights

A RasterLayer or file path to a raster file containing airport distance weights.

total_tourists Integer. The number of tourists.

probability Numeric. The probability a tourist carries a pest.

outfile Character. Output raster file path. If not provided, raster object will be returned

to R.

return_rast Logical. Should the raster object be returned to R? Ignored if outfile is not

provided.

Value

If outfile is specified, the resulting raster is saved as a to that path. If return_rast is TRUE or

outfile is not specified the resulting raster is returned, otherwise NULL is returned invisibly.

See Also

Other functions estimating arrivals: arrivals_by_containers(), arrivals_by_fertiliser(),

arrivals_by_food(), arrivals_by_machinery(), arrivals_by_mail(), arrivals_by_nurserystock(),

arrivals_by_residents(), arrivals_by_torres(), arrivals_by_vessels()
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arrivals_by_vessels Estimates pest arrivals by vessels

Description

Estimates pest arrivals by vessels.

Usage

arrivals_by_vessels(

port_weight,

n_vessels,

probability,

outfile,

return_rast = FALSE

)

Arguments

port_weight A RasterLayer or file path to a raster file containing weights to be used to

distribute arrivals.

n_vessels Integer. The total number of vessels entering country.

probability Numeric. The probability a unit carries pest.

outfile Character. Output raster file path. If not provided, raster object will be returned

to R.

return_rast Logical. Should the raster object be returned to R? Ignored if outfile is not

provided.

Value

If outfile is specified, the resulting raster is saved as a to that path. If return_rast is TRUE or

outfile is not specified the resulting raster is returned, otherwise NULL is returned invisibly.

See Also

Other functions estimating arrivals: arrivals_by_containers(), arrivals_by_fertiliser(),

arrivals_by_food(), arrivals_by_machinery(), arrivals_by_mail(), arrivals_by_nurserystock(),

arrivals_by_residents(), arrivals_by_torres(), arrivals_by_tourists()

binarize_and_aggregate

Binarize a categorical raster and optionally aggregate

Description

Binarize a categorical raster and optionally aggregate and/or resample.
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Usage

binarize_and_aggregate(

infile,

rle,

outfile,

extent,

res,

categories,

overwrite = FALSE,

return_rast = FALSE,

quiet = FALSE

)

Arguments

infile Character. File path to a categorical raster. If rle is provided, infile must not

be provided.

rle A raster_rle object generated by rle_compress or a file path to such an ob-

ject saved as .rds.

outfile Character. The target file path for the binarized raster.

extent Output extent as an Extent object or an object from which an Extent object can

be extracted. If not provided, extent will be taken from input. If extent differs

from that of infile, new cells will be assigned value 1 if any original cells

belonging to categories have their centroids within the new cell.

res output resolution as a numeric vector of 1 or 2 elements, or a Raster* object

from which resolution can be extracted. If not provided, resolution will be taken

from input. If res differs from that of infile, new cells will be assigned value

1 if any original cells belonging to categories have their centroids within the

new cell.

categories Integer or numeric vector of class values to be laballed as 1 in the target raster.

overwrite Logical. Should outfile be overwritten if it exists?

return_rast Logical. Should the target raster be returned to R as a Raster layer (TRUE) or

not returned (FALSE)?

quiet Logical. Should progress messages be suppressed?

Value

A binarized raster layer is written to outfile, and if return_rast is TRUE, the raster is additionally

returned to R as a Raster layer.

calc_proportion Calculate raster cell values as proportions

Description

Calculates raster cell values as a proportion of the sum of all cells’ values.
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Usage

calc_proportion(rast)

Arguments

rast Raster object.

Value

A RasterLayer.

captured_by_ncells Calculate establishment likelihood captured in top n cells

Description

Calculate the proportion of establishment likelihood captured in top n cells.

Usage

captured_by_ncells(infiles, names, n_cells, all = TRUE)

Arguments

infiles Character vector. File path(s) to one or more raster files.

names Character vector. Names corresponding to infiles.

n_cells Integer. The number of cells to consider.

all Logical. If TRUE, return the proportion captured from 1 to n cells. If FALSE,

return the cumulative proportion.

Value

Proportion of establishment likelihood captured, or a vector of cumulative proportions.

combine_arrivals Sum arrivals across entry pathways

Description

Sums estimated arrivals rates across all entry pathways.

Usage

combine_arrivals(x, outfile, return_rast = FALSE)
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Arguments

x Character vector giving file path(s) to rasters to be included in the summation,

or a RasterStack containing those rasters. If a character vector of length > 1 is

provided, all rasters must have the same extent and resolution.

outfile Character. Output raster file path. If not provided, the RasterLayer will be

returned to R.

return_rast Logical. Should the RasterLayer be returned to R? Ignored if outfile is not

provided.

Value

If outfile is specified, the resulting RasterLayer is saved to outfile. If return_rast is TRUE

or outfile is not specified, the resulting RasterLayer is returned, otherwise NULL is returned

invisibly.

container_weights Creates a weight by postcode for each major port

Description

Creates a weight by postcode for each major port.

Usage

container_weights(

path,

sheet_nums,

range = "A7:M2217",

postcode_shp,

na = c("", "-", "np"),

outfile,

return_sf = FALSE

)

Arguments

path Character. File path to xls file containing containers by postcode for each port.

sheet_nums Integer. Vector of integers signifying the sheet numbers to read in.

range A cell range to read from, as described in cell-specification. Includes typ-

ical Excel ranges such as "B3:D87", possibly including the sheet name like

"Budget!B2:G14", and more. Interpreted strictly, even if the range forces the

inclusion of leading or trailing empty rows or columns.

postcode_shp Character. File path to postcode shape file.

na Character vector of strings to interpret as missing values. By default, readxl

treats blank cells as missing data.

outfile Character. Name of shapefile where output will be saved. If not provided, sf

object will be returned to R.

return_sf Logical. Should the sf object be returned to R? Ignored if outfile is not pro-

vided.
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Details

For the purposes of this analysis missing data (i.e. NAs) will be treated as zeroes.

Value

An sf object or shapefile export.

disperse_arrivals Disperse pest arrivals

Description

Disperses pest arrivals based on input raster.

Usage

disperse_arrivals(rast, n_vectors, probability)

Arguments

rast Raster object containing dispersal weights.

n_vectors Numeric. The number of transmission vectors (e.g. passengers).

probability Numeric. The probability a vector contains pest.

Value

A raster object.

download_worldclim2 Download climate layers from WorldClim 2.0

Description

Download climate layers from WorldClim 2.0 (current climate only).

Usage

download_worldclim2(outfile, variable, resolution)

Arguments

outfile Character. Target file for downloaded .zip archive.

variable Character. Can be one of "bio" (19 standard bioclim variables), "tmin", "tmax",

"tavg", "srad", "wind" or "vapr".

resolution Character. Can be one of "10m", "5m", "2.5m", or "30s".

Value

A zipfile is downloaded and NULL is returned invisibly.
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See Also

extract_worldclim2

Examples

## Not run:

download_worldclim2('bioclim_10m', 'bio', '10m')

## End(Not run)

establishment_likelihood

Estimate establishment likelihood

Description

Estimate the likelihood of pest establishment based on total arrivals and environmental suitability.

Usage

establishment_likelihood(

total_arrivals,

suitability,

outfile,

return_rast = FALSE

)

Arguments

total_arrivals A RasterLayer (or path to raster file) containing total arrival estimates.

suitability A RasterLayer (or path to raster file) containing suitability scores.

outfile Character. Output raster file path. If not provided, the RasterLayer will be

returned to R.

return_rast Logical. Should the RasterLayer be returned to R? Ignored if outfile is not

provided.

Value

If outfile is specified, the resulting RasterLayer is saved as to that path. If return_rast is

TRUE or outfile is not specified the resulting RasterLayer is returned, otherwise NULL is returned

invisibly.
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excel_to_plan Create a drake plan using tabular species data

Description

Import parameters from an Excel xlsx file and create a drake plan to estimate establishment likeli-

hoods.

Usage

excel_to_plan(file)

Arguments

file Character. File path to an xlsx file containing required parameters for creating a

species plan. See Details and species_plan for further information.

Details

To simplify reproducibility, edmaps provides an Excel interface for specifying species parameters

relevant to estimating establishment likelihood. An example spreadsheet is bundled with the pack-

age, available at the path given by system.file('extdata/parameters.xlsx',package='edmaps').

The spreadsheet has two sheets, the first specifying "global" parameters that will apply to all species

(e.g. file paths to rasters that will), be used regardless of species identity and the second specifying

parameters that can vary by species. In the second sheet, each row corresponds to a separate species.

Tooltips and data validation guide the user with respect to expected/allowable data.

Value

A drake plan with a combined workflow for all species.

exp_function Exponentiate raster values

Description

Apply exponential function to raster values.

Usage

exp_function(rast, beta)

Arguments

rast Raster object.

beta Numeric. The beta coefficient of a standard exponential function.

Value

A Raster object.
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extract_highest_ncells

Returns a raster with values for the n cells with highest establishment

likelihood

Description

Returns a raster with values only for the n cells with highest establishment likelihood.

Usage

extract_highest_ncells(infile, n_cells, outfile, return_rast = FALSE)

Arguments

infile File path to a raster containing estimated likelihoods of establishment or arrival.

n_cells Integer. The number of cells to return.

outfile Character. Output raster file path. If not provided, the RasterLayer will be

returned to R.

return_rast Logical. Should the RasterLayer be returned to R? Ignored if outfile is not

provided.

Details

This function returns a raster containing values for only the top n cells.

Value

If outfile is specified, the resulting RasterLayer is saved as to that path. If return_rast is TRUE

or outfile is not specified, the resulting RasterLayer is returned, otherwise NULL is returned

invisibly.

Warning

This function uses the quantile approach for determining the top n cells. As such, if risk is highly

aggregated this function may run into issues when n_cells is high.

extract_worldclim2 Extract WorldClim 2.0 data

Description

Extract WorldClim 2.0 data

Usage

extract_worldclim2(path_2_zip, outdir)
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Arguments

path_2_zip Character. Path to .zip archive downloaded by download_worldclim2.

outdir Character. File path to which contained files should be extracted. Will be created

(recursively) if necessary.

Value

Raster data are extracted to outdir and NULL is returned invisibly.

See Also

download_worldclim2

Examples

## Not run:

download_worldclim2('bioclim_10m.zip', 'bio', '10m')

extract_worldclim2('bioclim_10m.zip', outdir='bioclim')

## End(Not run)

fertiliser_by_nrm Create fertiliser by nrm sf object

Description

Create fertiliser by nrm sf object.

Usage

fertiliser_by_nrm(abs_data, nrm_shapefile, outfile, return_sf = FALSE)

Arguments

abs_data Character. File path to ABS .csv file.

nrm_shapefile Character. File path to NRM shapefile.

outfile Character. Name of shapefile (or other vector data format supported by OGR)

where output will be saved. If not provided, sf object will be returned to R.

return_sf Logical. Should the sf object be returned to R? Ignored if outfile is not pro-

vided.

Value

An sf object or vector data export.
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fertiliser_weight Create a fertiliser weight raster

Description

Create a fertiliser weight raster as a function of estimated nrm fertiliser tonnes and landuses.

Usage

fertiliser_weight(fert_nrm, fert_landuses, outfile, return_rast = FALSE)

Arguments

fert_nrm A file path to vector data or an sf object.

fert_landuses A file path to raster file or a RasterLayer object.

outfile Character. Output raster file path. If not provided, RasterLayer will be returned

to R.

return_rast Logical. Should the RasterLayer be returned to R? Ignored if outfile is not

provided.

Value

If outfile is specified, the resulting RasterLayer is saved as to that path. If return_rast is TRUE

or outfile is not specified, the resulting RasterLayer is returned, otherwise NULL is returned

invisibly.

fill_na Modify NAs within neighbourhood of data cells

Description

Apply a function to NA cells within a moving window.

Usage

fill_na(x, fun, w, outfile, return_rast = FALSE, overwrite = FALSE)

Arguments

x A Raster* object.

fun The function (name or symbol) to apply to the moving windows. First argument

should represent the vector of cells contained in the focal window. Only non-NA

cell values will be passed to the function.

w A weights matrix (see focalWeight and focal defining the focal window to

which fun will be applied. Note that all contributing cells will be given equal

weight (i.e. varying weights are not respected - non-zero & non-NA weights

will be replaced by 1).

outfile Character. File path to an output raster file. If missing, a temporary file will be

used.

return_rast Logical. Should the RasterLayer be returned to R?

overwrite Logical. Should outfile be replaced if it already exists?
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Details

NA values within focal blocks will be ignored. Raster edges will be NA-padded to allow focal

computations at the edge (see focal.

Value

Returns the resulting RasterLayer if return_rast is TRUE. Returns the output file path otherwise.

gdal_reproject Reproject and resample a raster

Description

This function can be used to change resolution, projection and extent of a raster.

Usage

gdal_reproject(

infile,

outfile,

src_proj,

tgt_proj,

res,

resampling_method = "near",

tgt_extent,

buffer,

src_nodata,

datatype = "Float32",

return_rast = FALSE,

overwrite = TRUE

)

Arguments

infile Character. File path to a raster file.

outfile Character. Output raster file path.

src_proj Character. The source file coordinate system. Only needs to be set if you wish

to reproject object and it is not specified in the infile. The coordinate systems

that can be passed includes EPSG PCS and GCSes (i.e. EPSG:4296), PROJ.4

declarations (as above), or the name of a .prj file containing well known text.

Starting with GDAL 2.2, if the SRS has an explicit vertical datum that points

to a PROJ.4 geoidgrids, and the input dataset is a single band dataset, a vertical

correction will be applied to the values of the dataset.

tgt_proj Character. The target coordinate system. See src_proj for details. If not speci-

fied, outfile will inherit the coordinate system of infile.

res Numeric vector containing x and y resolution. e.g. c(xres,yres). Must be

specified in the units of tgt_proj.



gdal_reproject 23

resampling_method

Character. One of "near", "bilinear", "cubic", "cubicspline", "lanczos",

"average", "mode", "max", "min", "med", "q1", "q3". See Details. Default is

"near".

tgt_extent Numeric vector containing corner coordinates specified as c(xmin,ymin,xmax,ymax).

Must be specified in the units of tgt_proj.

buffer Numeric. Add buffer (specified in units of tgt_proj). Useful for adding buffers

around coasts, and for filling in small gaps within raster specified by infile.

src_nodata Integer. The nodata value for an input file.

datatype A character string indicating the output data type. See the gdalwarp docs for

more information.

return_rast Logical. Return RaserLayer to R?

overwrite Logical. Should outfile be overwritten if it already exists?

Details

The resampling methods available are as follows:

• near: nearest neighbour resampling (default, fastest algorithm, worst interpolation quality).

• bilinear: bilinear resampling.

• cubic: cubic resampling.

• cubicspline: cubic spline resampling.

• lanczos: Lanczos windowed sinc resampling.

• average: average resampling, computes the average of all non-NODATA contributing pixels.

(GDAL >= 1.10.0).

• mode: mode resampling, selects the value which appears most often of all the sampled points.

(GDAL >= 1.10.0).

• max: maximum resampling, selects the maximum value from all non-NODATA contributing

pixels. (GDAL >= 2.0.0).

• min: minimum resampling, selects the minimum value from all non-NODATA contributing

pixels. (GDAL >= 2.0.0).

• med: median resampling, selects the median value of all non-NODATA contributing pixels.

(GDAL >= 2.0.0).

• q1: first quartile resampling, selects the first quartile value of all non-NODATA contributing

pixels. (GDAL >= 2.0.0).

• q3: third quartile resampling, selects the third quartile value of all non-NODATA contributing

pixels. (GDAL >= 2.0.0).

Value

_rast A raster file is produced on disk. Additionally, if return_rast is TRUE a RasterLayer object

is returned to R.
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get_airport_dist Estimate distance to nearest Australian international airport

Description

Generates a raster proximity map indicating the distance from the center of each pixel to the centre

of the nearest pixel containing a major airport. Airport coordinates are in the source raster.

Usage

get_airport_dist(

vector_data,

outfile,

template_raster,

extent,

res,

crs,

airport_codes,

return_rast = FALSE,

overwrite = FALSE

)

Arguments

vector_data Character. Path to airport data (available here).

outfile Character. Output raster file path. Directory will be created recursively if it does

not exist.

template_raster

Optional. Raster* object or a file path to template raster. If this is provided,

extent, res, and crs will be taken from this raster unless they are also passed to

this function. If template_raster is not provided, then extent and res must

be provided. The template raster will also be used to mask the output raster so

that NA cell values will be propagated.

extent Either a character path to a raster file, an Extent object (or an object from which

such an extent can be extracted), or a numeric vector with four elements giving

xmin, xmax, ymin, ymax.

res Numeric or integer vector giving the horizontal and vertical spatial resolution,

in units of crs. If a single value is given, it will be used for both horizontal and

vertical resolution.

crs Target coordinate reference system as a PROJ string (character) or an object of

class CRS.

airport_codes Numeric. Airport codes to be used as targets in order to estimate cell proximity.

return_rast Logical. Return RasterLayer to R?

overwrite Logical. Should outfile be removed if it already exists?
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Value

A proximity raster is written to outfile. If return_rast is TRUE, the raster object is also returned

to R, otherwise NULL is returned invisibly. This function assumes that crs is either an unprojected

coordinate system, or that the units of crs are metres. Resulting distances are expressed in kilome-

tres.

get_gbif_records Downloads GBIF records of species

Description

Downloads GBIF records of species, removing auxiliary columns and records recorded prior to a

specified year, or that have coordinate uncertainty above a specified amount.

Usage

get_gbif_records(

taxon,

min_year,

coord_uncertainty,

method = c("search", "download"),

username,

pwd,

email,

retries = 10,

cleanup = TRUE

)

Arguments

taxon Character. Species taxonomic name.

min_year Integer. The minimum year for which records should be collated. Default is

‘NULL‘, i.e. no minimum.

coord_uncertainty

Integer. The maximum allowable documented coordinate uncertainty (in me-

tres). If specified, this argument will result in removal of any records that have

a documented uncertainty above this limit. Records with no uncertainty docu-

mented will be returned regardless of the value of ‘coord_uncertainty‘.

method Either ‘’search’‘ (uses the GBIF ‘/occurrence/search‘ API endpoint) or ‘’down-

load’‘ (uses the GBIF ‘/occurrence/download‘API endpoint). The former makes

paginated queries to the API, while the latter performs an asynchronous query

(but waits for the resulting dataset to be ready for download). The ‘’search’‘

method is limited to 100,000 records; for large datasets, consider using ‘’down-

load’‘. When using ‘method=’download’‘, the arguments ‘username‘, ‘pwd‘,

and ‘email‘ must be provided.

username GBIF username, required when method is ‘’download’‘.

pwd GBIF password, required when method is ‘’download’‘.

email Email address, required when ‘method = ’download’‘. This _may_ be used to

notify user when download is ready.



26 initialise_raster

retries If ‘method=’download’‘ and file download fails, how many additional attempts

should be made to download the file?

cleanup Logical. Should temporary files associated with ‘method=’download’‘ be deleted?

Default is ‘TRUE‘.

Details

This function is a wrapper of ‘rgbif‘ such that it can be readily used with the ‘CoordinateCleaner‘

package.

Value

A ‘data.frame‘ of species occurrence records.

initialise_raster Create an empty raster

Description

Create an empty or constant raster with specified attributes.

Usage

initialise_raster(

x,

outfile,

extent,

res,

crs,

init = NA,

datatype = "FLT4S",

overwrite = TRUE,

return_rast = FALSE

)

Arguments

x Optional. Raster* object or a file path to template raster. If this is provided,

extent, res, and crs will be taken from this raster unless they are also passed

to this function. If x is not provided, then extent and res must be provided.

outfile Target raster file path. Directory will be created (recursively) if it doesn’t exist.

extent Either a character path to a raster file, an Extent object (or an object from which

such an extent can be extracted), or a numeric vector with four elements giving

xmin, xmax, ymin, ymax.

res Numeric or integer vector giving the horizontal and vertical spatial resolution of

the target raster, in units of crs. If a single value is given, it will be used for

both horizontal and vertical resolution.

crs Target coordinate reference system as a PROJ string (character) or an object of

class CRS. If missing and x is supplied, the crs of x will be used.

init Numeric. A value assigned to all cells of the created raster.
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datatype Character. Data type for the created raster. See dataType.

overwrite Logical. Should outfile be overwritten if it exists?

return_rast Logical. Should the resulting raster be returned?

Value

An empty raster is created at outfile, and the corresponding RasterLayer is returned if return_rast

is TRUE.

interactive_map Produce an interactive html map

Description

Produce an interactive html map.

Usage

interactive_map(

ras,

layer_name = NULL,

palette = "inferno",

transparency = 0.8,

legend = TRUE,

set_value_range = NULL,

discrete = FALSE,

scale_type = "none",

outfile = NULL,

surveillance_locs = NULL,

pt_col = "red",

cleanup = FALSE

)

Arguments

ras A RasterLayer or file path to a raster file.

layer_name Character. An optional name to assign to ras.

palette Either a vector of 2 or more colours (e.g. as hex codes or colour names) or

the name of a palette function supported by tmap (see palette_explorer and

tm_raster).

transparency Numeric. Value between 0 and 1 defining the opacity of the plotted raster data

(1 = fully opaque; 0 = fully transparent).

legend Logical. Should a legend be plotted?

set_value_range

A numeric vector giving upper and lower limits for raster values. Values outside

this range (including the limits) will be set to NA.

discrete Logical. Are the values of ras discrete (categorical)?
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scale_type Character. Can be one of: "none" (raw data, no rescaling), "log10", "max

normalize" (proportional to maximum value), "minmax normalize" (rescale

values to be between 0 and 1 based on min and max) or "logit". Note that if

"log10" or "logit" is used, 0 or 1 values must be masked ( using set_value_range)

or rescaled before passing to this function. scale_type is ignored if discrete

is TRUE.

outfile Character. If NULL, map will be returned to R and not saved. Otherwise, map

will be exported as a html file. Full path address must be used. If pandoc is

available, a standalone html file is created (see details).

surveillance_locs

A spatial object or a path to a .csv file containing columns named "Latitude" and

"Longitude".

pt_col Character. The plotting colour for surveillance points.

cleanup Logical. If a standalone html file is created, should accessory files be removed

after the standalone file is generated? This will be a folder created within

tempdir().

Details

To create a standalone html file, the pandoc software must be installed and available to R. If pandoc

is unavailable, the html file will be accompanied by a folder of accessory files.

Value

A html map.

max_normalize Raster max normalization

Description

Rescales raster values such that maximum is 1.

Usage

max_normalize(rast, outfile)

Arguments

rast Raster object.

outfile Character. Output raster file path. If not specified, the resulting RasterLayer

will be returned to R. Directory will be created recursively if required.

Value

A normalised RasterLayer will be written to outfile if specified, and returned to R otherwise.
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min_max_normalize Raster min-max normalization

Description

Performs a min-max normalization on a raster object.

Usage

min_max_normalize(rast, outfile)

Arguments

rast Raster object.

outfile Character. Output raster file path. If not specified, the resulting RasterLayer

will be returned to R. Directory will be created recursively if required.

Value

A normalised RasterLayer will be written to outfile if specified, and returned to R otherwise.

na_mask Create a mask raster

Description

Create a mask raster, retaining NA and setting all non-NA cells to 1. Input raster will be resampled

if necessary, using "max" resampling (i.e. if any contributing cells are not NA, the new cell will be

set to 1).

Usage

na_mask(infile, outfile, res, extent)

Arguments

infile Character. File path to input raster file.

outfile Character. Output raster file path. Directory will be created (recursively) if it

doesn’t exist.

res Numeric. A vector of one or two numbers giving the desired output resolution.

If missing, the input resolution will be used. If a single number is provided, it

will be used for both horizontal and vertical resolution.

extent One of of: a numeric vector giving the desired extent of the output raster as

c(xmin,xmax,ymin,ymax); an Extent object; or an object from which such an

Extent object can be extracted.

Value

A raster is written to outfile, with NA cells transferred from infile and all other cells set to 1.
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ncells_4_threshold Extract number of cells required to meet threshold proportion of risk

Description

Extract number of cells required to meet threshold proportion of risk.

Usage

ncells_4_threshold(

risk_rasters,

names,

proportion_captured = c(0.6, 0.8, 0.9, 0.95)

)

Arguments

risk_rasters Character. File path(s) to rasters to be loaded.

names Character. Names corresponding to infiles.

proportion_captured

Numeric vector. Proportion(s) of risk to be captured.

Value

A data.frame containing the number of cells to be trapped to capture given proportion(s) of total

risk across multiple input files.

plan_globals Create a drake plan describing targets relating to global parameters

Description

Create a drake plan that describes targets relating to global parameters to be used by individual

species plans.

Usage

plan_globals(

clum_path,

nvis_path,

ndvi_path,

fertiliser_data_path,

nrm_path,

containers_data_path,

postcode_path,

airport_beta,

airport_tsi_beta

)
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Arguments

clum_path Character. File path to Catchment Scale Land Use of Australia (ACLUM) raster.

nvis_path Character. File path to the National Vegetation Information System (NVIS)

raster dataset.

ndvi_path Character. File path to the Normalised Difference Vegetation Index (NDVI)

raster dataset.

fertiliser_data_path

Character. File path to a csv containing data describing fertiliser use, available

here.

nrm_path Character. File path to shapefile of Natural Resource Management Regions.

containers_data_path

Character. File path to xlsx file containing data about shipping container move-

ments, available here.

postcode_path Character. File path to postal areas (i.e. post codes) shapefile, available here.

airport_beta Numeric. Parameter controlling the distribution of tourists (international air pas-

sengers) around Australian international airports. Distance to nearest airport is

multiplied by this value and exponentiated to give the relative density of tourists

at a location. To generate a distribution that ensures proportion p of tourists

within distance d of nearest airport, specify airport_beta=log(p)/d (e.g. to

have 50 of an airport, use log(0.5)/200).

airport_tsi_beta

Numeric. Interpretation is as for airport_beta, but applies to air passengers

arriving at Cairns International Airport (CNS) from the Torres Strait Islands.

Value

A drake plan containing targets that generate objects used across species.

plot_establishment_captured

Plots the cumulative proportion of establishment likelihood captured

Description

Plots the cumulative proportion of establishment likelihood captured as a greater number of top

ranking risk cells is considered.

Usage

plot_establishment_captured(

data,

xlab = "Number of cells",

ylab = "Proportion",

legend_title = NULL,

legend = "right",

prop_line,

y_limit = NULL,

width = NA,



32 plot_raster

height = NA,

units = c("in", "cm", "mm"),

outfile

)

Arguments

data A data.frame as derived from captured_by_ncells.

xlab Character. x axis label.

ylab Character. y axis label.

legend_title Character. Optional legend title.

legend Legend position. Either a position name (one of "none", "top", "bottom",

"left", or "right", or a vector of two normalised coordinates ranging from 0

to 1, e.g. c(1,0) (for bottom-right).

prop_line Numeric. Proportion in which to add a vertical line. Default is NULL (no line).

y_limit Numeric vector giving the minimum and maximum y-axis limits. If omitted this

will be determined based on the data.

width Width of plot. If not defined will use size of current graphic device.

height Height of plot. If not defined will use size of current graphic device.

units Character. Units corresponding to height and width. Can be "in", "cm", or

"mm". Default is inches ("in").

outfile Character. Output image file path. Containing directory will be created recur-

sively if it does not already exist.

Value

An image is written to outfile if provided, and otherwise a ggplot object is returned.

plot_raster Plot a raster

Description

Plot a raster.

Usage

plot_raster(

object,

legend_title,

occurrence_data = NULL,

pt_col = "red",

height,

units = c("in", "cm", "mm"),

compass = FALSE,

outfile

)
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Arguments

object A RasterLayer or file path to raster file.

legend_title Character. If missing, the name of the raster layer will be used.

occurrence_data

A data.frame, sf object, SpatialPointsDataFrame object, or path to a .csv

file containing columns named "Latitude" and "Longitude". If NULL, no points

will be plotted.

pt_col Character. Colour of points (if plotted).

height Height of plot, specified in units. Required if outfile is provided.

units Character. Units corresponding to height and width. Can be "in", "cm", or

"mm". Default is inches ("in").

compass Logical. Should a North arrow be shown?

outfile Character. Path to save output.

Value

A tmap object. If outfile is provided, a map will also be written to that file.

port_weights Create raster giving the establishment likelihoods relating to ports.

Description

Creates spatial port establishment likelihood raster as a function of port container volumes and

distance from port.

Usage

port_weights(template_raster, port_data, beta, outfile, return_rast = FALSE)

Arguments

template_raster

A RasterLayer or path to supported raster file.

port_data Character. Path to csv file containing port container volumes and named Latitude

and Longitude (in WGS84) for each port of interest.

beta Numeric. The beta coefficient exponential function of how risk changes with

distance from port. beta should be in units per 1km.

outfile Character. Output raster file path. Directory will be created if it does not exist.If

not provided, object will be returned to R.

return_rast Logical. Should the resulting raster be returned to R? Ignored if outfile is not

provided.

Value

If outfile is specified, the resulting raster is saved as a geotiff to that path. If return_rast is TRUE

or outfile is not specified the resulting raster is returned, otherwise NULL is returned invisibly.
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range_bag Fit and project range bag model

Description

Fit and project range bag model.

Usage

range_bag(

occurrence_data,

bioclim_dir,

n_dims = 2,

n_models = 100,

p = 0.5,

exclude_vars = NULL,

outfile

)

Arguments

occurrence_data

sf object, data.frame or character path to a csv file containing occurrence

coordinates (must contain columns named "Latitude" and "Longitude").

bioclim_dir Path. Path to directory containing WorldClim raster data.

n_dims Integer. The number of dimensions ranges to bag.

n_models Integer. The number of bootstrapped model ensembles to run.

p Numeric between 0 and 1. The proportion of occurrence records to include in

bootstrapping .

exclude_vars Character vector. A vector of bioclim variables to exclude from analysis. De-

fault is NULL.

outfile Character. Output raster file path. Parent directory will be created recursively if

required. If NULL, the RasterLayer will be returned in R.

Value

A RasterLayer of model predictions is written to outfile if provided, and returned to R otherwise.

The raster’s extent, resolution and CRS are taken from the raster data in bioclim_dir. Cell values

give the fraction of bootstrapped models for which the cell’s environment fell within the species’

modelled climate envelope.

References

This function is a modified version of the rb function provided in Drake, J.M. & Richards, R.L.

(2019) Data from: Estimating environmental suitability. Dryad, Dataset, doi:10.5061/dryad.g5p7d1c.

See also: Drake, J.M. (2015) Range bagging: a new method for ecological niche modelling from

presence-only data. Journal of the Royal Society Interface, 12(107), 20150086. doi:https://doi.org/10.1098/rsif.2015.0086.
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rasterize_vector Rasterize spatial vector dataset

Description

Converts vector object to a raster with specified extent and resolution.

Usage

rasterize_vector(

vector_data,

outfile,

template_raster,

extent,

res,

crs,

field,

burn_value,

datatype = "Float32",

overwrite = FALSE,

return_rast = FALSE

)

Arguments

vector_data Character. File path to vector spatial data.

outfile Raster output file path. Parent directory will be created recursively if required.

template_raster

Optional. Raster* object or a file path to template raster. If this is provided,

extent, res, and crs will be taken from this raster unless they are also passed

to this function. If x is not provided, then extent and res must be provided.

extent Either a character path to a raster file, an Extent object (or an object from which

such an extent can be extracted), or a numeric vector with four elements giving

xmin, xmax, ymin, ymax.

res Numeric or integer vector giving the horizontal and vertical spatial resolution of

the target raster, in units of crs. If a single value is given, it will be used for

both horizontal and vertical resolution.

crs Target coordinate reference system as a PROJ string (character) an object of

class CRS. If missing and template_raster is supplied, the crs of template_raster

will be used. If template_raster is also not supplied, the CRS of vector_data

will be used.

field Character. Name of attribute to be burned into raster.

burn_value Numeric. A constant value to burn into raster.

datatype Character. Output data type (see gdal_rasterize documentation).

overwrite Logical. Should outfile be overwritten if it exists?

return_rast Logical. Return object to R?
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Value

A binarized raster is written to outfile, and returned to R as a RasterLayer if return_rast is

TRUE.

record_flagger Flags records that occur in countries that are not reported in either

infected_countries or CABI datasheet

Description

‘record_flagger‘ cross references occurrence records against either a vector of country names with

established populations specified in ‘infected_countries‘ or those presented in a CABI distribution

file. It will then either flag or automatically remove occurrence records that occur in countries

outside one of these lists.

Usage

record_flagger(

occurrence_records,

infected_countries,

cabi_ref,

manual_check = FALSE,

return_df = FALSE

)

Arguments

occurrence_records

A ‘data.frame‘, ‘sf‘ object or ‘SpatialPoints*‘ object, or a path to a .csv file

containing the locations of species of interest. (If a ‘data.frame‘ is provided, it

must contain the named columns "Latitude" and "Longitude").

infected_countries

Character vector of countries with known established populations.

cabi_ref Character. The path to a .csv file downloaded from a CABI datasheet containing

the country-scale distributional data for the pest. Note that if infected_countries

the CABI data will not be used.

manual_check Logical. Allows interactive selection of which unverified points to retain. In-

teractive map will only be produced if unverified records are present and if this

argument is set to ‘TRUE‘.

return_df Logical. Return the object as a ‘data.frame‘ or as an ‘sf‘ object (i.e. ‘TRUE‘,

the default).

Value

A ‘data.frame‘ or an ‘sf‘ points object flagging records found in countries in which do not occur in

infected_countries OR is not reported as being present in CABI.
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rle_compress Compress raster data using run length encoding

Description

Compress categorical raster data using run length encoding.

Usage

rle_compress(x, outfile, quiet = FALSE)

Arguments

x File path to the categorical raster to be compressed, or a Raster* object.

outfile Character (optional). Path to target .rds file that will store RLE results. Directory

will be created recursively if it doesn’t exist.

quiet Logical. Should progress messages be suppressed?

Value

A list with five elements:

starts Cell numbers corresponding to run starts

lengths Run lengths

values Run values

extent Raster extent

res Raster resolution

This object is additionally saved in rds format to outfile, if provided.

species_plan Generate a drake plan for a species

Description

Generate a drake plan that facilitates reproducible generation of species outputs.

Usage

species_plan(

species,

clum_classes,

nvis_classes,

pathways,

include_abiotic_weight = TRUE,

climate_suitability_path,

exclude_bioclim_vars = NULL,

include_ndvi = TRUE,
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aggregated_res = c(5000, 5000),

make_interactive_maps = TRUE,

clum_path,

nvis_path,

ndvi_path,

airport_beta = log(0.5)/200,

airport_tsi_beta = log(0.5)/10,

port_data_path,

port_weight_beta,

fertiliser_data_path,

nrm_path,

containers_data_path,

postcode_path,

occurrence_path,

infected_countries,

cabi_path,

use_gbif = FALSE,

gbif_species,

gbif_min_year = 1970,

gbif_max_uncertainty = 20000,

manual_check_flagged_records = FALSE,

total_tourists,

prob_tourists,

total_returning,

prob_returning,

total_torres,

prob_torres,

total_mail,

prob_mail,

total_vessels,

prob_vessels,

total_fertiliser,

prob_fertiliser,

total_machinery,

prob_machinery,

prob_containers,

total_nurserystock,

prob_nurserystock,

total_food,

prob_food

)

Arguments

species The name of the species. This will be used for naming output files and folders.

clum_classes An integer vector indicating which ACLUM classes are considered host plants

for species. Either clum_classes or nvis_classes (or both) must be pro-

vided.

nvis_classes An integer vector indicating which NVIS classes are considered host plants for

species. Either clum_classes or nvis_classes (or both) must be provided.

pathways A character vector of invasion pathways that should be included. Can be one

or more of: 'containers', 'fertiliser', 'food', 'machinery', 'mail',
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'nurserystock', 'residents', 'torres', 'tourists', 'vessels'.

include_abiotic_weight

Logical. Should suitability be dependent on climate? Considered TRUE if

climate_suitability_path is provided, or if use_gbif is TRUE.

climate_suitability_path

Optional file path to a raster describing climatic suitability across the landscape.

If provided, the raster must be have the Australian Albers coordinate system

(EPSG:3577), spatial resolution of 1000 m, and must have xmin = -1888000,

xmax = 2122000, ymin =-4847000, ymax = -1010000. If not provided and

include_abiotic_weight is TRUE, a range bag model will be fit to estimate

climatic suitability.

exclude_bioclim_vars

Character vector of bioclim variables that should not be used when fitting a range

bag model (see range_bag) of climatic suitability. Variables should be speci-

fied as, e.g., c("bio01","bio12"). Ignored if climate_suitability_path is

provided.

include_ndvi Logical. Should biotic suitability be dependent on NDVI?

aggregated_res A numeric vector of 2 elements, indicating the desired resolution of aggregated

establishment likelihood rasters, in metres.

make_interactive_maps

Logical. Should interactive html maps be generated?

clum_path Path to the ACLUM raster.

nvis_path Path to the NVIS raster.

ndvi_path Path to the NDVI raster.

airport_beta Numeric. Parameter controlling the distribution of international tourists pas-

sengers around international airport. Default is log(0.5)/200 (i.e. 50% of

passengers within 200km of airport).

airport_tsi_beta

Numeric. Parameter controlling the distribution of Torres Strait passengers

around Cairns airport. Default is log(0.5)/10 (i.e., 50% of passengers within

10km of Cairns airport).

port_data_path File path to the marine ports .csv file.

port_weight_beta

Numeric. Defines the decay rate of an exponential model. In the context of

pests entering via the vessel pathway, this reflects the decrease in the relative

likelihood of pest arrival at locations distant from marine ports. For example,

prob_weight_beta=log(0.5)/10 would lead to distance-decay that leads to

50% (i.e. 0.5) of establishment likelihood (prior to considering other relevant

pathways) within a distance of 10 map units (i.e., 10 kilometres when res is

1000).

fertiliser_data_path

File path to a csv file containing information about fertiliser usage by NRM.

nrm_path File path to a polygon shapefile of NRMs (natural resource management areas).

containers_data_path

File path to the dataset giving the distribution of containers by postcode.

postcode_path File path to postal areas shapefile.

occurrence_path

Path to a .csv file containing occurrence data. Must include columns Longitude,

Latitude, and Species.
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infected_countries

A character vector of countries within which the species occurs. Ignored if

climate_suitability_path is provided.Only one of infected_countries or

cabi_path should be provided.

cabi_path Path to a .csv file downloaded from CABI, indicating the countries within which

the species occurs. Download links to these files can be found at the bottom of

CABI species datasheet webpages, e.g. https://www.cabi.org/isc/datasheet/17685.

Ignored if climate_suitability_path is provided. Only one of infected_countries

or cabi_path should be provided.

use_gbif Logical. Should species occurrence records be sourced from GBIF? Ignored if

climate_suitability_path is provided.

gbif_species Character vector. Taxon names to use when querying GBIF. Ignored if climate_suitability_path

is provided.

gbif_min_year Integer. The minimum year (yyyy) to be included when downloading GBIF

data. Ignored if climate_suitability_path is provided.

gbif_max_uncertainty

Numeric. The maximum permissable coordinate uncertainty for GBIF records.

Ignored if climate_suitability_path is provided.

manual_check_flagged_records

Logical. Should an interactive map be used for manually checking flagged oc-

currence records? If TRUE, the user will have the opportunity to select dubi-

ous points (i.e. occurrences in countries for which CABI has no record of the

species’ establishment), to be retained. If FALSE (the default), all such dubious

points will be excluded. Ignored if climate_suitability_path is provided.

Note that manual checking is not possible when using excel_to_plan since the

required interactivity will interrupt plan processing.

total_tourists Numeric. The total number of tourists entering Australia.

prob_tourists Numeric. The per capita rate of pest entry that applies to tourists.

total_returning

Numeric. The total number of returnig residents entering Australia.

prob_returning Numeric. The per capita rate of pest entry that applies to returning residents.

total_torres Numeric. The total number of passenges entering Australia via the Torres Strait

Islands pathway.

prob_torres Numeric. The per capita rate of pest entry that applies to passengers entering

via the Torres Strait Islands pathway.

total_mail Numeric. The total volume of mail entering Australia.

prob_mail The rate of pest entry per unit volume of mail.

total_vessels Numeric. The total volume of marine vessels entering Australia.

prob_vessels The rate of pest entry per vessel.

total_fertiliser

Numeric. The total volume of fertiliser entering Australia.

prob_fertiliser

The rate of pest entry per unit volume of fertiliser.

total_machinery

Numeric. The total volume of machinery entering Australia.

prob_machinery The rate of pest entry per unit volume of machinery.
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prob_containers

The rate of pest entry per container.

total_nurserystock

Numeric. The total volume of nursery stock entering Australia.

prob_nurserystock

The rate of pest entry per unit volume of nursery stock.

total_food Numeric. The total volume of food entering Australia.

prob_food The rate of pest entry per unit volume of food.

Details

To simplify reproducibility, edmaps provides an Excel interface for specifying species parameters

relevant to estimating establishment likelihood. An example spreadsheet is bundled with the pack-

age, available at the path given by system.file('extdata/parameters.xlsx',package='edmaps').

The spreadsheet has two sheets, the first specifying "global" parameters that will apply to all species

(e.g. file paths to rasters that will), be used regardless of species identity and the second specifying

parameters that can vary by species. In the second sheet, each row corresponds to a separate species.

Tooltips and data validation guide the user with respect to expected/allowable data.

See Also

excel_to_plan

static_map Produce a static map of establishment likelihood

Description

Produce a static map of establishment likelihood, with OpenStreetMap base layer.

Usage

static_map(

ras,

xlim,

ylim,

layer,

legend_title,

set_value_range,

scale_type = "none",

transparency = 0.7,

colramp_entire_range = TRUE,

surveillance_locs,

pt_col = "red",

aggregate_raster,

height,

units = c("in", "cm", "mm"),

outfile

)
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Arguments

ras A RasterLayer or file path to a raster file.

xlim Numeric vector. The longitudinal extent of the area to plot.

ylim Numeric vector. The latitudinal extent of the area to plot.

layer Character. A layer name to be plotted. Only relevant if loading a RasterStack

or RasterBrick.

legend_title Character. Legend title.

set_value_range

A numeric vector containing an upper and lower bound value (in units of raster).

Values outside this range (including values falling on the boundaries) will be

masked.

scale_type Character. Can be: "none" (raw data, no rescaling), "log10", "max normalize"

(proportional to maximum value), "minmax normalize" (rescale values to be

between zero and 1 based on min and max), or "logit". Note that if "log10"

or "logit" is used 0 or 1 values. must be masked (using set_value_range) or

rescaled outside of this function.

transparency Numeric. Transparency of raster, between 0-1.

colramp_entire_range

Logical. Whether to set colour ramp limits based on national risk range (TRUE)

or by risk range present in region specified by xlim and ylim.

surveillance_locs

A spatial object or a path to a .csv file containing columns named "Latitude" and

"Longitude".

pt_col Character. The plotting colour for surveillance points.

aggregate_raster

NULL or a list containing the aggregation factor (i.e. number of raster cells to

aggregate) and the aggregation function e.g. list(10,sum).

height height of plot. If not defined will use size of current graphic device. Width will

be dertermined automatically, based on the aspect ratio given by the plotting

extent.

units Character. Units in which height is specified. Can be "in" (inches), "cm", or

"mm". Default is "in".

outfile Character. File path to save map.

Details

This function relies on the OpenStreetMap package to obtain base layer tiles. This in turn requires

Java to be installed, and linking R with Java can sometimes prove challenging. On macOS, Java

errors can often be resolved by entering sudo R CMD javareconf in a terminal ( which updates R’s

Java configuration variables). On Windows, ensure that the Java architecture (32-bit/64-bit) matches

that of R. Additionally, some Java errors arise when using RStudio but not when using R.

Value

If outfile is provided, a map is saved to that file. Otherwise, a tmap object is returned to R.
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step_function Apply a step function to raster values

Description

Reclassify raster values either side of a defined threshold value.

Usage

step_function(rast, threshold, lower_value, upper_value)

Arguments

rast Raster object

threshold Numeric. The threshold value.

lower_value Numeric. The value to set below the threshold.

upper_value Numeric. The value to set above the threshold.

Value

A raster object

suitability Combine abiotic and biotic layers to create suitability raster

Description

Combine biotic (and abiotic) layers into a single suitability raster to be used to scale arrival rates.

Usage

suitability(x, outfile, return_rast = FALSE)

Arguments

x One of: a RasterStack; a RasterBrick; a list of RasterLayer objects, or a

vector of file paths to raster files.

outfile Character. Name of geotiff where output will be saved. If not provided, raster

object will be returned to R.

return_rast Logical. Should the raster object be returned to R? Ignored if outfile is not

provided.

Value

If outfile is specified, the resulting raster is saved as a geotiff to that path. If return_rast is TRUE

or outfile is not specified the resulting raster is returned, otherwise NULL is returned invisibly.
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surveillance_coverage Calculate the proportion of total establishment likelihood captured by

current surveillance

Description

Calculate the proportion of total establishment likelihood captured by current surveillance.

Usage

surveillance_coverage(

establishment_rasters,

layer_names,

surveillance_locations

)

Arguments

establishment_rasters

Character vector. A vector of one or more file path to rasters describing estab-

lishment likelihood.

layer_names Character. Name to be assigned to each establishment raster. If not specified,

names of the raster layers will be used.

surveillance_locations

Character. Path to a csv file containing surveillance locations, including columns

titled "Longitude" and "Latitude" with coordinates given in decimal degrees

(GDA94).

Value

The proportion of establishment likelihood captured by current surveillance.

threshold_raster Threshold raster

Description

Threshold raster.

Usage

threshold_raster(rast, threshold, value = 0, outfile)
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Arguments

rast A file path to a raster file.

threshold A named list giving the minimum and/or maximum values defining the range of

values to retain. Values outside this range will be replaced with value. Can be

list(min = Y,max = Z) or list(min = Y) or list(max = Z).

value Numeric. The value supplied to cells beyond the threshold(s).

outfile Character. Output raster file path. Parent directory will be created recursively if

required. If outfile is not provided, the resulting RasterLayer will be returned

to R.

Value

A RasterLayer will be written to outfile if provided, and returned to R otherwise.

weight_airport_dist Transform airport distances

Description

Transform airport distances according to a negative exponential function.

Usage

weight_airport_dist(

airport_dist,

beta = log(0.5)/200,

outfile,

overwrite = FALSE,

return_rast = FALSE

)

Arguments

airport_dist Character. File path to a raster file containing proximity to airports. Map units

are expected to be kilometres.

beta Numeric. Parameter passed to the exponential function. Distance to nearest

airport is multiplied by this value and exponentiated to give the relative density

of tourists at a location. To generate a distribution that ensures proportion p of

tourists within distance d of nearest airport, specify airport_beta=log(p)/d

(e.g. to have 50 tourists within 200 km of an airport, use log(0.5)/200).

outfile Character. Output raster file path. If missing, object will be returned to R.

overwrite Logical. Overwite the target raster if it already exists?

return_rast Logical. Should the raster object be returned to R?

Value

If return_rast is TRUE, or if outfile is missing, the resulting RasterLayer object will be re-

turned. Otherwise NULL is returned invisibly.
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