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Glossary

Term Definition

Parameter A parameter is a numerical attribute relating to the entire
population of interest. In a border inspection setting, the
numerical attribute that we wish to estimate is often the in-
festation rate of incoming consignments.

Infestation rate The infestation rate (sometimes called prevalence) is the pro-
portion of infested units (i.e., units that contain Biosecurity
Risk Material, BRM) in a consignment.

Sensitivity The sensitivity of an inspection (sometimes called the
confidence-level) is the minimum probability with which we
wish to detect at least one BRM in the inspected sample given
that the baseline contamination rate is at the design preva-
lence or higher. In the ‘600 samples rule’, the sensitivity is
95%.

Design prevalence The design prevalence (sometimes called risk-cutoff or detec-
tion level) is the lower limit of the infestation that we want
to detect with a given sensitivity. In the ‘600 samples rule’
the design prevalence is 0.5%. This should not be interpreted
as a tolerance level: even if the estimated rate is below the
level of detection, which it can be, so long as contamination
is detected, the consignment will not be released.

Sample size The sample size is the chosen number of units that will be
inspected. This is usually denoted by the letter n. The sample
size is typically chosen to have a given sensitivity to detect a
given prevalence.

Prior In Bayesian inference, the prior distribution represents our
knowledge or belief of a parameter of interest before seeing
the data.

Non-informative prior A non-informative prior represents our ignorance of the value
of the parameter. For example, if our parameter is a proba-
bility, it might be a uniform distribution on the 0—1 range.
Note that most of the so-called non-informative priors still af-
fect the posterior distribution of the parameter in some ways.

Informative prior When we know something about the range of values that a
parameter can take, it can be included in the prior distribu-
tion. For example, we might know from past data that the
distribution of infestation rate among different consignments
on the pathway follows a Beta(.18, 8) distribution.
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Term Definition
Conjugate prior In Bayesian inference, a prior is said to be conjugate for the

likelihood function if when combining prior and likelihood,
the posterior distribution is of the same probability distribu-
tion family than the prior distribution. An example relevant
to biosecurity inspection is that combining a Beta prior distri-
bution with a Binomial likelihood for the inspection data will
lead to a posterior distribution that is also Beta distributed.

Expected value The hypothetical mean value of a sampling distribution over
many repetitions of the sampling.

Estimator A rule or method of estimating a parameter of a population.
Bias A bias is a systematic error. The bias of an estimator is the

difference between the expected value of the estimator and
the true value of the parameter being estimated.

Efficient estimator An efficient estimator is the estimator that has the lowest
variance among all unbiased estimator of the parameter.

BRM Biosecurity Risk Material. A sampled unit that is infested by
a pest, disease, or anything that is considered a biosecurity
threat and that would render the consignment non-compliant.

Cluster sampling With cluster sampling, we divide the population into sepa-
rate groups, called clusters. Then, we randomly select clus-
ters from the population, and we sample several units per
cluster (e.g., selecting individual fruits within selected crates
of fruit within a container, rather than selecting individual
fruits completely at random from the entire container).

Intra-cluster Correlation The intra-cluster correlation coefficient (ICC, often written as
ρ in equations) characterises the degree of similarity shared
by units contained in the same cluster. For example, an ICC
of one indicate that all units from the same cluster are exactly
the same (i.e., if one unit of a specific-cluster is infested, all
the other units from the same cluster are infested and vice-
versa). An ICC of zero indicates that two units sampled from
the same cluster are no more similar than two units sampled
from different clusters.
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1 Executive summary

Consignments of plant products represent a significant potential pathway for invasive
pests into Australia and New Zealand. Currently, the Department of Agriculture of
Australia (DA) and the Ministry of Primary Industries of New Zealand (MPI) assess the
risk associated with each consignment solely from its inspection data. However, testing
seeds for pests and pathogens is commonly destructive, and concomitantly laborious and
expensive. CEBRA projects 1806, ‘Alternative approaches to developing assurance about
the regulatory compliance of consignments of seeds’ for DA and 180601 ‘Models for Border
Inspection for pelleted seeds’ for MPI, aimed to develop a statistical framework that
will generalize the models that are applied in ISPM 31 (International Plant Protection
Convention, 2008) to allow the provision of other sources of data in the decision making.
This can include inspection history, or audit information and inspection results from
parent lots that might arise from systems approaches.
The report is structured as follows. In chapter 2, we review design- and model-based

inference frameworks that underlie ISPM 31 biosecurity inspection system, and allow de-
cision making (i.e., deciding if a consignment is compliant or not) by providing assurance
about the correct sample size to be adopted with representative sampling to determine if
a proportion of units that may be infested in a given consignment after inspection. Ad-
ditionally, we review three alternative inference frameworks that might be used in biose-
curity (i.e., imprecise probability theory, Bayesian inference, and Dempster-Shafer theory
of evidence), the latter two frameworks allow combining inspection data with external
information when making inference. Typically, using external information will reduce the
sample size required to make a decision on the compliance of a consignment. We review
how these five frameworks interact with two typical type of data collected in biosecurity
inspections (simple random samples vs. clustered samples). Typically, clustered sampling
increases the sample size required to make a decision on the compliance of a consignment.
In chapter 3, we provide case studies for design, model-based, Bayesian inference,

Dempster-Shafer, and imprecise probability theory for both simple random sampling and
clustered sampling (when applicable) and their potential use in systems approach. In
chapter 4, we review different adaptive inspection schemes which allow using external
information by choosing to inspect or not inspect consignments based on the recent in-
spection history of the pathway. We conclude the report by summarizing the pro and
cons of using these alternative frameworks.

Pro and cons of the different inference frameworks reviewed.

Several inference frameworks can be used to develop assurance about the regulatory com-
pliance of consignments of germplasm. While some frameworks allow using external infor-
mation when making inference (Bayesian, Dempster-Shafer, and to some extent, model-
based inference) others do not (design-based inference, imprecise probability theory) (see
table 3.1). Frameworks that do not allow using external information are of limited use for
systems approach (analyzing systems approach data requires combining different sources
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of evidence). Below, we summarize the pro and cons of the five framework that will be
reviewed in this report.

Design-based inference

• This is the main type of inference used for border biosecurity inspection.

• In design-based inference, we can draw conclusions about the population from the
sample because we know exactly how the sample was collected. No additional
assumption is required which makes the method particularly objective.

• When the inspected units comes from a simple random sample, we can use the
binomial sample size formula (Eq. 3.2) to compute sample size. This is the basis
of the ‘600 samples’ rule often used in biosecurity and also the basis for the 31,540
samples used for the plant product data supplied by New Zealand.

• When the data arrives in clusters but we still manage to do simple random sampling,
we can also use Eq. 3.2 to compute sample size (simple random sampling protects
against the detrimental effect of clustering on sensitivity and sample size).

• Does not allow the use of external information.

Model-based inference

• In model-based inference, we postulate a model that might have generated the data
(i.e., the inspection data might have been generated from a Binomial model), check
the assumptions of the model, and make inference about the infestation rate.

• When the data comes from simple random sampling, model-based inference give the
same sensitivity and sample size than design-based inference (Eq. 3.2).

• When there is clustering, we can use Eq. 3.9 to compute sample size. This requires
estimating or fixing the intra-cluster correlation coefficient (ICC) of the pathway.

• Allows limited use of external information (for example, to estimate the ICC of the
pathway from past data, section 3.2.2.2).

Bayesian inference

• In Bayesian inference, we postulate the potential values that the parameter of in-
terest might take (prior information before seeing the data) as well as a model that
might have generated the inspection data. We then combine the prior and the
model with the inspection data to make our inference on the parameter of interest
(typically the infestation rate of the consignment being inspected).

• When we use a non-informative uniform prior on the infestation rate of the consign-
ment being inspected, Bayesian inference gives the same sample size as design-based
and model-based inference for simple random sampling data (section 3.1.3) and as
model-based inference for clustered sampling (section 3.2.3).

10
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• The strength of Bayesian inference however is that it allows combining external
information (informative prior) with inspection data (likelihood) to draw conclusion
about the infestation rate of a consignment. Using informative prior (for example
calibrated from past data on the pathway) allows to reduce sample size in both the
simple random sampling and the clustered sampling cases (sections 3.1.3 and 3.2.3).
In the case of a potential 0.5% pathway, the sample size can be reduced by a factor
of around three compared to design-based inference. In the case of a potential 0.01%
pathway, the sample size can be reduced by a factor of around 11.

• One issue that arises when using an informative prior is the assumption of sta-
tionarity (past data are representative of future data). We suggest monitoring and
re-estimating the distribution of infestation rate among different consignments of
the pathway regularly (perhaps every year). We can also use mixture priors to
‘robustify’ our prior.

• Another issue with Bayesian inference is that we do not always have analytical
solutions for our estimates or our decision criteria. In the case of simple random
sampling, we have an analytical distribution for the posterior pj but we have to
compute the sample size numerically. In the case of clustered sampling, both the
posterior distribution of pj and the sample size have to be computed numerically
(by fitting the hierarchical model to a clean inspection data of different sizes and
observing the effect on the posterior).

Dempster-Shafer theory of evidence

• Dempster-Shafer theory of evidence works directly on the decision scale (probability
of compliance) rather than the infestation rate of the population. Dempster-Shafer
theory is typically used to combine different lines of evidence when making inference.
Each line of evidence can arise from a model and inspection data (e.g., a Binomial
model generated the observed inspection data) or can be completely subjective
(e.g., experts think that the proportion of compliant consignments in this specific
pathway that used a systems approach is 90%).

• With only one source of evidence and in the simple random sampling case, the
sample sizes are similar to those given by Bayesian inference with non-informative
prior.

• The framework might be difficult to extend to support clustered sampling.

• The Dempster-Shafer framework allows combining external information when mak-
ing inference. There are several ways to do so and perhaps not much to decide
between them (see for example Rathman et al., 2018).

Imprecise probability theory

• Imprecise probability theory is a specific type of Bayesian analysis that was created
to avoid having to fix a specific non-informative prior when we are ignorant about
the value of the parameter of interest.

• The sample sizes are similar to Bayesian inference with a uniform prior in the case
of simple random sampling.

11
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• The framework might be difficult to extend to support clustered sampling.

• Does not allow the use of external information when making inference (Imprecise
probability theory is all about non-informative priors).

Adaptive Inspection Schemes

• Adaptive inspection schemes provide a light-touch approach for implementing risk-
based intervention.

• The sample sizes depend on recent inspection history.

• Reasonably easy to implement.

• Does not explicitly allow using external information when making inference but
work-arounds are possible.

Conclusion and recommendations.

Of the five frameworks reviewed, Bayesian inference seems to be the most promising to
allow incorporating sources of data other than the current inspection sample when making
a decision. At this point, it is worth noting that there is a fundamental difference in the
scope of the classical and Bayesian frameworks. Whereas the classical approach focuses
on detection, the Bayesian approach focuses on estimation:

• In the classical approach to biosecurity inspection, the sample size is calculated to
give a 95% confidence of detecting a consignment that has a 0.5% infestation rate.

• In the Bayesian approach, the sample size is calculated to give 95% confidence that
the estimated infestation rate in an accepted consignment is less than 0.5%.

However and despite this perspective difference, Bayesian inference is compatible with
current methods used in biosecurity: when using non-informative priors (i.e., representing
our ignorance of the infestation rate of the consignment before inspection), Bayesian
results are similar to design and model-based inference (e.g., after a clean ‘600 samples’
inspection with a uniform prior, Bayesian methods infer that there are 95% chances that
the infestation rate in an accepted consignment is below 0.5%). If available, Bayesian
inference allows using information from external sources of data, which reduces the sample
size required to make a decision on the compliance of a consignment. However, this comes
at a cost: if future data are different from past data, we are no longer guaranteed to detect
a given prevalence with a given sensitivity (as with the design-based inference procedure).
There are different ways to penalize an informative prior. The most promising approach
is to use a mixture prior that combines the informative prior with a uniform prior. This
approach allows for the possibility that some of the future consignments might have an
infestation rate higher than what we have seen in past data.
Data collected from a clustered population can result in noticeably reduced sensitivity

for an inspection scheme. Keeping the sensitivity constant (with respect to simple random
sample inspection) requires sampling more units. How many more units to sample will
depends on the intra-cluster correlation coefficient ρ (i.e., the degree of similarity among
units sampled from the same cluster) and the number of units sampled per cluster nk (the
higher ρ and nk, the higher we will need to increase the sample size to be to keep the

12
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sensitivity constant) (see Fig. 3.3). When the infestation rate is relatively high (in the
0.5–2% range), it is possible to reliably estimate ρ for a pathway using model-based or
Bayesian inference. However, when the infestation rate is very low (e.g., in the case of NZ
data, with a typical mean infestation rate of 0.003%), it is difficult to reliably estimate ρ
from a pathway, even for large pathways (100 consignments).
Alternatively, adaptive inspection regimes might be a useful first step if early action is

valuable and when we do not have enough data to apply Bayesian approaches.
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2 Review of different inferential
approaches to inspection

2.1 Introduction

Invasive species, including arthropods, plants, fungi, and microbial pathogens, pose a
significant and growing risk to managed and native ecosystems worldwide. Hoffman and
Broadhurst (2016) estimate the total annual cost of invasive species to the Australian
economy in 2011–2012, including both losses and control expenditures, at nearly AU$14
billion, or approximately AU$560 per capita. Likewise, Colautti et al. (2006) estimate
the costs associated with invasive species in Canada at CDN$34.5 billion, or at over
CDN$1000 per capita, nearly 3% of GDP. Comparable costs for other major economies
include USD$100.6 billion for the United States in 2003 (Pimentel et al., 2005), rising
to over USD$200 billion by the end of that decade (Pimentel, 2011), USD$18.9 billion
for China (Wan and Yang, 2016), and NZ$3.29 billion for New Zealand in 2009 (Giera
and Bell, 2009). In both cases, losses plus expenditures total nearly 2% of gross domestic
product (GDP) (Pimentel et al., 2005; Giera and Bell, 2009). Losses as a proportion of
GDP are lower for many other developed economies, but inconsistent methodology and
reporting makes it challenging to account for the full costs of invasions (Hoffman and
Broadhurst, 2016).
Both the impacts of an incursion and the costs of control escalate dramatically once an

invader has become established, so effective surveillance at the border is a critical com-
ponent in national-scale efforts to reduce the social and ecological cost of invasive species
(Whattam et al., 2014; Quinlan et al., 2015). Despite the values at stake, biosecurity
surveillance programmes typically operate within tight budget constraints. For example,
inspection is based on sampling, rather than an exhaustive inspection, for nearly all types
of goods crossing international borders. When inspection is destructive, such as for the
import of pelleted seeds, sampling is the only way to go if we don’t want to destroy the
whole consignment. The adoption of sampling necessitates a further decision, namely:
how large of a sample should be taken to adequately manage the biosecurity risk of incur-
sion? Existing international agreements, such as the ISPM-6 and ISPM-31 guidelines of
the International Plant Protection Convention (International Plant Protection Conven-
tion, 2008; International Plant Protection Convention, 2016), recommend that biosecurity
decisions be based on scientifically and statistically sound procedures, but provide little
specific guidance on the procedures themselves.
Perhaps as a result, a wide range of applications rely on a small set of sampling and

statistical approaches that have come to be accepted as common practice. One example
is the 600-units sample, hereafter the 600 sample, which is designed to achieve a specified
level of sensitivity (95%) when the prevalence of biosecurity risk material (BRM) is 0.5
percent within a consignment, assuming that inspection is carried out without error. The
“600 sample” approach has been adopted as standard practice in a range of situations
(Ransom, 2017; Ormsby, 2017), sometimes with adjustments for the number of units in a
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consignment to be inspected (e.g., New Zealand Ministry for Primary Industries, 2016).
The mathematical computations associated with a variety of common sampling situa-

tions have been well described in the literature (e.g., Venette et al., 2002a). Unfortunately,
in biosecurity as in other areas of application, the conceptual basis for drawing inferences
from sample data is rarely specified (see, e.g., Gregoire, 1998). This can lead to confusing
or even contradictory interpretations of key terms such as bias and independence, with
important consequences for what is considered an acceptable sampling design, or what
is a valid inference once data have been collected. These distinctions become especially
important when reality departs from an idealized case of simple random sampling within
homogeneous consignments.
The goal of this chapter is to clarify the assumptions and implications of the two

primary modes of inference from sample data, namely the design-based and the model-
based approaches (Gregoire, 1998). Although key distinctions between these approaches
have been well-characterized and debated in the literature on sampling theory (e.g.,
Särndal et al., 1992; Little, 2004; Fuller, 2009; Chambers and Clark, 2012; Magnussen,
2015), the nature of that literature makes it less than fully accessible to many practitioners
and even researchers in the biosecurity and risk assessment communities.
In order to make this material more accessible here, we attempt to be rigorous and cor-

rect while employing a minimum of notation, derivations, or proofs. First, we clearly define
design- and model-based inference. Then, we explore the consequences of each paradigm,
using the 600 sample as a starting point, beginning with the simple case (simple random
sampling from a homogeneous consignment) and proceeding to consider the consequences
of inhomogeneous consignments, and of drawing samples in clusters (e.g., selecting in-
dividual fruits within selected crates of fruit within a container, rather than selecting
individual fruits completely at random from the entire container). We briefly explore
Bayesian and alternative inferential paradigms, with attention to their relationship to
more traditional model-based approaches, such as Frequentism. Practical case studies
on the consequences of using different inference framework in a biosecurity context are
provided in chapter 3.

2.2 Design-based and model-based inference: a
simple example

Simply put, the difference between design-based and model-based inference is in how
inference from the sample is connected, conceptually, to the target process.

In design-based inference, we can draw conclusions about the process from the sample
because we know exactly how the sample was collected — more specifically, the sample
must be collected according to one of a number of designs, and the appropriate analysis
carried out. In model-based inference we propose a probability distribution — a model
— for the observed random variable, we test whether the model is correct, and then draw
conclusions using the model.

An example that captures the flavour of the difference follows. Imagine we provide to
you the following data, which represents a sample of biological/assigned sexes of school-
children: MFFFMFMFFFMFMFF. Your task is to estimate the underlying proportion
of F’s in the process from which these data were sampled. How to proceed?
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One way would be to assume that the data follow a Binomial distribution, which requires
(i) that the outcomes be independent of one another, (ii) that the probability of an F be
a fixed (but unknown) quantity, and (iii) that the sample size be known in advance. If
these three assumptions are true, then the data do follow a Binomial distribution, and we
can proceed to use the standard approach. This is model-based inference.
But, any one of these assumptions may be false. We may have sampled human children

sequentially in a schoolyard, in which case we would expect sex-based clustering, which
would induce auto-correlation, contradicting the first assumption. We may have sampled
multiple groups that have different proportions of F, also called heterogeneity, contra-
dicting the second. And, the samples may have been collected according to the following
stopping rule: sample until we reach the required number of F’s (namely, 10), contradict-
ing the third. In each case the Binomial distribution is wrong and may lead to misleading
estimates, especially of the uncertainty. This is important for the current context because
estimates of the uncertainty determine how much assurance can be gained from an in-
spected sample. We must check these assumptions in order to proceed confidently with
model-based inference.
Alternatively, we may know that the sequence of F and M arose from the following

scenario. The names of 2000 students were recorded on a spreadsheet and a unique
integer assigned to each. Fifteen random integers were selected from the unique integers,
and the assigned sexes of the students thus selected were identified. Now, we know that
no clustering is possible, because the sample was selected randomly from the list of names.
We know that if there are sub-populations then the sampling occurred randomly across
them, so whether or not they differ has no bearing on the statistical qualities of the
estimate. (Indeed, unbeknown to us, someone could have constructed the original list
of students by concatenating a list of male students with a list of female students; the
genders could be completely segregated within the original list, and the validity of our
inference would be unaffected.) And, we nominated a sample size of 15, so we knew the
sample size in advance. We can use the Binomial distribution with confidence because
the assumptions are satisfied by the design. This is design-based inference.
Although the difference between design- and model-based inference is conceptual, it

carries important practical consequences. Within a model-based framework, we must be
concerned with whether, or how well, the data and the mechanisms that generated the
data conform with our assumed model. If that conformity is poor, then the inferences
from our survey will be suspect. On the other hand, certain aspects of the design — such
as the use of purposive (i.e., subjective) or other non-probability sampling that would be
anathema in the design-based context — may not create serious problems. (As Magnussen
(2015) observes, however, claims that the design is completely irrelevant to model-based
inference have done much to undermine confidence in its application.) From a design-
based perspective, the correct implementation of a stated probability-driven sampling
design is paramount. For example, in simple random sampling, sampling must be truly
random; haphazard or ”convenience” sampling seriously undermines confidence in any
inferences. But, commonly few if any assumptions about the underlying structure of
the population or the mechanisms that generated it are made. As we shall see below, the
failure to specify which mode of inference is in operation has occasionally led to substantial
confusion in recommendations about the design and implementation of sampling methods
for biosecurity.
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2.3 Design-based inference for consignments

Design-based inference is the older of the two dominant paradigms in survey sampling,
with origins in seminal papers by Neyman (1934) and Neyman (1938). Neyman’s work
appeared at a time when the statistics community was grappling with serious questions
about the meaning of “representative sampling” (Kruskal and Mosteller, 1980), and the
design-based perspective quickly rose to dominance as dramatic advances in sampling
theory were made during and after the Second World War. Classic texts on design-based
inference include Hansen et al. (1953), Kish (1965), Sukhatme and Sukhatme (1970), and
Cochran (1977); more recent texts include Gregoire and Valentine (2008) and Thompson
(2012). The design-based perspective does not preclude the use of models, but it does
restrict their role and influence. Design-based approaches that are informed by models
are often called model-assisted (see, e.g., Särndal et al., 1992).
In the design-based paradigm, the population parameter about which inference is to be

made is fixed but unknown. The attributes of the sample units that comprise the popu-
lation, including those about which we wish to draw inferences (such as their association
with BRM) as well as those that might influence the outcome of sampling (such as their
position and proximity to one another), are fixed. Randomness enters the sampling pro-
cess through the selection of units into the sample, and the procedure for selecting units
is governed by a design. The resulting probability distribution of inclusion or exclusion of
sample units is often called the randomization distribution. The inclusion of the ith unit
can be described by a binary random variable δi that take the value δi = 1 if the unit is
included, and δi = 0 if it is not; it is the δi, not the yi (i.e., the status non-infested = 0,
infested = 1 of the unit i), that are considered as random. Inference is based on the use
of estimating equations that are appropriate to the design.
A great deal of effort in design-based sampling theory is focused on proving the prop-

erties of the estimators (such as unbiasedness, and having unbiased estimates of variance)
under a given design, and with few or no assumptions about the characteristics of the
population. For example, under simple random sampling, the sample mean is known to
provide an unbiased estimate of the population mean for a given attribute, without any
assumption about the distribution of that attribute (such as normality) within the pop-
ulation as a whole (e.g., Thompson, 2012, Chapter 2). Here, “unbiasedness” refers to a
mathematical expectation over all possible outcomes of sampling under the given design,
including those that were not observed, i.e., if θ is a population parameter of interest, θ̂
is an estimate computed from sample data using an estimating equation, and

E[θ̂] = θ

where E[] indicates expectation over the possible samples under the design, then θ̂ is said
to be design-unbiased.

2.3.1 Simple Random Sampling

2.3.1.1 Definition

A sampling design can be considered a simple random sample if it meets the following
criteria:

1. The sample size n is fixed and known in advance.

2. Sample units are included in the sample by a chance mechanism.
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3. Every sample unit has the same probability of being included in the sample.

4. Whether a given unit is included in the sample or not is independent of whether or
not any other unit is included in the sample.

For example, suppose our population is a standard deck of 52 playing cards. The cards
are well-shuffled, and the first 4 cards are drawn from the top of the deck. The shuffling is
(for all practical purposes) a chance mechanism, and it creates a situation in which each
card has an equal chance of being the first, second, third, or fourth card in the deck. The
probability that the ace of spades will be in the sample of four cards, is the same as the
probability that the ace of diamonds or the two of hearts or any other specific card is in
the sample, namely 4/52. If we know that the first card actually is the ace of spades, the
probability of any other card being among the remaining three is 3/51; the occurrence
of the ace of spades does not, for example, make the ace of diamonds more probable to
occur than the two of hearts, or vice versa. Thus, the inclusion of sample units (cards)
is independent. In this example, we have simple random sampling without replacement
as our design; had each card been put back into the deck and the deck reshuffled after
each individual draw, we would have simple random sampling with replacement. In most
biosecurity examples that use simple random sampling, sampling is without replacement
— we would not inspect the same item twice.
Note that some apparently innocuous (and some less innocuous) sampling approaches

do not satisfy the requirements of a simple random sample. For example, sampling every
tenth unit that occurs in a sequence is a systematic sample, rather than a simple random
sample. If the start of sampling is driven by a random choice (rather than, say, always
choosing the first unit that occurs and then every tenth thereafter), the sample is still
a probability sample. But, if we know that the second sample unit has been chosen, we
know that the first, eleventh, twenty-first, and so on will not be, while the twelfth, twenty-
second, and so on certainly will be. From a design-based perspective, systematic sampling
violates the requirement of independence – possibly in a way that is advantageous, but
nonetheless one that has consequences for estimation (and especially for the design-based
estimation of variance or uncertainty; see Cochran (e.g., 1977, Chapter 8), Thompson
(2012, Chapter 12)), and Gregoire and Valentine (2008, Section 3.2.2).
Haphazard selection of sample units, selection of those that are most convenient, or

selection of those that are most representative or most likely to be contaminated based
on the judgment of the inspector, are not simple random sampling designs because the
selection is not based on a chance probability. Purposive selection of the units subjectively
judged most likely to be contaminated may be advantageous from the perspective of
detecting BRM in a consignment, if the judgment of the inspector is reliable. However, if
simple random sampling formulae are used, then estimates of the prevalence of BRM will
be biased. It is possible (through profiling) to assign unequal probabilities of selection
to different sample units, so that inspection targets higher-risk material; this is often
advantageous, but from a design-based perspective it strictly requires different estimating
equations than those used for simple random sampling (e.g., Horvitz and Thompson,
1952).

2.3.1.2 Estimating Prevalence

Traditional design-based sampling textbooks often focus on the estimation of the popula-
tion mean, and accounting for the uncertainty of that mean. In the context of biosecurity
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inspection of a single consignment, the problem most easily cast in terms of estimating
a population mean is that of estimating the prevalence of BRM within the consignment.
Following a straightforward approach to estimating proportions (e.g., Thompson, 2012,
Chapter 5), suppose that there are N sample units (say, pieces of fruit) in a consignment
(say, a shipping container). We will sample n fruits using simple random sampling. Let
yi, i = 1 . . . N, be a binary variable: yi = 0 if the ith fruit is clean, and yi = 1 if the ith
fruit is contaminated. It is easy to show that

p̂ =
1

n

∑
i∈n

yi

where i ∈ n indicates the individual units in the sample, is a design-unbiased estimator
of the population prevalence p, i.e.,

p =
1

N

N∑
i=1

yi

and moreover that
v̂ar(p̂) =

(
N − n
N

)
p̂(1− p̂)
n− 1

is a design-unbiased estimator of the sample variance of p̂. Confidence limits can be
constructed by a normal approximation (by invoking the Central Limit Theorem and
multiplying

√
v̂ar(p̂) by the appropriate value of t with n−1 degrees of freedom), or more

exact confidence limits can be computed (albeit with some computational effort) based
on the hypergeometric distribution (Thompson, 2012, Section 5.2).

2.3.1.3 Detecting Contamination

As simple and appealing as the estimation of prevalence within a consignment might be, it
is usually not the most important question for biosecurity surveillance at the consignment
level. Rather, the purpose of most consignment-level inspection is to determine whether or
not the prevalence p exceeds, or is less than, some maximally-allowable design prevalence
p∗. We might wish to say that a consignment has zero prevalence, i.e., p∗ = 0, but actually
proving that would require 100% inspection of the consignment. Instead, a more realistic
goal would be to state that p ≤ p∗, where p∗ is a specified, very small value, with a given
(and hopefully high) level of confidence.
It is in this very context that the so-called “600 sample” was developed, along with

its many variants. Generally speaking, suppose that we draw n sample units by simple
random sampling, from a consignment containing N such units. The total number of
contaminated units in the consignment is Y =

∑N
i=1 yi. If we detect contamination in

any unit in our sample, i.e., if
∑

i∈n yi > 0, then we will reject the consignment. But if∑
i∈n yi = 0, we accept it. Formally, this sampling plan is an acceptance sampling plan

with zero acceptance number (Stephens, 2001); the original development of acceptance
sampling methods by H.F. Dodge and colleagues during World War Two strictly followed
Neyman’s then-new design-based paradigm.
Under the design, if n units are drawn without replacement from a population of size

N containing Y contaminated units, then the number of contaminated units x =
∑

i∈n yi
in the sample follows a hypergeometric distribution

h (x;n, Y,N) =

(
Y
x

)(
N−Y
n−x

)(
N
n

) (2.1)
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where (
a

b

)
=

a!

b!(a− b)!
and

For a integer: a! = a× (a− 1)× (a− 2)× ...× 3× 2× 1

For a non-integer a! = Γ(a+ 1)

where ! is the factorial function and Γ is the gamma function.
The quantity S = 1− h(0;n, Y,N) is the probability of detecting at least one contami-

nated sample, and equals the sensitivity of the sampling design at a prevalence p = Y/N .
If N is much larger than n (say by a factor of 20), or if the sample were drawn with
replacement, then the distribution of x is similar to a binomial distribution, for which the
computations are much simpler (though this is much less relevant now than in the early
development of acceptance sampling). The binomial distribution is also “conservative” in
that the required sample size n to yield a desired sensitivity is slightly larger than that
computed from the hypergeometric. Under the binomial assumption, the sensitivity is
simply

S = 1− (1− p)n (2.2)

and rearranging gives a simple formula for the required sample size for a specified sensi-
tivity, at a design prevalence p∗,

n =
ln(1− S)

ln(1− p∗)
(2.3)

Values of n for selected values of N and sensitivity, at different values of the design preva-
lence, have been tabulated in a number of publications (e.g., Stephens, 2001; International
Plant Protection Convention, 2008). A common choice in practical biosecurity work is a
design prevalence p∗ = 0.005, or 1 in 200 units contaminated, and a sensitivity of 95%.
In other words, at the design prevalence, only 5% of consignments are accepted when
they should have been rejected. The actual sensitivity is higher whenever prevalence is
higher also. Under the binomial (or large-consignment hypergeometric) assumption, the
required sample size is n = 598, which is almost always rounded to n = 600 for practical
work. Although we will emphasize the binomial in much of the following discussion, we
note that Lane et al. (2018b) show that significant cost savings can often be achieved
when the hypergeometric is appropriate and is used instead of the binomial to calculate
required sample sizes, especially in the case on plant product lots which are considered
by the relevant authority as small.
In an ideal world, the design prevalence and sensitivity might depend on the likely

prevalence of BRM within a particular type of incoming material, and the risk associated
with an incursion. However, the “600 sample” and its underlying p∗ = 0.005 and S = 0.95
appear to have become an entrenched default for historical reasons, much in the same way
that Fisher’s tentative suggestion of P ≤ 0.05 as a potential criterion for inference about
experiments (Fisher, 1925) evolved into a de facto standard for generations of researchers.
Note that the assumptions involved in using Equation 2.1, from a design-based perspec-

tive, are quite limited: only that a simple random sample of size n has been drawn from a
population of size N that contains Y contaminated units. (The assumptions involved for
the binomial distribution are likewise limited to drawing a simple random sample, from
a population with prevalence Y/N .) Notably, no assumptions have been made about the
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proximity of the sample units with yi = 1 to one another (i.e., their spatial autocorre-
lation). It might be that the contaminated units are all packed into one corner of the
consignment, or they might be dispersed uniformly through the consignment. Under the
assumption of simple random sampling, each successive draw is an independent selection
from the entire consignment and the spatial autocorrelation has no effect on our inference
(simple random sampling ‘protects’ against autocorrelation or clustering). Likewise, no
assumption has been made that the sample units are identical in their propensity to be
contaminated; each sample unit either is contaminated (yi = 1) or clean (yi = 0), and
those attributes are fixed, not random. Thus, from a design-based perspective, if simple
random sampling has been employed and we will either accept or reject the entire con-
signment, the use of Equation 2.1 is valid whether the units in the consignment arise from
a common line with a uniform propensity for contamination, from multiple lines with
different propensities, or even are different types of fruit entirely.
Viewed from the design-based perspective, then, certain prescriptions in current na-

tional or international guidance seem misplaced. For example, International Plant Pro-
tection Convention (2008, page 7) states,

A lot to be sampled should be a number of units of a single commodity identifiable
by its homogeneity in factors such as: origin; grower; packing facility; species, va-
riety, or degree of maturity; exporter; area of production; regulated pests and their
characteristics; treatment at origin; type of processing . . . Treating multiple com-
modities as a single lot for convenience may mean that statistical inferences can not
be drawn from the results of the sampling.

While there may well be practical, political, or policy reasons for segregating different
lines (and perhaps accepting or rejecting lines separately), within the design-based frame-
work none of the factors listed is a barrier to making statistical inferences about the
contamination of a consignment with BRM. This point has been identified and further
clarified by Lane et al. (2018a), who point out that stratification with allocation of sample
units proportional to stratum size always delivers at least the design specificity implied
by Equations 2.1 and 2.2. Thus, ISPM-31 (International Plant Protection Convention,
2008) would appear to reject or preclude the use of simple random sampling in situations
where, from a design-based perspective, its use is perfectly valid (though perhaps subject
to improvement). Similarly, Venette et al. (2002a, page 150), write

If individual items of the commodity (e.g., heads of cabbage) were mixed sufficiently
as the commodity was harvested and packed in an enormously large shipment and
items were selected at random from the shipment, the likelihood of finding [a pest]
may be approximated by simple binomial statistics.

The review by Venette et al. (2002a) is authoritative and justifiably influential, but here
seems to imply that the binomial (and related results, such as Equation 2.2) apply only if
a consignment is “sufficiently mixed”. The implication has been carried forward by other
authors. For example, Barron (2006) writes,

However, predictions from the binomial distribution are based on the assumption
that the prevalence of infestation is constant throughout the consignment (i.e., there
is no aggregation) and that simple random sampling is used so that sampling obser-
vations are independent (Venette et al., 2002a).

From a design-based perspective, pests or other BRM may be mixed throughout, or
clustered, or even concentrated in one portion of the consignment, and the binomial
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distribution remains an appropriate basis for inference under simple random sampling:
aggregation is a non-issue. The required independence within the sample is guaranteed by
random selection under the design; independence is consequence of selection, not proxim-
ity. As we will see below, from a model-based perspective, the implications are different,
but the insistence on both homogeneity and a specified sampling regime will remain overly
restrictive.

2.3.1.4 Setting the confidence level, design prevalence, and sample size of an
inspection

Although in theory setting the level of confidence and the design-prevalence of an inspec-
tion allows determining the sample size of an inspection (Eq. 2.3), in practice the reverse
process often prevails: the regulator chooses to inspect 600 units per consignment for
historical reasons, or because it seems an appropriate amount of effort relative to other
activities, and reports the corresponding 95% confidence level and 0.5% design prevalence.
A substantially more in-depth analysis would be needed to determine the optimal sam-

ple size. Below, we highlight several strategies to do so:

• Determining an acceptable leakage for a pathway, informed by a detailed pest risk
analyses (e.g., reducing the leakage sufficiently that it is impossible for pests to
establish a minimal viable population or considering the economic costs of eradi-
cation), can provide a mechanism to calculate inspection sample size (Lane et al.,
2018a).

• The sample size can be determined by optimising an objective function (e.g., mini-
mizing total leakage across different pathways, or minimizing the cost). For example,
(Chen et al., 2017) allocated sampling effort among pathways to minimize the to-
tal leakage of infested units coming in the US. Pathway with high infestation rate
ended up with a higher sample size than pathways with low infestation rate. In
Camac et al. (2020), the optimal sample size is calculated based on a cost-benefit
analysis. The cost-benefit analysis balanced the cost of increasing sampling effort
with the cost caused by a pest incursion. Since the likelihood of establishment and
the damages caused by an incursion are likely to be pest-dependent, this type of
analysis require a deep understanding of the pathway and the biosecurity system
involved. The approach might also be sensitive to the assumptions used to derive
the costs.

• Inspection is not only a tool to stop pests at point of entry, but also a tool to monitor
pathways risk and to help make informed decisions (e.g., shutting down a pathway).
From this perspective, we want to choose a sample size that is sufficient to detect
sizeable changes in infestation rate and the presence of new quarantine pests with
sufficiently low uncertainties.

2.3.1.5 Sampling Methodology

The validity of inference in design-based inference is conditioned on the design, meaning
that if the design is followed then the inference is valid. Thus, adherence to the actual
design in question is critical. Unfortunately, simple random sampling is not always so
simple in practice, and the nature of the material involved in sampling consignments for
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BRM can make operational implementation of simple random sampling quite challeng-
ing. At the same time, there may be opportunities associated with methods that do
not conform to simple random sampling assumptions, that would strongly motivate their
adoption regardless. For example, Barron (2006) points out that even though individual
fruits may be identified as sampling units, sampling an entire carton or crate affords the
opportunity to inspect the packing material for BRM as well. This suggests the use of
cluster or two-stage sampling, which we will take up below.
Most formal presentations of simple random sampling follow the simplest possible setup,

which we ourselves echo in Section 2.2. Specifically, a frame or list spanning the population
of interest is available, and simple random sampling proceeds by selection of units from
the list. There are instances in biosecurity sampling where such a list is available, or could
be constructed on-the-spot. For example, airline passengers and their baggage are known
to present a substantial hazard for BRM importation (e.g., Liebhold et al., 2006; Hulme
et al., 2008). The passenger manifest of an inbound aircraft comprises a frame from which
a simple random sample (or other probability sample) of passengers can easily be drawn
(e.g., Lane et al., 2017). Where the number of incoming sample units is relatively small,
for example with shipments of large, high-value items such as unprocessed tropical logs, it
may be possible to construct a list upon arrival. However, when the number of incoming
units is great, or incoming units arrive in bulk, a list or other convenient frame may be
simply unavailable.
Fortunately, the absence of a list-based frame does not preclude the use of simple ran-

dom sampling. For a few commodities that are subject to inspection, it is possible to
perform physical mixing (akin to shuffling a deck of cards) so that the subsequent selec-
tion of individual sample units is, for all intents and purposes, uniform and random. For
example, many nuts and seeds can be handled in this way (though large shipments may be
further subdivided into sacks or other containers, suggesting a cluster sampling approach;
see Subsection 2.3.2 below). Generally (especially in New Zealand), seeds are sampled in
accordance to the internationally recognized ISTA sampling methodology, which intends
to provide a representative sample for the seed consignment through randomness. Cer-
tainly physical mixing could not be used on delicate fruits, live plants, or other fragile
commodities, however. For other commodities, the geometry of packing facilitates simple
random sampling. For example, if young nursery seedlings are packed in flats in which
the individuals are laid out with rectangular or hexagonal spacing, while the flats them-
selves are arranged in a shipping container in a regular fashion, then the location of a
flat, combined with a row and column number for a position within a flat, constitutes a
form of “address” that can be sampled randomly if the number and configuration of flats
is known. (If a random draw in such a situation leads to an empty cell within a flat, or
a position for a flat that is not actually occupied, that address would be rejected and a
new one drawn; this can be viewed as a simple case of the acceptance-rejection method
of von Neumann (1951).)
Finally, we would note that simple random sampling is possible even when the sample

units themselves are packed hierarchically in cartons or other clusters that are of unequal
size, but simple random sampling of the cartons is possible. For example, Barron (2006)
reports that bananas are typically packed in cartons containing, on average, 16 “hands” or
bunches; however, the actual number may vary. A typical consignment might consist of
20,000 or more rectangular cartons, packed in a shipping container. It might be possible
to sample cartons by simple random sampling; but if one then selected a single hand
of bananas from a chosen carton by simple random sampling, hands from cartons that
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contain a larger number of hands would have a lower overall probability of selection
than those containing fewer hands. This can be remedied by a slight modification of
the acceptance-rejection method of von Neumann (1951). Specifically, having selected a
carton, we then choose a random integer i from 1 to a number that must be equal to or
larger than the number of hands that could occur in a carton. If i is less than or equal
to the number of hands that actually occur in the selected carton, we choose the ith hand
for inspection. If i is greater than the number of hands in the selected carton, then we
reject the choice entirely, and draw a new one (including both a new selection of carton,
and a new value of i). The process is repeated until the desired total number of samples
n is attained.
Notwithstanding the range of possible strategies for drawing a simple random sam-

ple, it may still be the case that the hierarchical structure of a consignment, its physical
arrangement and packing, and/or the opportunity to combine inspection of packing mate-
rials with that of the nominal contents of the consignment will make other strategies, such
as cluster sampling, far more attractive. From a design-based perspective, the move to a
different design may be wise but it also requires the use of different estimating equations.
Alternatively, the sheer mechanics of simple random sampling – or any type of probability
sampling – may be so onerous that we must abandon the design-based framework entirely.
The model-based alternative will be taken up in Section 2.4.

2.3.2 Cluster and two-stage sampling

Cluster sampling (or a related approach, two-stage sampling) arises naturally as an al-
ternative in a variety of biosecurity contexts. Fruits packed within cartons, seeds within
sacks, or even passengers traveling within family groups can all be considered as clusters
of sampling units. It may be wiser to take advantage of such structure in the population,
than to fight against it merely for the sake of preserving simple random sampling.
Formally, cluster or two-stage sampling recognizes hierarchical structure in the pop-

ulation by designating primary and secondary sampling units. For example, suppose a
consignment consists of fruits packed within cartons, and our first step is to select a num-
ber of cartons at random, followed by selection of fruits within the chosen cartons. Then
the primary sampling units are cartons, and the secondary sample units are fruits. In
cluster sampling, once a carton is selected, then all of the fruits in that carton are included
in the sample; the fruits so chosen thus form a cluster. In two-stage sampling, the fruits
within a carton would be chosen by a further subsampling approach (for example, simple
random sampling of fruits within that carton).
In the design-based framework, different estimating equations might be required for

different combinations of sampling methods at each stage. Cluster sampling is treated
in detail by Cochran (1977, Chapters 9 and 9A) and Thompson (2012, Chapter 12),
while two-stage sampling is described by Cochran (1977, Chapters 10–11), Gregoire and
Valentine (2008, Chapter 12) and Thompson (2012, Chapter 13).
As with simple random sampling, most design-based texts that address cluster or two-

stage sampling concern themselves primarily with estimating the population mean, cor-
responding in our situation to the prevalence of BRM within a consignment. In that
context, the partitioning of variance into within- and between-cluster components is crit-
ical, and tends to work to the disadvantage of cluster sampling when efficiency is assessed
in terms of sampling variance as a function of the number of individual items inspected.
As Thompson (2012, page 162) states,
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Cluster sampling is more often than not carried out for reasons of convenience or
practicality rather than to obtain lowest variance for a given number of secondary
units observed.

For some products, pairs of secondary sample units located within the same cluster are
more likely to share the same contamination status (yi = 0 or yi = 1) than randomly
chosen sample units from different clusters. In this case, the sampling variance associated
with cluster (or two-stage) sampling is likely to be higher than that for simple random
sampling, when the number of secondary sample units inspected is held constant. For
cluster or two-stage sampling to be attractive, it must offer benefits in terms of cost,
practicality, or the opportunity to inspect other aspects of the consignment (such as
packing materials) simultaneously.
From the standpoint of detecting BRM and noncompliance, the situation is no better,

and perhaps in some ways worse. As Barron (2006) illustrates through simulation, the
sensitivity of a cluster sampling approach declines substantially from the nominal sensi-
tivity given by Equation 2.2, when cluster sampling is employed and BRM is aggregated.
The best way to describe the decline in sensitivity with changes in population pattern
has not been extensively studied, and the work of Barron (2006) stands as a landmark in
the biosecurity literature. From a design-based perspective, little can be said about this
loss of sensitivity for a given consignment, especially if no BRM has been detected: the
sample contains no information to distinguish between clustering of BRM, or its absence.
In the worst case, BRM is completely clustered such that the proportion of primary sam-
ple units that are contaminated equals the prevalence p, and all secondary sample units
in a contaminated primary unit are themselves contaminated, while a proportion (1− p)
of primary units are entirely clean. In that case, the sensitivity is given by Equation 2.2,
but with n replaced by the number of primary units sampled. In other words, to obtain
a sensitivity of S = 0.95 at a design prevalence of p∗ = 0.005, one would need to inspect
600 cartons of fruit, not 600 individual fruits. The only advantage is that if one knew this
pattern of BRM was present in this type of consignment, it would only be necessary to
inspect a single fruit in each selected carton. In practice, this is unknown; and the gen-
eral insistence in design-based inference on avoiding unnecessary assumptions about the
population in question also makes using background information, perhaps collected from
similar consignments in the past, challenging. Using such information, so that experience
can be accumulated and use to formulate more precise inferences over time, is a strength
of model-based and especially of Bayesian inference.

2.4 Model-Based Inference

The seminal papers for model-based inference in survey sampling are Brewer (1963) and
Royall (1970). Models had been used in statistics to test hypotheses in experimental and
observational settings before that time, and there were antecedents within the survey sam-
pling literature (e.g., Mátern, 1960). But Brewer (1963) moved the model to the forefront
in the context of sampling a finite population, and Royall (1970) directly challenged the
assumption that random sampling was necessary for inference. This provocative paper
kindled an especially violent episode in what Kish (1995) calls “The Hundred Years’ Wars
of Survey Sampling.” (Of course this battle in the “war,” and even the identities and aims
of the warring factions, went nearly unnoticed outside the statistics literature, even in
communities that rely on statistical inference.) The following decade saw an explosion of
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methods for and applications of the model-based paradigm. Recent sampling texts with
a model-based perspective include Valliant et al. (2000) and Chambers and Clark (2012).
In model-based inference, a probabilistic model provides the foundation for inference

from the sample data. The attributes of the population are not treated as fixed, but
rather as random outcomes generated by the assumed model. As Royall (1970) put it,

If a fair coin is flipped, the probability that it will fall heads is one-half; if the coin was
flipped yesterday, but the outcome has not yet been observed, the probability that
it fell heads is still one-half. The state of uncertainty which applies to the outcome
is unaltered by the single fact that the event which determines the outcome has
already occurred.

Model-based inference is often considered to involve a hypothetical “superpopulation,”
since the actual population can be considered as just one random realization of the possible
populations generated by the underlying model. Inference is based, not on the random-
ization distribution created through the inclusion or exclusion of units under a sampling
design, but on the distributions assumed in the model itself. Although it was initially
fiercely resisted by design-based traditionalists, the model-based perspective quickly found
sympathy among a broader statistical audience. As Little (2004, page 546) put it,

Survey sampling is perhaps unique in being the only area of current statistical ac-
tivity where inferences are based primarily on the randomization distribution rather
than on statistical models for the survey outcomes.

Gregoire (1998, page 1436) highlights the role of familiarity in the adoption of model-based
inference, writing,

. . . the presumption of a model . . . requires more assumptions than the design-based
approach. But in this regard, it accords with nearly everything else one does in
statistical estimation and prediction: a model is assumed based on prior experience
and subject matter knowledge, the model is fitted to sample data according to some
criterion . . . , the goodness of fit is checked, alterations are made if deemed warranted,
and eventually the results of the fitted model are proclaimed.

Perhaps because the development of quantitative methods in biosecurity accelerated at
the end of the 20th century and beginning of the 21st, and arguably drew on a broad range
of expertise in statistics and epidemiology rather than an older foundation in survey sam-
pling, model-based approaches have found a more comfortable home within the biosecurity
community than in other agricultural and natural resource fields (Gregoire, 1998; Mag-
nussen, 2015). However, the distinctions have not always been clear, and model-based
inference brings different advantages as well as demands to the playing field.

2.4.1 Homogeneous populations and simple random sampling

In design-based inference, the randomization distribution played a fundamental role. In
model-based inference, the relevant distribution arises from the random outcomes of indi-
vidual observations assuming that the model is true (Valliant et al., 2000; Chambers and
Clark, 2012). In modern model-based inference, the likelihood function plays an especially
critical role in describing how well the data that have been observed fit the model for a
given set of parameters. (The use of maximum likelihood in statistics dates to Fisher
(1922); see Aldrich (1977) for an historical perspective on its development.) Particular
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attention must be paid to developing a model that adequately captures the salient features
of the system under investigation, not only in terms of capturing the expected values of
the observations, but also how the observations can vary and how those variations may
be correlated. Models often include one or more auxiliary variables; ideally these are
known either for the entire population, or for a larger sample than that on which yi will
be measured. For example, if we are inspecting cartons of fruit within a container that
includes cartons from multiple producers, then producer identity would be an auxiliary
variable. Position within the container might be another useful auxiliary variable, partic-
ularly if we suspect that clean cartons have been preferentially packed toward the front of
the container. Expert knowledge, prior experience, and data from past inspections can all
play an important role in developing a model that includes the most important auxiliary
variables for a particular commodity or pathway.
In the simplest case, either there are no auxiliary variables, or the auxiliary variables

that are known are not related to the actual contamination of a unit yi, or (just as critically
from a model-based perspective) the probability that the ith unit will be contaminated,
pi. In that case, the population can be considered as homogeneous. From a model-based
perspective, if pi is truly identical for every unit in the population, then it does not matter
which units we select. For example, if we have 1000 identical trick coins that may not
have pi = 0.5 of showing heads, but we know pi is the same for all of the coins, it will
not matter whether we randomly sample 100 coins to toss, or toss one coin 100 times.
This can create the impression that sample design is completely irrelevant to model-based
inference, a misperception to which we will return below.

2.4.1.1 Estimating prevalence and detecting contamination

Suppose that we have a homogeneous population, having pi identical for every member.
Then if we constrain Y =

∑N
i=1 yi to equal piN exactly, sampling any n units out of N

will yield a distribution of x =
∑

i∈n yi values that follows the hypergeometric distribu-
tion h (x;n, Y,N) (see Equation 2.1). In other words, if we wish to draw inferences about
the actual prevalence within a specific consignment, we should employ the hypergeomet-
ric distribution. On the other hand, if we view pi as the probability associated with a
contamination process that generated the consignment under inspection, then the actual
value Y is just the outcome of N random trials, and by chance it may be that Y 6= piN .
Rather, we only believe E[Y ] = piN . In this case, we are taking a superpopulation per-
spective, and the distribution of X will follow the binomial distribution. In either case,
when n is fixed, the maximum likelihood estimate of pi is

p̂i = x/n (2.4)

and the intuitive predictor of the total number of contaminated units in the consignment
is the Lincoln–Petersen estimator, which follows

Ŷ =
N

n
x (2.5)

The likelihood function for the hypergeometric (or binomial) distribution also allows us
to construct standard errors and confidence limits for p̂i (though the best procedures to
tackle this simple problem are not as settled as one might suppose; see Brown et al. (e.g.,
2001) and Cai (2005). For a discussion within a biosecurity context, see Robinson et al.
(2011)). Note that as N becomes large relative to n, the hypergeometric and binomial
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distributions converge, and the difference between estimating a “population” pi and a
“superpopulation” one becomes numerically unimportant. This model is a straightforward
application of the classic “urn model” where the goal is to estimate the proportion of balls
of a given color that have been placed in an urn (e.g., Chambers and Clark, 2012, Section
3.1). Equation 2.5 is referred to as the best linear unbiased predictor (BLUP) of Y , in
that it is unbiased (E[Ŷ ] = Y ) and has the lowest possible variance among all predictors
that are linear in the observed values of yi (Chambers and Clark, 2012, Section 3.3),
assuming the model is true1. If, on the other hand, the yi values are not independent
(even though pi is the same for every sample unit), for example, due to the contagious
spread of a pest population through the consignment during the shipping process, then
Equation 2.5 may be inefficient or even biased, and estimates of variance calculated under
the assumption of an independent generating process will also be biased. In the presence
of positive autocorrelation between yi values, variances will typically be underestimated,
and this will lead in turn to overestimating the confidence with which a consignment can
be declared free of contamination.
For detecting contamination by BRM (or substantiating freedom from contamination)

within a completely homogeneous population, the results for the binomial distribution
in Equations 2.2 and 2.3 hold, provided N is much greater than n. Note that from a
model-based perspective, again, it does not matter what the procedure may have been
for selecting the samples, so long as the distribution of pi and yi is the same in the
sample as in the full consignment, and as long as the realizations of the generating process
are independent for all of the selected sample units. As a practical consequence, if the
homogeneous model is credible, then the standard “600 sample” can be expected to deliver
on the nominal S = 0.95 sensitivity at a design prevalence of p∗ = 0.005, no matter how
the sample units are selected. Simple random sampling, cluster sampling, or purposive
sampling are all allowable – at least in principle.
Many consignments will consist of lines that vary in their pi, either because the lines

are different commodities, come from different growers or producers, or have experienced
different environment or treatment before arriving at a port of entry. An important
question is whether Equations 2.2 and 2.3 can be used for such consignments, which
clearly violate the assumption of homogeneity. Once again, the results presented by Lane
et al. (2018a) are instructive. Lane et al. (2018a) address the question within the implicitly
design-based framework of ISPM 31 (International Plant Protection Convention, 2008),
but the results can be generalized to a model-based framework. Suppose, following Lane
et al. (2018a), that we are sampling from a set of k lines within a consignment, each with
its own probability of contamination pk and number of units Nk; basic considerations
require

N =
∑
k

Nk

and
p =

∑
k

Nk

N
pk (2.6)

where p, as before, is the overall prevalence of BRM within the consignment. Now, letting
the population prevalence equal the design prevalence p∗, the sensitivity is (Lane et al.,

1Note that this is a different definition of bias than that employed in the design-based framework;
there, the expectation was over possible samples, while here, it is over possible outcomes of the random
variables (i.e., observations). To distinguish the two properties, we call the latter model-unbiasedness
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2018a)
S = 1−

∏
k

(1− pk)nk (2.7)

Lane et al. (2018a) show that if nk ∝ Nk, a uniform probability with pk = p for all
k minimizes the sensitivity S. In other words, heterogeneity in pk causes the actual
sensitivity to exceed the nominal sensitivity implied by Equation 2.2. The argument holds
in the limit as nk goes to one, i.e., provided each unit in the sample is representative of
an equal number of units in the population. In other words, so long as the empirical
distribution of pk in the sample is close to the actual distribution in the full population,
S as given by Equation 2.2 is conservative, and assuming the binomial distribution to
compute the sample size using Equation 2.3 will deliver at least the nominal (specified)
sensitivity.
From a fully model-based perspective, consider the actual contamination of an individ-

ual sample unit yi as a Bernoulli random variable with probability pi. Now suppose that
we draw a sample from the population by a noninformative design, and further that yi
and yj are independent for i 6= j. It follows from the basic properties of expectation that
E[yi] = E[pi] = p. Thus, in the absence of useful covariates, considering the outcome yi
as composed of a two-stage process (first selection of pi, then determination of yi condi-
tional on pi) is essentially a computationally-expensive but equivalent model to ignoring
the within-population variability in pi and basing the assessment directly on the binomial
model.
The critical assumption made in the homogeneous population model is that the indi-

vidual observations are independently and identically distributed (i.i.d.). Unfortunately,
that is an assumption that is difficult if not impossible to verify, because only the yi,
and not the underlying pi, are directly observable. Two questions are relevant. One is
whether, epistemically, the i.i.d. assumption is credible. The second is whether it is possi-
ble for the data to falsify the assumption. Epistemically, we may have reason to question
the assumption even in the absence of compelling, data-driven evidence. For example, if
BRM within a consignment comprises a spatially-contagious pest that can migrate and
spread within the consignment during shipping, then the i.i.d. assumption is suspect even
if we lack consignment-specific data to disprove it. Likewise, if a consignment comprises
multiple lines, each associated with some combination of factors (geographic origin, pro-
ducer, subsequent handling and/or treatment) that might influence prevalence of BRM
within the line, then we might suspect variation in pi across lines and reject the simple
binomial model out of hand (though as noted above, if sensitivity is the overriding issue,
such a move may be misguided). It might also be that we have data — whether by design
or by historical accident — including one or more candidate auxiliary variables as well
as observed cleanliness or contamination. In that case, we can test (at least for past
consignments) whether the auxiliary variables are correlated with the yi (and hence pi),
or whether any clustering or spatial pattern is present. If so, then these may be used
to enhance the sampling design and model used for future consignments. Confronting a
hypothesis (the model) with data, falsifying elements of the model, using the results to
improve the model, and repeating is one of the basic cycles within the scientific method.

2.4.1.2 The role of the sampling design

In the classic model-based approach, inference is conditional on the selected sample; the
process by which the sample is selected plays a subordinate role. This has led to a
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misperception that the sample design is completely unimportant to model-based inference.
However, a simple example illustrates why this cannot be true. Suppose a consignment
arrives in a shipping container, and out of convenience, the inspector ignores the sampling
methodology and selects 600 units from the front of the container. But the shipper,
recognizing this as a likely strategy, has intentionally placed only clean units near the
front of the container, hiding units that may harbor contamination near the rear. Clearly,
ignoring the sampling design and proceeding with the binomial model will usually lead
to an underestimate of prevalence, and an overly confident assertion of freedom from
contamination in this situation. Confusion over this issue may be one reason for a lack of
trust in the model-based approach (Magnussen, 2015).
The necessary assumption in model-based inference is that the design is noninformative

or ignorable (Chambers and Clark, 2012, Section 1.4). Specifically, for a design to be
noninformative, the same model and parameters must be valid for both the sampled
and non-sampled units in the population. Thus, inferences based on the sampled units
(e.g., parameter estimates) remain valid for the non-sampled units (Chambers and Clark,
2012, p. 10). Magnussen (2015) argues that for the design to be ignorable, the joint
distribution of the yi and the binary inclusion indicator δi (which may be no longer a
random variable) should be independent, conditional on any covariate xi. In the absence
of covariates, a probability-based simple random sample is noninformative, but other
designs might also be allowable (Chambers and Clark, 2012, p. 11).
As Chambers and Clark (2012, p. 11) write,

The importance of non-informative sampling to the model-based approach to finite
population inference cannot be overstressed.

However, sampling designs are often assumed to be noninformative when that assump-
tion cannot withstand serious scrutiny. Haphazard or convenience samples often fail to be
noninformative, as suggested by the container example. In vegetation ecology, the perni-
cious term “sampling without preconceived bias” (Ellenberg and Mueller-Dombois, 1974)
is often used to disguise such methods; but ignorance can only explain, not excuse, the
use of improper sampling methods even within a model-based framework. Of course, a
key challenge — especially in the absence of covariates — is detecting and quantifying the
influence of a non-ignorable sampling method on the results; without some information
about the non-sampled units, it can be difficult to substantiate that the distribution of the
yi should be the same between the sampled and non-sampled fractions of the population.
This argument extends even to the well-intentioned use of expert judgment in selecting
a “representative” sample. Chambers and Clark (2012, p. 12) recommend the use of a
probability sample “or some other non-subjective method,” and go so far as to write,

Designs where an expert chooses a set of units believed to be representative should
be avoided.

They argue that since expert choice is likely to depend on covariates that are not explicitly
included in the model, the sample distribution of yi is likely to differ between the sampled
and non-sampled fractions of the population. They suggest that where expert opinion is
available, it should be used to inform the choice of covariates in the model, rather than the
selection of sample units themselves. A model based on the kinds of prior experience and
subject matter knowledge that biosecurity inspectors and their supporting biological team
bring can be invaluable to the effectiveness of the inspection process. However, where that
knowledge is imperfect, or contested, a probability-based sampling design may allow for
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inferences that are robust to departures from an assumed model. A simple random sample
— or a sufficiently close approximation that departures can probably be ignored — may
represent a safe choice.
A somewhat different perspective is offered by Madden and Hughes (1995, p. 532) in

the context of plant disease surveillance, who write,

One cannot determine if the binomial distribution is appropriate if the data are
collected as an unrestricted random sample of individual plants, because there is
insufficient information on the observed distribution.

Madden and Hughes (1995) suggest cluster sampling, so that departures from the in-
dependence assumption of the binomial model can be detected and addressed. Against
this point, one may argue that clustering of samples is likely to exacerbate the problem
of non-independence. Moreover, tests for independence of contamination among sample
units that are not hierarchically clustered have advanced in recent decades, so that cluster
sampling is not strictly required (though it would be necessary to record information on
the proximity of sample units to one another, to use such tests). On the other hand, as
discussed in Subsection 2.3.2, cluster sampling presents a number of practical advantages,
so we turn to clustered populations and samples next.

2.4.2 Clustered populations or samples

In a model-based context, the treatment of clustering typically emphasizes clustering
within the population, rather than clustering as a feature of the sampling design (see,
e.g., Valliant et al. (2000, Chapter 8) and Chambers and Clark (2012, Chapter 6)). This
is natural, since in the model-based approach it is the attributes of the population (i.e., the
yi) that are considered random, rather than the inclusion of the units (i.e., the δi). There-
fore, it is natural to consider the clustering or correlation of attributes as part of the
model. With that said, populations that have a hierarchical physical (and possibly bio-
logical) structure, such as consignments of fruits that are packed within crates inside ship-
ping containers, may include population structure with scales and patterns that match
those of the clusters that are advantageous for sampling. Thus, clustering of populations
and the clustering of samples should be considered together.
Standard texts on model-based inference include the generalization of the BLUP esti-

mator to populations with hierarchical clustering (see, e.g., Chambers and Clark, 2012,
Chapter 6). However, as with the BLUP for homogeneous populations, the treatment is
most appropriate for estimating the mean of a normally-distributed variable. When the yi
are binary, the most popular model for a clustered population is the beta-binomial (Mad-
den and Hughes, 1995; Hughes et al., 1996; Venette et al., 2002a). The beta-binomial
model has long been used in a wide range of applications, and dates to an early paper
by Skellam (1948). Early applications when the number of secondary sample units is
constant across primary sample units was presented by Kemp and Kemp (1956) for veg-
etation quadrat data, by Chatfield and Goodhardt (1970) for consumer preference data,
and by Griffiths (1973) for disease incidence within households. A modern maximum-
likelihood approach, allowing unequal numbers of secondary samples within each primary
sample, was first presented by Williams (1975). The correlated binomial model of Kupper
and Haseman (1978), and the multiplicative binomial of Altham (1978), might be viable
alternatives but do not seem to have been explored in a biosecurity context.
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Under the beta-binomial model, the prevalences pk associated with each cluster are
assumed to follow a beta distribution, i.e.,

f(pk) =
pα−1
k (1− pk)β−1

B(α, β)
(2.8)

where B(α, β) is the beta function. The beta distribution has a mean, corresponding
to the population-level prevalence, of p = α/(α + β). If we draw nk sampling units
by a noninformative procedure from the kth cluster, then the unconditional probability
of finding xk contaminated units (i.e., the probability without knowing the cluster-level
prevalence pk) is

bb(x;nk, α, β) =

(
nk
xk

)
B(α + xk, β + nk − xk)

B(α, β)
(2.9)

The probability of a completely clean sample from an individual cluster is therefore

bb(0;nk, α, β) =
B(α, β + nk)

B(α, β)
(2.10)

It is straightforward to prove that bb(0;nk, α, β) ≥ (1 − p)nk , with equality only when
nk = 1 (i.e., sample units are drawn from independent clusters) or in the limit as (α +
β) → ∞ (i.e., the variation in pk between clusters vanishes, so that the cluster identity
becomes noninformative). Recalling that the sensitivity under a binomial model is given
by Equation 2.2,

S = 1− (1− p)n = 1− [(1− p)nk ]n/nk

it will be true, in general, that the sensitivity when allocating nk sample units to each of
n/nk clusters, i.e.,

S = 1− bb(0;nk, α, β)n/nk (2.11)

is strictly lower than that under the binomial model. Of course, the effect is difficult
to estimate without prior knowledge of α and β. In this context, it may be useful to
consider reparameterization of the beta-binomial in terms of the overall prevalence p and
the intracluster correlation coefficient ρ, which can be related to the original parameters
by

ρ =
1

α + β + 1

Intuitively, ρ (which ranges from 0 to 1) measures the degree to which units from the same
cluster are likely to share the same contamination status. Specifically, the probability that
two units from the same cluster share the same contamination status is (Mak, 1988)

ps = 1− 2p(1− p)(1− ρ)

If prior data on consignments within a pathway were available, it would be possible to
estimate ρ for the pathway; methods for estimating ρ and its uncertainty are discussed
by Lui et al. (1996), Zou and Donner (2004), and Saha and Wang (2018). In practice,
when prevalence is very low, it will be difficult or impossible to obtain reliable estimates
of ρ. For example, when p = 0.005, we would expect that the fraction of clusters with
BRM present would be at most 0.005nk, but perhaps as small as 0.005. The necessity
of having multiple clusters with BRM present, in order to test whether contamination is
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correlated within clusters, would imply having data on a large number of clusters indeed.
In the absence of such data, two extreme alternatives suggest themselves, but neither is
entirely attractive. One is to assume ρ = 0 in the absence of compelling evidence to the
contrary, and proceed with the binomial model assuming independence. But then, the
actual sensitivity may be less than the nominal sensitivity, and there may be substantial
risk of BRM leakage. The other alternative is to assume the “worst case” ρ = 1. That
would ensure that sensitivity would be at least at its nominal level, but the sample size
requirement (for example, 600 clusters rather than 600 sample units for 95% sensitivity at
p∗ = 0.005) may entail considerable expense. Viewed from such a perspective, the price of
complete ignorance about the characteristics of consignments on a pathway may be quite
high, and the value of a well-designed study to discern those characteristics may likewise
be high, despite the time and expense required (for an example on how to estimate ρ
from a pathway and how much data is needed, the readers are referred to section 3.2.2.2.
For a realistic pathway with p=0.02 and ρ=0.1, at least 30–40 consignments, each with
30 clusters and 20 units per cluster —i.e., 600 units per consignment— are required to
obtain a reliable estimate of ρ).

2.5 Bayesian inference

Bayesian inference is, in essence, a form of model-based inference with its origins in the
work of Bayes (1763) and Laplace (1774). This broad class of approaches had previously
been known simply as “inverse probability”; the term Bayesian only came into common
use after World War II (Fienberg, 2006). The Bayesian approach stands in contrast to
the conventional frequentist perspectives discussed so far, including both the design- and
model-based perspectives, in its emphasis on treating all unknown quantities as random.
As Lindley (1978), in discussing the works of de Finetti (1974) and de Finetti (1975),
writes,

In conventional, sampling-theory statistics the basic uncertainty that is admitted
and from which all other uncertainties are derived is that concerning the data —
the probability distribution of the data given the parameter. This is extraordinary
because the data are just those things about which one is certain: they are there
to be seen and analysed. The truly uncertain quantities are the parameters: You
are uncertain about them and it is those that must be described probabilistically to
make coherent sense.

The mid-20th century development of the Bayesian approach as a distinct branch of sta-
tistical thought was stimulated by the work of Alan Turing and his assistant I.J. Good
at Bletchley Park, by wartime work at the Statistical Research Group at Columbia Uni-
versity, and by a growing awareness of the work on subjective probabilities by de Finetti
(e.g., de Finetti, 1937) and on the objective theory of inverse probability as propounded
by Jeffreys (1939). The publication of The Foundations of Statistical Inference by Savage
(1954) — a member of the Statistical Research Group team — can be seen as transfor-
mative (Fienberg, 2006).
Central to Bayesian inference is the use of Bayes’ Theorem to update prior knowledge

or belief about unknown quantities, after observing the data. In the modern formulation,
first put forward by Laplace (1812), the theorem states

Prob(θ|X) =
Prob(X|θ)Prob(θ)

Prob(X)
(2.12)
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where θ represents the unknown (and therefore random, even if fixed) quantity or quan-
tities, and X represents the observed data. Prob(θ|X) is the posterior distribution for θ,
and forms the basis for inference. By contrast, Prob(X|θ) is the likelihood function —
the probability of observing particular values of the data, given a hypothetical value of θ.
Probabilities such as those in Equations 2.1 and 2.9 represent likelihoods. The probability
Prob(θ) is the prior distribution for θ — i.e., what is known or believed before the data
have been observed. Finally, Prob(X), the marginal probability of X, is usually treated
simply as a normalization function to ensure that the values of Prob(θ) sum (or integrate)
to 1 over all possible values of θ. As Jeffreys (1939, Section 1.2) states succinctly, “The
posterior probabilities of the hypotheses are proportional to the products of the prior
probabilities and the likelihoods.”
Bayes’ Theorem, in itself, is not controversial: it is a straightforward statement about

conditional probabilities. What was controversial in the emergence of Bayesian inference
was the insistence that the likelihood function alone did not form a sufficient basis for co-
herent inference; the requirement for a prior distribution (even if that prior was putatively
“noninformative”), and the assertion (especially by “subjectivist Bayesians”, following de
Finetti (1937)) that probabilities represented not only physical or aleatory probabilities
(e.g., the long-run probability of pulling white marbles from an urn) but also beliefs or
epistemic probabilities (e.g., ones’ belief that a marble, already drawn from the urn, per-
haps the only marble in the urn, and now hidden under a cup, is white). The requirement
for a prior, and the incorporation of priors based on subjective beliefs into inference,
seemed to many to contradict the goal of an objective, data-driven approach to statistical
inference. The Bayesian approach departed dramatically from those developed and advo-
cated by Fisher, Neyman, Pearson and others in the pre-war period, and the debate over
Bayesian methods was often contentious. Not surprisingly — and compounded by a lack
of computing power and software — Bayesian methods were slow to enter the relatively
conservative subfield of survey sampling; the first fully Bayesian paper on the subject was
probably that of Ericson (1969). Even 35 years later, Little (2004), espousing a Bayesian
approach, wrote:

Advocating Bayes for sample survey inference is “swimming upstream,” because its
subjectivist basis is anathema to many survey statisticians, who do not like modeling
assumptions. But Bayesian methods run the gamut of subjectivity and can be as
“objective” as any frequentist method when necessary; indeed, many frequentist
answers can be replicated from a Bayesian perspective.

Nonetheless, applications of Bayesian approaches have begun to appear in the biosecurity
arena, especially in complex problems requiring the integration of multiple types of data
with expert opinion. A summary of examples and approaches can be found in Low-Choy
(2015a) and Low-Choy (2015b).

2.5.1 Homogenous Populations and Simple Random Samples

The basic approach for calculating the posterior probability of a binomial proportion is
one of the oldest results in Bayesian statistics, having been studied by Bayes (1763).
Moreover, the calculations required are relatively simple. Since the prevalence p is un-
known, it requires a prior distribution. Bayes (1763), and many others following, have
assumed a uniform distribution for the prior. (There are other choices with different but
compelling rationales; we shall return to the issue of selecting a prior below.) Note that
the uniform distribution is a special case of the beta distribution, with α = β = 1. When
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a Beta(α, β) prior is updated with data reflecting x “successes” (in our case, detections of
BRM) in n trials, the posterior distribution is Beta(α + x, β + n − x). The mean of the
posterior distribution — which represents the most obvious point estimate of p, though
not necessarily the only one — is (α + x)/(α + β + n). And the probability that the
unknown prevalence p is actually less than the design prevalence p∗ is (e.g., McBride and
Johnstone, 2011)

Prob(p ≤ p∗|x, n) = I(p∗;α + x, α + β + n) (2.13)

where I(z; a, b) denotes the regularized incomplete beta function

I(z; a, b) =
1

B(a, b)

∫ z

t=0

ta−1(1− t)b−1dt

Fortunately the incomplete beta function is available in nearly all comprehensive scientific
and statistical software, so its computation is relatively straightforward.
The primary challenge here is the selection of a prior distribution, even if one confines

the choice to those that are considered noninformative. A noninformative prior represents
the idea that very little is known a priori and should lead to an inference that is ideally
unaffected by information external to the current data. Berger (1985) lists four candidate
distributions: the Bayes-Laplace prior, Beta(1, 1); the Perks-Jeffreys prior, Beta(0.5, 0.5);
the Haldane prior, which is the limiting case of the beta distribution as both α and β
approach zero; and the Zellner prior, which is not a beta distribution. The Haldane
prior gives results that are “less than adequate” when x = 0 (Tuyl et al., 2008), which
is the condition under which we wish to measure assurance, so we do not consider it
further. When x = 0 (as when substantiating freedom from contamination by BRM)
and n is large, the posterior arising from the Zellner prior is well-approximated by a
Beta(1, n + 2) distribution (Tuyl et al., 2008). Since this is the same posterior as would
be produced by the Bayes-Laplace prior under the same circumstances, we focus on the
remaining two priors that can be represented as beta distributions, namely the Bayes-
Laplace and the Perks-Jeffreys. Between these two, there are evident differences in the
posterior distributions and the resulting inferences for biosecurity. For example, Figure
2.1 shows the posterior probability that p < 0.005, for a range of sample sizes, when
no contamination has been found. Even though these sample sizes would usually be
considered “large,” and we might expect the data to “speak for themselves” (McBride
and Johnstone, 2011), differences in the posterior probability are evident even as the
sample size approaches the typical 600-unit sample. This is because for our purposes
the most important sampling event is when x = 0, and the prior distributions have
greatest difference at that point. Figure 2.2 illustrates the same challenge, from the
perspective of the credible interval (the Bayesian analog to the frequentist confidence
interval). The credible intervals depicted are the upper one-sided credible intervals, and
thus show the value that p is believed to lie with a probability of 0.95. Again, the
differences are evident even at operational sample sizes. Notably, while the Bayes-Laplace
prior requires a sample of n = 597 to deliver 95% certainty that p ≤ p∗, in agreement
with the usual frequentist sample size calculation, the Perks-Jeffreys prior requires only
n = 383. Unfortunately, as Berger (1985) pointed out, there is no compelling reason to
choose one noninformative prior over the other. Or, perhaps it is more correct to say
that there are compelling reasons, but those reasons disagree, with some authors strongly
favoring the uniform Bayes-Laplace (e.g., Geisser, 1984; Tuyl et al., 2008; Tuyl et al.,
2009) while others favor the Perks-Jeffreys (e.g., Box and Tiao, 1973; Bernardo and
Smith, 1994; McBride and Johnstone, 2011; Berger et al., 2015). We note that the paper
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Figure 2.1: Posterior probability that the actual prevalence p is less than or equal to the
design prevalence p∗ = 0.005 as a function of sample size when no contamina-
tion has been detected, for two common noninformative prior distributions.
Bayes-Laplace prior corresponds to a Beta(1, 1) prior, while Perks-Jeffreys
corresponds to a Beta(0.5, 0.5) prior.

by Tuyl et al. (2008) is particularly relevant to the biosecurity situation, because it focuses
on the suitability of different priors when x = 0 in a binomial trial. Conversely, that of
McBride and Johnstone (2011) is also posed in an invasive species context, and while less
theoretical than both Tuyl et al. (2008) and Tuyl et al. (2009), suggests the opposite choice.
Given the disagreement among Bayesian statisticians about which noninformative prior
is appropriate to the situation, could we blame a cost-conscious inspector for choosing the
Perks-Jeffreys prior and thereby reducing the number of inspections needed by over 35%
at one stroke? In fact, Tuyl et al. (2008) primarily recommend the Bayes-Laplace prior
as a reference for sensitivity analysis, suggesting that an informative prior taken from the
Beta(1, β) family, with β > 1, should be used in situations where x ≈ 0. The use of an
informative prior would require specification in terms of previous data (i.e., an Empirical
Bayes approach; Martz and Lian, 1974) or by elicitation (e.g., Low-Choy, 2012; Martin
et al., 2012). To our knowledge the practical consequences of such a choice, either in
terms of design or of inference after inspecting one or many consignments, has not been
fully explored in the literature.
In section 3.1.3, we provide a case study illustrating the effect of using noninformative

and informative priors in the biosecurity context with simple random sampling. In sec-
tion 3.1.3 and in practice, we will use 1) a uniform prior when we have no data on the
pathway as it is compatible with and gives similar sample sizes to current practice (e.g., a
600 units sample allows to be 95% sure that the estimated infestation rate in accepted
consignments is below 0.5%); 2) an informative prior estimated from recent past data; or
better 3) a weighted mixture of uniform and informative priors that make use of external
data when available, but also recognizes that past data are not always representative of
future, allowing for the possibility of encountering consignments with a higher infestation
rates than what we have seen in the past.
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Figure 2.2: Upper 95% credible intervals for the prevalence p as a function of sample size
when no contamination has been detected, for two common noninformative
prior distributions.

2.5.2 Clustered Populations or Samples

Many of the concerns over clustering in the population, and issues surrounding cluster or
two-stage sampling, are the same for Bayesian inference as for frequentist model-based
inference. So is the most obvious choice of a model: the beta-binomial. The difference is
that from a Bayesian perspective, there are now two parameters (α and β, or equivalently
p and ρ) that require prior distributions.
Defining a noninformative prior for the beta-binomial is not as straightforward as for

the binomial. Following Yang and Berger (1998), the Fisher information matrix for the
beta-binomial is

I(α, β) =

[
ψ(1)(α)− ψ(1)(α + β) −ψ(1)(α + β)

−ψ(1)(α + β) ψ(1)(β)− ψ(1)(α + β)

]
where ψ(1)(z) is the polygamma function of order 1, i.e.,

ψ(1)(z) =
∞∑
k=0

(z + k)−2

The Jeffreys prior for the beta-binomial is then the square root of the determinant of
I(α, β). By contrast, Gelman et al. (2014, p. 110–111) recommend a noninformative prior

Prob(α, β) ∝ (α + β)−5/2

Unlike the ordinary binomial, updating the beta-binomial cannot proceed by elementary
calculation (since the prior is not conjugate). Bayesian estimation and inference for the
beta-binomial is described by Lee and Sabavala (1987), Lee and Lio (1999), and Everson
and Bradlow (2002). To our knowledge, the influence of the prior on the posterior for the
beta-binomial model, when all or nearly all of the samples indicate freedom from BRM,
has not been studied.
In section 3.2.3, we provide a case study illustrating the effect of using noninformative

and informative priors in the biosecurity context with clustered sampling.

37



Cen t r e  o f  Exce l l en ce  f o r
B i o se cu r i t y  R i sk  Ana l y s i s
 

2.6 Further Alternatives

The frequentist design- and model-based paradigms, along with the Bayesian, represent
the primary modes of statistical inference in survey sampling. To our knowledge, they
are the only ones that have been adopted in biosecurity applications, and as the review
above suggests, there is still territory to be explored even within those “well-understood”
lands. But they are not the only approaches that could be considered. In this section, we
take up some alternatives — ideas from beyond the borderlands, as it were — that may
yet provide some benefit in applications.
The class of methods considered here is often described as dealing with non-additive

measures, in that they violate the principle (promoted to an axiom by Savage, 1954) that
measures of uncertainty, taken over a mutually-exclusive and exhaustive set of events,
should sum to 1. That axiom is satisfied by ordinary probabilities. However, a number
of researchers have questioned the necessity, or even wisdom, of that requirement in
all situations. For example, Good (1976, p. 129), in summarizing subjectivist Bayesian
principles he had developed over the previous decades, writes

In practice one’s judgments are not sharp, so that to use the most familiar axioms
it is necessary to work with judgments of inequalities. For example, these might be
judgments of inequalities between probabilities, between utilities, expected utilities,
weights of evidence . . . or any other convenient function of probabilities and utilities.

Work identifying the shortcomings of additive probability models, especially in decision
problems involving incomplete information or even ignorance, and attempts to find alter-
natives, date at least to the work of Keynes (1921). It would be impossible to summarize
all of that work in a rigorous fashion here. Rather, we focus on two main alternatives: the
Dempster-Shafer theory of evidence (Shafer, 1976), which first rose to prominence in the
artificial intelligence community, and the theory of inference from imprecise probabilities
and previsions, as first outlined by Walley (1991). The latter theory can be approached
either from Bayesian or frequentist perspectives.

2.6.1 The Dempster-Shafer theory of evidence

The Dempster-Shafer theory of evidence had its origins in the statistical work of Dempster
(1966), Dempster (1967a), Dempster (1967b), Dempster (1968a), and Dempster (1968b),
whose intent was to provide additional flexibility in the specification of uncertainty in
probabilistic models and hypothesis testing. Shafer (1976) further developed and clarified
the theory, and provided both a philosophical foundation and mathematical extensions.
Most applications of the Dempster-Shafer theory have focused on uncertain reasoning
in artificial intelligence, expert systems, and pattern recognition problems (Shafer and
Pearl, 1990; Denoeux, 2016). It has been less widely used in the area of general statistical
inference (Denoeux, 2014). However, some attempts have been made to employ it as a
general approach to simplified decision problems; in the natural resources arena, it has
been suggested to be useful in situations where data are sparse, absent, or inconsistent
(e.g., Caselton and Luo, 1992; Ducey, 2001). The Dempster-Shafer theory is widely
known and used in certain application areas, having generated thousands of further papers
in the past four decades (Denoeux, 2016). However, it has not, to our knowledge, been
exploited within the biosecurity arena.
At the heart of the Dempster-Shafer approach is the basic probability assignment, which

assigns belief over the possible outcomes of an uncertain event. Let Ω be the set of all
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possible outcomes of the event. For example, the event might be whether or not the
inspection status of the next consignment on a pathway will be clean, noncompliant due
to faulty paperwork, or noncompliant due to the presence of BRM. (For simplicity, let us
suppose these are mutually exclusive, though of course in reality a consignment could have
bad paperwork and BRM present.) Let A be a set in Ω: perhaps one of the singletons
clean, bad paper, or BRM present, or perhaps a set formed by the union of more than one
of those choices. The basic probability assignment satisfies

m(∅) = 0

m(A) ≥ 0, ∀A ⊆ Ω∑
A⊆Ω

m(A) = 1

Note that belief can be assigned to any non-empty subset of Ω, not just to singletons, and
that m(A) represents the assignment of belief precisely to the set A; thus, the quantities
m(bad paper),m(BRM present), andm(bad paper∪BRM present) are distinct quantities
and bear no necessary relation to one another, apart from not violating the constraints
given above.
The belief function measures the total assignment of belief to each subset A, i.e.,

Bel(A) =
∑
B⊆A

m(B)

The plausibility function represents the total assignment of belief to outcomes that do
not directly exclude A, i.e.,

Pl(A) =
∑

B:A∩B6=∅

m(B)

The belief and probability functions share direct relationships:

Bel(A) = 1− Pl(AC)

Pl(A) = 1− Bel(AC)

where AC is the complement of A. Although Shafer (1976) emphasizes an epistemic
interpretation, others have suggested that the belief and plausibility functions can be
considered as lower and upper bounds on the probability of the outcomes within a decision-
theoretic context (Dempster and Kong, 1987; Caselton and Luo, 1992).
A key difference from the Bayesian approach is the handling of complete ignorance.

Because the Bayesian approach can only assign belief to singletons, the challenge of for-
mulating a noninformative prior is one of assigning (very precise) probability masses to
the (very precise) singleton subsets of Ω. Such assignments carry (very precise) behavioral
implications even though they are based on a lack of information. By contrast, in the
Dempster-Shafer approach, one assigns m(Ω) = 1, and no mass to any smaller subset of
Ω. This results in the vacuous belief function

Bel(Ω) = 1

Bel(A : A ⊂ Ω) = 0

and the corresponding plausibility function

Pl(A : A ⊆ Ω) = 1

Pl(∅) = 0
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In other words, under a state of complete ignorance, any outcome in Ω is plausible, but
we do not specifically believe any outcome is more likely than any other. This seems a
more intuitive description of ignorance than, for example, insisting that all outcomes are
in fact equally likely. If we know only that an urn contains red and blue marbles, do we
really believe the probability of drawing a red marble is 1/2? And should that change
if we know that the blue marbles come in two distinguishable colors, navy and aqua?
Coarsening or refinement of Ω poses challenges for the representation of ignorance in the
Bayesian approach, but not in the Dempster-Shafer theory.
When two independent bodies of belief or evidence are to be combined, the approach

follows Dempster’s rule of combination, as first laid out by Dempster (1967a). (A related
combination rule when Ω is not discrete, but continuous, is presented by Shafer (2016).) In
the discrete case, if m1 and m2 are independent probability assignments, we may compute
the combined probability assignment m(C) for any non-empty set C as

m(C) =

∑
A,B:A∩B=Cm1(A)m2(B)∑
A,B:A∩B6=∅m1(A)m2(B)

(2.14)

where the top line of the equation simply combines the probability of any combinations
of A and B that are not inconsistent with C. The bottom line effectively rescales the total
probability of all non-empty sets back to 1 by excluding any combinations of A and B
which are inconsistent. Readers are referred to Shafer (1976, Chapter 4) for a thorough
and reasonably lucid treatment. Luckily, for certain special cases, the rule gives rise to
much simpler results, and binomial sampling is one of these, as originally outlined by
Dempster (1966) and fully developed by Dempster (1968b). If one begins from a vacuous
belief function about p, and observes x successes in a binomial trial with sample size n,
then a lower bound to the posterior distribution for p is given by a beta distribution with
α = x and β = n+ 1−x. The corresponding upper bound is also a beta distribution with
β = n+ 1− x, but with α = x+ 1.
These lower and upper probability distributions can be interpreted behaviorally in

decision problems (Dempster and Kong, 1987). In situations with linear utilities, only the
upper and lower expected values of p are needed; these follow directly from the parameters
of the beta distribution, i.e.,

p = (x+ 1)/(n+ 1)

p = x/(n+ 1)

for the upper and lower values, respectively. In the case of substantiating freedom from
BRM, we are more concerned with the belief in, and plausibility of, the actual prevalence
exceeding the design prevalence (i.e., p > p∗). Letting F (x;α, β) denote the cumulative
distribution function for the beta distribution, we may calculate these two quantities as

Bel(p > p∗) = 1− F (p∗, x, n+ 1)

Pl(p > p∗) = 1− F (p∗, x+ 1, n+ 1)

So, for example, having observed x = 0 fruits infested with BRM in a sample of n = 600
fruits from a consignment, our belief that the prevalence exceeds 0.005 in that consignment
is zero (the beta distribution becomes degenerate when α = 0, but we take the limiting
value). This is sensible — there is nothing in the evidence to indicate there is actually
any contamination. On the other hand, the plausibility that the prevalence exceeds 0.005,
equals 0.0497. In other words, the evidence doesn’t entirely rule out a higher prevalence,
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but it is implausible. The situation changes if, in the next consignment, we observe x = 2
contaminated fruits in a sample of n = 600. Now, our belief that the prevalence exceeds
0.005 equals 0.1954: the evidence doesn’t compel us to believe the proposition is true.
But the plausibility is 0.4170 (or, conversely, the belief that the prevalence is less than
0.005 has fallen to 0.5830). Our confidence that this consignment is clean, is not high.
We reject it.

2.6.2 Imprecise Probabilities

Although the Dempster-Shafer theory offers a flexible model for decision making under in-
complete information and ambiguity (Walley, 1996b), from some perspectives its reliance
on Dempster’s rule of combination (and a related rule of conditioning) is its Achilles’
heel. As a number of authors have shown, in certain circumstances the combination of
belief functions can lead to behavioral implications that are illogical (Voorbraak, 1981;
Walley, 1996b; Halpern and Fagin, 1992; Kyburg Jr., 1987; Pearl, 1990; Walley, 1987).
Halpern and Fagin (1992) cite a number of earlier examples that appear in less-accessible
proceedings, and emphasize the distinction between an interpretation of the belief func-
tion as generalized evidence (in which case the rule may be acceptable) versus generalized
probability (in which case it is suspect). Such implications are especially problematic if
the decision-theoretic perspective of Dempster and Kong (1987) is adopted.
Walley (1991) constructed an alternative approach to upper and lower probability, along

with a related concept, that of upper and lower previsions constructed as prices for un-
certain gambles. Walley (1991) followed Savage (1954) in seeking an axiomatic basis that
would ensure consistency and behavioral rationality, while maintaining the philosophi-
cal and mathematical openness to indeterminacy that had characterized Keynes (1921),
Dempster (1966), and Shafer (1976). The theory is constructed with behavioral implica-
tions at its cornerstone. Key principles link the subjectivist and objectivist interpretation
of probabilities. Among these are coherence, avoidance of sure loss, and a principle of
direct inference: if one knew the (aleatory) chances of an event, one would adopt those as
one’s (epistemic) belief about the probability of the event. Taken together, these princi-
ples give rise to an approach for combining interval-valued probability measures that can
be interpreted as a generalization of Bayes’ rule. Although Walley (1991) remains author-
itative for the foundation of the theory, a great deal of subsequent work has built upon
his framework; for a more recent review, albeit one with a great deal of mathematical
formalism, see Augustin et al. (2014).
The theory of imprecise probabilities bears some resemblance to Dempster-Shafer theory

in the way that complete prior ignorance is represented. Let A be a non-empty event (or
set of events) in a sample space Ω. Then, under complete ignorance, belief about A is
represented by the lower and upper probabilities

P (A) = 0

P (A) = 1

These probabilities have a behavioral implication: P is the maximum rate at which there
is compelling reason to bet for A, while P is the minimum rate at which there is com-
pelling reason to bet against A. Initially, there is no compelling reason to bet for or
against A; as information relevant to an event is acquired, we would expect P and P to
converge. The vacuous probability assignment uniquely obeys several useful principles. It
obeys the embeddedness principle that the assignment of probabilities should not depend
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on the sample space in which A is embedded. For example, if A is “the next BRM encoun-
tered will be an arthropod,” P and P do not depend on whether the possible outcomes
are arthropod, non-arthropod or arthropod, fungus, plant or indeed how many types of
arthropod or fungus or plant we might recognize and include as possibilities. This kind
of invariance is very challenging to represent using the classic Bayesian non-informative
priors. It also satisfies the symmetry principle: under a state of ignorance, all outcomes
receive the same probability assignment. These conditions seem necessary to a proper
description of ignorance, but as Walley (1996a, p. 5) states, “It is clear that Bayesian
model can satisfy both principles.”
In the case of binomial sampling, imprecise probability theory gives rise to results that

remain superficially similar to those of Dempster-Shafer theory. Walley (1991, Section 5.3)
presents an imprecise beta model for the posterior distribution of the parameter of the
binomial (in our case, the prevalence p), having observed x successes in n trials. Walley
(1991) begins by assuming a convex set of prior distributions, of sufficient breadth to give
rise to the vacuous probability assignment, and also containing all the usual Bayesian
noninformative priors as special cases. Under this assumption, the posterior lower and
upper expectations for p are

P (A) =
x

n+ s

P (A) =
x+ s

n+ s

where s is a hyperparameter describing the strength of the original (vacuous) prior. When
s = 1, the results agree with those of the Dempster-Shafer theory (Dempster, 1966; Shafer,
1976). However, Walley (1991) and Walley (1996a) argue for s = 2 as encompassing all
the usual “noninformative” Bayesian priors (including the improper Haldane prior), as well
as ensuring that the resulting credible intervals are (at least) corresponding confidence
intervals in the frequentist sense. The full posterior lower distribution for p is given by
the beta distribution with parameters α = x and β = n+ s− x; the corresponding upper
distribution is given by α = x+ s and β = n− x.
The use of a set of prior distributions would suggest that the imprecise beta model is

essentially a robust Bayes approach (e.g., Berger, 1990). However, to the robust Bayes
analyst, the set of priors is only a tool for checking whether the initial prior is unduly
influential on the result. Ultimately, the robust Bayesian will choose a single probability
distribution as the prior, and achieve a correspondingly precise result. Under imprecise
probability theory, no selection of prior within the set is ultimately made; the result of the
analysis includes the final imprecision as an essential element. Moreover, as Walley (1991)
notes, the use of a set of priors is one way to construct a coherent imprecise posterior
probability, but it is not the only one.
Walley (1996a) extends the imprecise beta model to the case of multiple outcomes (the

imprecise Dirichlet model), which in turn opens the door to a potentially broad set of
settings for statistical inference. Further exploration of the basic model, in efforts to rely
solely upon the likelihood function and avoid the need to define a prior distribution (either
implicitly or explicitly), may be found in Walley and Moral (1999) and Walley (2002).
Walley (2000) provides some unifying theory and terminology.
To date, there have been few direct applications of imprecise probability methods to

biosecurity applications, though Coolen and Elsaeiti (2009) present work on acceptance
sampling that may be applicable. Given the sensitivity of standard Bayesian methods to
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the prior when little or no BRM is encountered, and the foundation of imprecise prob-
ability methods within a probabilistic framework, this imprecise probability perspective
may be deserving of further exploration within biosecurity problems.
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3 Case studies

In this section, we illustrate the use of design-based, model-based, Bayesian inference,
Dempster-Shafer, and imprecise probability theory for non-clustered (simple random sam-
pling) and clustered data (data collected in clusters or batches)1 using two cases studies: a
typical plant import pathway to Australia with a prevalence risk cutoff of 0.5% (i.e., which
is typically dealt with using a 600 sample inspection) and a typical plant import pathway
to New Zealand with a prevalence risk cutoff of 0.01% (i.e., which is typically dealt with
using a 31,540 sample inspection). We will refer to the two pathways by their risk cutoffs
to be clear that the differences arise from the nature of the risk of the pathways rather
than from their national source.
The five inference frameworks differ in their ability to use information other than the

inspection sample when making inference on the infestation rate of the inspected consign-
ment (Table 3.1). Of the five frameworks, only Bayesian inference allows using external
information to increase the precision of the estimates for both simple random sampling
and clustered sampling case (to our knowledge, Dempster-Shafer theory has not been
extended to clustered sampling).

3.1 Simple random sampling

We do simple random sampling when each unit in a consignment has the same probability
of being sampled. Simple random sampling forms the basis for most of the statistical
framework that has been developed in biosecurity (IPPC, 2008).

3.1.1 Design-based inference for simple random sampling

For both design-based (simple random sampling) and model-based inference (absence
of clustering in the data collection or intra-cluster correlation coefficient of zero), the
sensitivity S of a binomial test (probability of failing an inspection) is only a function of
the infestation rate p of the consignment and the number of samples n of the consignment:

Table 3.1: Possibility to use external information in different inference frameworks
Inference framework Simple random sampling Clustered sampling
Design-based No No
Model-based No Yes
Bayesian Yes Yes
Dempster-Shafer Yes ?
Imprecise probabilities No No

1In order to make the case studies chapter (chapter 3) self-contained, we re-derive or repeat equations
that were given in the review chapter (chapter 2) when necessary.
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S = 1− (1− p)n (3.1)

We can rearrange Eq. 3.1 to solve for n as a function of S and p∗, the design-based
infestation rate that we are willing to accept:

n =
ln(1− S)

ln(1− p∗)
(3.2)

For example, for a given p∗ of 0.005 and S of 0.95, n equals 598. This n equals 598 is often
rounded to 600 and forms the basis of the ‘600 samples rule’ often used in biosecurity
(Venette et al., 2002b; IPPC, 2008). In plain English, this means that in the long run,
inspecting 600 samples per consignment will filter ∼95% of consignments that have an
infestation rate of 0.5%. When the infestation rate is below 0.5%, the acceptance sampling
procedure will filter fewer consignments and vice versa (see Eq. 3.1, which gives the
sensitivity of the test when varying p and fixing n = 600). Alternatively, if we want to
filter 95% of the consignments that have a 0.01% infestation rate, the sample size will
need to be 29,956 (which has been rounded to 31,540 samples in the NZ case, as they
assume a detectability of 95%, so that p∗ in Eq. 3.2 is replaced by 0.95× p∗).
In design-based sampling, no external information is used for decision making.

3.1.2 Model-based inference for simple random sampling

When the data arise from simple random sampling and is not clustered, design-based
and model-based inference give the same answer. We can use Eq. 3.1 to estimate the
sensitivity of the inspection and Eq. 3.2 to estimate its sample size (we need to sample n
∼600 units to filter 95% of consignments that have an infestation rate of 0.5% and 29,956
units to filter 95% of consignments that have an infestation rate of 0.01%).
In model-based sampling for non-clustered data, no external information is used for

decision making.

3.1.3 Bayesian inference for simple random sampling

While in design-based inference, the acceptance sampling procedure is built up from the
design-sensitivity S of the test, in Bayesian inference, acceptance sampling can be seen
as an estimation problem: we accept an incoming consignment j if we are 95% sure that
its infestation rate pj is below a fixed threshold p∗ of 0.5%.
In a Bayesian model-based setting, we combine prior information on potential pj values

for the consignment and data on the number of infected samples of the consignment to
estimate the posterior probability of the consignment infestation rate pj. If 95% of the
posterior distribution of the consignment is below 0.5%, then consignment j is deemed
compliant.

3.1.3.1 Beta distribution as conjugate prior to the Binomial likelihood

If we assume that the number of infested sampled units in consignment j follows a Bi-
nomial distribution, a natural choice of prior for the potential distribution of pj before
seeing consignment j’s data is the Beta distribution. The Beta distribution is bounded
in the [0–1] range and is flexible enough to represent different distributional shapes. The
Beta distribution is also the conjugate prior to the Binomial likelihood. This means that
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combining a Beta prior on pj with a Binomial likelihood for the inspection data will pro-
duce a posterior distribution of pj that is also Beta distributed. Specifically, the prior
pj ∼ Beta(α, β) gets updated to the posterior pj ∼ Beta(α + x, β + n − x) after finding
x infested units out of n samples when inspecting consignment j.

3.1.3.2 Bayesian inference using a noninformative prior. Case study with a 0.5%
risk cutoff

If we use a uniform prior Beta(1, 1) on pj (i.e., any values of pj in [0–1] is equally likely a
priori), we need to sample 597 units free of BRM to have 95% confidence that pj is below
0.5%.2. That is, when we use a uniform prior on pj, the Bayesian inference procedure gives
a similar answer as the design-based and model-based procedure (i.e., the ‘600 samples’
rule).

3.1.3.3 Bayesian inference using informative priors. Case study with a 0.5% risk
cutoff

However, a uniform prior on the potential distribution of pj is often unrealistic. Most
of the consignments have an infestation rate well below 100%. We can use a more sen-
sible prior for future consignments in the pathway by improving our knowledge of the
pathway, e.g., by estimating the potential distribution of pj among consignments. If each
consignment has its own infestation rate3 and the distribution of infestation rate among
consignments in the pathway follows a Beta distribution, then we can estimate this Beta
distribution by fitting a beta-binomial model to past data on the pathway4:

xj ∼ Binomial(pj, nj) (3.3)
pj ∼ Beta(α, β)

where xj is the number of infected units out of nj sampled units in consignment j, pj is
the infestation rate of consignment j, and α and β are parameters to be estimated.
Assuming that the infestation rate for future consignments in the pathway also follow

the estimated pj ∼ Beta(α, β), our best guess at pj before seeing consignment’s j data is
Beta(α, β). This prior information will increase the precision of pj even after seeing the
data. It will often reduce the number of sampled units needed to be 95% sure that the
infestation rate of the inspected consignment pj is below 0.5%.
For example, in the import plant germplasm pathway for Australia, the distribution

of infestation rate among consignments follows a Beta distribution with mean p = 0.022
and ρ = 0.11 (α = 0.17, β = 8). This corresponds to ∼ 60% of the consignments having

2The probability mass of a distribution that is below a given threshold p can be computed in most
statistical software. In R, we would use the ‘pbeta’ function. We can increase the number of samples n
until the 95% of the posterior distribution is below 0.005. For example, after finding zero BRM out of 596
samples, 94.9% of the posterior distribution pbeta(0.005, 1, 1+596) = 0.949 is below 0.005, which doesn’t
reach our criteria. After finding zero BRM out of 597 samples, the 95% of the posterior distribution is
pbeta(0.005, 1, 1+597) = 0.950 is below 0.005. When we use a uniform prior on pj , the sample size is
n=597.

3This is called heterogeneity or overdispersion and it seems relatively common in quarantine biose-
curity data

4A number of software can be used for this application. Here we used the ‘vglm’ function from the
‘VGAM’ package in R, which is parametrized in terms of its mean p and its ICC ρ. The relationship
linking parameters p and ρ and the usual parameters α and β of the Beta distribution is: p = α

α+β and
ρ = 1

α+β+1 .
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an infestation rate below 0.5% (Fig. 3.1). Using Beta(0.17, 8) distribution as prior, we
can compute the number of sampled units free of BRM that needs to be sampled in
order to be 95% sure that the infestation rate of new consignments in the pathway are
below 0.5%. With a Beta(0.17, 8) prior (95% percentile equals 0.12), it is reached for
pj ∼ Beta(0.17, 8 + 183), that is, when we find zero BRM out of 183 sampled units (95%
percentile equals 0.005, Fig. 3.1).

Prior p_j ~ Beta(.17, 8)
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Figure 3.1: a. Estimated distribution of pj among consignments in the import plant path-
way to Australia. b. Posterior distribution of infestation rate in an incoming
consignment after finding zero BRM out of 183 samples during an inspection.
The vertical red lines represent p∗=0.005 (60% of the pj values are left of the
red line in a, while 95% of the values are left of the red line in b). Note that
the scale of the x-axis is zoomed-in for the posterior distribution.

A note of caution: using past data to estimate the distribution of infestation rate among
consignments in the pathway assumes that the distribution does not change with time.
This is unlikely to be true. We advise regular re-estimation of this distribution, as well
as using ‘robustified’ priors (see section below) to allow for higher infestation rates values
than what has been detected in past data.
In Bayesian inference, external sources of information other than past data can be used.

However, if we want to use them, these external source of information have to be expressed
as a prior. If, for convenience, we want to keep using the Beta-Binomial model (as it is
analytically tractable), the prior has to be a Beta distribution. For example, we might
use a different prior distribution for pathways that have a systems approach vs. pathways
that do not (see section 3.3).

Using more robust informative priors. We can also penalize our informative prior so
that it is more broad than implied by the distribution of pj in the pathway. A natu-
ral way ‘robustify’ our informative prior is to use a prior made of a mixture of a Beta
and a uniform distributions (Schmidli et al., 2014). When using a mixture of conjugate
priors, the posterior distribution is simply the weighted posterior of each individual com-
ponent of the mixture (Dalal and Hall, 1983; Diaconis and Ylvisaker, 1985), which is
analytically tractable: In our example, after sample n units free of BRM, a mixture prior
φBeta(.17, 8) + (1− φ)Beta(1, 1), where φ represents the weight associated with the past
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data prior (i.e., how much we trust past data), will lead to a posterior that is distributed
φBeta(.17, 8 +n) + (1−φ)Beta(1, 1 +n). In this specific example and with a weight φ of
0.5, we will need to sample 472 units free of BRM before 95% of the mass of the posterior
distribution of pj for the inspected consignment is below the threshold infestation rate of
0.5%5.
A second way to avoid giving too much weight to past data is to follow Tuyl et al.

(2008) advice and limit informative priors to Beta(1, β) distributions. In our example,
the Beta(1, β) distribution that is most similar to the Beta(.17, 8) distribution in terms
of its mean is the Beta(1, 47) distribution. With a Beta(1, 47) prior, the sample size will
be 551 units (a Beta(1, 47) prior is effectively equivalent to having a beta-binomial model
with uniform prior and considering that we have already inspected the equivalent of 46
units free of BRM before even starting the inspection). An alternative way to use Tuyl
et al. (2008) robust prior is to find the Beta(1, β) distribution that the same 95% quantile
as the Beta(0.17, 8) distribution, i.e., the Beta(1, 24) distribution. With a Beta(1, 25)
prior, we will need to sample 573 units before 95% of the posterior distribution of the
infestation of the inspected consignment is below 0.5%. In these later case studies, the
gain from using an informative prior vs. an noninformative prior is relatively small.

3.1.3.4 Bayesian inference, case study with a 0.01% risk cutoff

This is the current design prevalence and sensitivity aimed for to import certain products
in New Zealand. In a Bayesian inference framework with simple random sampling and
using a uniform prior, we will need to sample 29955 units free of BRM (rounded to 31540
in the protocol) before 95% of posterior mass of the infestation rate of the consignment
is below 0.01%. In a typical import plant pathway to New Zealand, the distribution of
infestation rate among consignments follows a Beta(0.253, 9623) distribution. This corre-
sponds to ∼ 92% of the consignments having an infestation rate below 0.01% (Fig. 3.2a.).
Using Beta(0.253, 9623) distribution as prior, we can compute the number of sampled
units free of BRM that needs to be sampled in order to be 95% sure that the infestation
rate in consignments that are accepted is below 0.01%. With a Beta(0.253, 9623) prior,
it is reached for pj ∼ Beta(0.253, 9623 + 2580), that is, when we find zero BRM out of
2580 sampled units (95% percentile equals 0.01%) (Fig. 3.2b.).

Using a robust informative prior. If we penalize the informative prior using a mixture
prior that combines Beta(.253, 9623) and Beta(1, 1) with a weight of 0.5, we will need to
sample 23386 units free of BRM before 95% of the mass of the posterior distribution of
pj for the inspected consignment is below the threshold infestation rate of 0.01%6.
If we follow the Tuyl et al. (2008) robust prior approach, the Beta(1, β) distribution that

has the same mean than the Beta(0.253, 9623) distribution is Beta(1, 38035). This poses
an issue as this prior distribution already has 97.8% of its mass below 0.01% (we would
accept consignments from this pathway without inspecting any unit). An alternative way
to use Tuyl et al. (2008) robust prior is to find the Beta(1, β) distribution that the same
95% quantile as the Beta(0.253, 9623) distribution, i.e., the Beta(1, 23600) distribution.
With a Beta(1, 23600) prior, we will need to sample 6356 units before 95% of the posterior
distribution of the infestation of the inspected consignment is below 0.01%, which is more
reasonable but might also be too optimistic.

5In R, 0.5 * pbeta(0.005, .17, 8 + 472) + 0.5 * pbeta(0.005, 1, 1 + 472)
6In R, 0.5 * pbeta(0.0001, .253, 9623 + 23386) + 0.5 * pbeta(0.0001, 1, 1 + 23386)
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Prior p_j ~ Beta(.253, 9623)
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Figure 3.2: a. Infestation rate among consignments in a specific germplasm pathway. b.
Posterior distribution of infestation rate in an accepted consignment of the
pathway after finding zero BRM out of 2589 samples during an inspection.
The vertical red lines represent p∗=0.01% (92% of the pj values are left of the
red line in a, while 95% of the values are left of the red line in b). Note that
since the infestation rate of the pathway is already very low, the inspection
doesn’t reduce the infestation rate by much (posterior mean infestation rate
of the inspected consignment is 2.07 × 10−5, which is only 0.78 times lower
than the prior mean of 2.63× 10−5).

3.1.4 Dempster-Shafer theory of evidence for simple random
sampling

An alternative framework that allows combining several sources of information when mak-
ing inference is the Dempster-Shafer theory of evidence. When using the Dempster-Shafer
theory of evidence in a biosecurity setting, it might be easier to work directly at the scale
of the decision (i.e., whether the infestation rate of a consignment is below 0.5%) rather
than on the infestation rate within each consignment. Below, we follow the case study
and steps given in Rathman et al. (2018). In a biosecurity inspection setting, our decision
set might have three focal elements: C (compliant), NC (non-compliant), and C,NC (we
don’t know).

Inference from one source of information. Following Rathman et al. (2018), the first
step of the analysis consists of assigning a probability Pr({C}) (i.e., the probability that
the consignment is compliant) to focal element {C} and Pr({NC}) (i.e., the probability
that the consignment is non-compliant) to focal element {NC}. We also need to assess
the relative reliability (rel) of these probability assignments (how reliable is the source
of information that allowed us to fix these probabilities?). The basic probability mass
associated with each focal element is then computed by multiplying its initial probability
assignment by the reliability of the information. The mass for the remaining focal element
m({N,NC}) (i.e., the probability of not knowing the correct status of the consignment)
is then calculated so that the mass for the three focal groups sums to one.
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m({C}) = Pr({C})× rel
m({NC}) = Pr({NC})× rel

m({C,NC}) = 1−m({C})−m({NC})

The probability masses are in turn used to compute the Belief (lower probability bound)
and Plausibility (upper probability bound) associated with each focal element:

Bel({C}) = m({C})
Pls({C}) = m({C}) +m({C,NC})

Bel({NC}) = m({NC})
Pls({NC}) = m({NC}) +m({C,NC})

3.1.4.1 Dempster-Shafer theory, case study with a 0.5% risk cutoff (600 samples
inspection)

After a clean 600 samples inspection, we will be 95% confidence that the consignment
is compliant. However, we are not 5% confident that the consignment is non-compliant
(since we found no infested samples), rather we are 5% confident of not knowing the
correct status of the consignment. We consider the reliability to be 100%.

rel = 1

Pr({C}) = 0.95

Pr({NC}) = 0

(3.4)

The probability mass associated with a clean 600 samples inspection are:

m1({C}) = Pr({C})× rel = 1× 0.95 = 0.95

m1({NC}) = Pr({NC})× rel = 0× 0.95 = 0

m1({C,NC}) = 1−m1({C})−m1({NC}) = 1− 0.95− 0 = 0.05

As expected from the literature ((Dempster, 1968b) and section 2.6.1), the belief (lower
probability bound) and plausibility (upper probability bound) in compliance will be 95%
and 100%, respectively. The belief and plausibility in non-compliance will be zero and
5%, respectively:

Bel({C}) = m1({C}) = 0.95

Pls({C}) = m1({C}) +m1({C,NC}) = 1

Bel({NC}) = m1({NC}) = 0

Pls({NC}) = m1({NC}) +m1({C,NC}) = 0.05
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Adding an external source of data Additionally, if we know from past data that 62%
of the consignments in the pathway were compliant and 38% were non-compliant (e.g., if
the distribution of infestation rate in the pathway is pj ∼ Beta(.17, 8)), we can assign
basic probabilities Pr({C}) = 0.62 and Pr({NC}) = 0.38 to the focal elements. Because
this represents past data on the pathway, we assume the reliability to be say 70%. The
probability mass associated with this second source of information are:

m2({C}) = 0.62× 0.7 = 0.434

m2({NC}) = 0.38× 0.7 = 0.266

m2({C,NC}) = 1− 0.434− 0.266 = 0.3

Combining the two sources of information. Following Rathman et al. (2018), we com-
pute the ground probability masses by combining basic probability masses from different
sources:

q({C}) = m1({C})×m2({C}) +m1({C})×m2({C,NC})
+m1({C,NC})×m2({C})
= 0.95× 0.434 + 0.95× 0.3 + 0.05× 0.434 = 0.719

q({NC}) = 0× 0.266 + 0× 0.3 + 0.05× 0.266 = 0.0133

q({C,NC}) = m1({C,NC})×m2({C,NC})
= 0.05× 0.3 = 0.015

q({∅}) = m1({C})×m2({NC})
+m1({NC})×m2({C})
= 0.95× 0.266 + 0× 0.434 = 0.2527

In the original Dempster-Shafer combination rule, the joint basic probability mass mD

associated with each joint focal element is obtained by:

mD({C}) =
q({C})

1− q({∅})
= 0.719/(1− 0.2527) = 0.9621303

mD({NC}) =
q({NC})

1− q({∅})
= 0.0133/(1− 0.2527) = 0.0177974

mD({C,NC}) =
q({C,NC})
1− q({∅})

= 0.015/(1− 0.2527) = 0.02007226

mD({∅}) = 0

Dempster’s combination rule results expressed as belief and plausibility functions:

Bel({C}) = mD({C}) = 0.9621303

Pls({C}) = mD({C}) +mD({C,NC}) = 0.9822026

Bel({NC}) = mD({NC}) = 0.0180711

Pls({NC}) = mD({NC}) +mD({C,NC}) = 0.03822136
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After combining two sources of data, the Belief for compliance is 0.9618449 and the
Plausibility for compliance is 0.9819602: we accept the consignment.
An important feature of the ground probability mass relationships is that they are

associative; i.e., the order in which the required pairwise operations are performed does
not matter. Thus, we can apply the procedure sequentially to handle several sources of
evidence or update an existing combined structure with a new source of evidence (combine
m1 and m2 to form mD, then combine mD and m3 to form mD2...).
Note that these calculations can be simplified by using the “EvCombR” package in R:

# Load packages
library(EvCombR)

# Construct a state space
state_space <- c("C", "NC") # Compliant and non-compliant set

# First data source (inspection data)
# Set parameters

# A clean 600 samples inspection
C1 <- 0.95 # Probability of compliance
NC1 <- 0 # Probability of non-compliance
rel1 <- 1 # Reliability of the inspection
m1C <- C1 * rel1 # Probability mass of compliance
m1NC <- NC1 * rel1 # Probability mass of non-compliance
m1C_NC <- 1 - m1C - m1NC # # Probability mass of "We don’t know" category

# Construct mass functions
# Belief is m_1C; Plausibility is m_1C + m_1C_NC
m1 <- mass(list("C"=m1C, "NC"=m1NC, "C/NC"=m1C_NC), state_space)

# Second data source (past data, with p_j~Beta(.17, 8).
# 62% of the consignment are compliant and 38% are non-compliant

# Set parameters
C2 <- pbeta(0.005, .17, 8) # ~62% of the consignments are compliant
NC2 <- 1 - pbeta(0.005, .17, 8) # ~38% are non-compliants
rel2 <- 0.7 # Reliability of say 70%, as this is past data
m2C <- C2 * rel2
m2NC <- NC2 * rel2
m2C_NC <- 1 - m2C - m2NC

# Construct mass functions
m2 <- mass(list("C"=m2C, "NC"=m2NC, "C/NC"=m2C_NC), state_space)

# Combine the mass functions by using Dempster’s combination rule
dComb(m1, m2)

Now, we can vary the number of samples in the inspection to see how many sample
are required to have a Belief of compliance of 0.95. When combined with the information
on past data on the pathway, a probability of compliance of 93.4% for the inspection
data alone is enough to provide a compliance of 0.9500192 for the combined data. This
corresponds to a clean inspection of 542 samples (93.4% of the posterior probability mass
is below 0.5%): using external information within the Dempster-Shafer inference frame-
work allow reducing sample size from 597 to 542 (reducing sample size by 55 units or,
equivalently, by a factor of 0.91). This result (542 samples) assumes the reliability of the
historical data is 70%. If the reliability is 100% then around 493 samples are needed and
if the reliability is zero, 597 samples.
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3.1.4.2 Dempster-Shafer theory, case study with a 0.01% risk cutoff (29956
samples inspection)

In the binomial simple random sampling, zero finds from a sample size of 29956 provides
assurance to be 95% confident that the infestation rate is below 0.01%. As we work on
the probability of compliance and not on the infestation rate itself, the computations for
this number would be identical to those of the 600 samples above (a Belief of compliance
of 0.95 and a Plausibility of one). The difference is in the underlying sample size that this
represents (600 samples for a design prevalence of 0.5% vs. 29956 samples for a design
prevalence of 0.01%).
From past data on the pathway, we know that say 85% of the consignments were compli-

ants. If we applied a reliability of 70% for this past data and combined the mass functions
using the Dempster’s combination rule, we obtain a Belief of 0.978 and a Plausibility of
0.994 for compliance.
When combined with the information on past data on the pathway, a probability of

compliance of 93.4% for the inspection data alone is enough to provide a Belief of 0.9508576
for the combined data. This corresponds to a clean inspection of 21896 samples (93.4%
of the posterior probability mass is below 0.01%): using external information within the
Dempster-Shafer inference framework allows reducing sample size from 29956 to 21896
(reducing sample size by 8060 units or, equivalently, by a factor of 0.73).

3.1.5 Imprecise probabilities for simple random sampling

In the case of binomial sampling encountered in biosecurity inspection, the full posterior
lower distribution for the infestation rate p of the inspected consignment with x BRMs
out of n samples is Beta(x, n + s − x); the corresponding upper distribution is given by
Beta(x + s, n − x), where s is a hyperparameter describing the strength of the original
(vacuous) prior (see section 2.6.2). Since we are interested in the probability of exceeding
an infestation rate, we focus specifically on the upper distribution which after a clean
inspection sample (x=0) is Beta(s, n).
When s = 1, the upper posterior distribution is Beta(1, n) and the results are similar to

the results given by Bayesian inference with a uniform prior and Dempster-Shafer theory:
the sample size which has 95% of its upper posterior distribution mass below 0.5% is
obtained for n = 598 (n = 597 for Bayesian inference with uniform prior); the sample
size which has 95% of its upper posterior distribution mass below 0.01% is obtained for
n = 29956 (n = 29955 for Bayesian inference with uniform prior).
However, Walley (1991) and Walley (1996a) argue for using s = 2. In such a case, the

sample size which has 95% of its upper posterior distribution mass below 0.5% is obtained
for n = 946 and the sample size which has 95% of its upper posterior distribution mass
below 0.01% is obtained for n = 47436. When choosing s = 2, the sample size given by
imprecise probability theory is higher than in the other inference frameworks.
Note that imprecise probability theory does not allow the use of external information

through the use of a prior (indeed its main goal is to avoid specifying a prior that might
be too informative).
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3.2 Clustered sampling

It is common for biosecurity data within a consignment to be clustered (e.g., , we sample
multiple seeds per crates from several crates in the consignment).

3.2.1 Design-based inference for clustered sampling

If the data comes in cluster but we still manage to do simple random sampling (i.e., each
unit is equally likely to be sampled) we can ignore the clustered nature of the original
data and to uses the formula for non-clustered data (Eqs. 3.1 and 3.2): inspecting 600
units leads to a 95% sensitivity for a 0.5% infestation rate.
However, if the data is sampled in clusters but we have a clean inspection (i.e., zero

BRM), the design-based estimators will have learned nothing about the potential value of
the intra-cluster correlation coefficient ρ, and thus we will not be able to draw conclusions
about the mean infestation rate p of the consignment. We will instead need to resort to
using external information and calibrate ρ from past data on the pathway. This is possible
in either the model-based or Bayesian framework.

3.2.2 Model-based inference for clustered sampling

When the items and hence sampling is clustered, we have to account for the clustering in
the statistical procedure. Clustering reduces inspection sensitivity (it reduces the chances
of finding infested units in an inspection). This means that if we want to keep the
sensitivity constant, we will need to increase the sample size relative to the sample size of
the binomial sampling. How much more to sample depends on the degree of aggregation
of the pest (the ICC) and on the number of units sampled per cluster.

3.2.2.1 Using the Beta-binomial model for clustered data.

The default model for Binomial clustered sampling is the Beta-Binomial model7. Under
the Beta-Binomial model, each cluster has its own prevalence pk and the distribution of
prevalence among clusters is assumed to follow a Beta distribution, i.e.,

f(pk) =
pα−1
k (1− pk)β−1

B(α, β)
(3.5)

where B(α, β) is the beta function8. The beta distribution can be described by its mean
p = α/(α+β), corresponding to the population-level infestation rate, and an intracluster
correlation coefficient (ICC) ρ = 1/(α+β+ 1) which describes the similarity among units
sampled from the same cluster.

7Alternative and more complex models do exist. For example, we might model clustered sampling
using a zero-inflated approach, which model two processes: the proportion of cluster that is infested
(which can be modelled by e.g., a Binomial distribution) and the infestation rate in cluster that are
infested (which can be modelled by e.g., a Beta-Binomial distribution). Since we did not have data on
the number of infested samples per cluster and number of samples per cluster, we could not test which of
the zero-inflated model or Beta-Binomial model was more adequate, and kept the simpler Beta-Binomial
as default model. It would be useful to record this type of data to test which model is more appropriate
for a range of pathways.

8The beta function can be found in different software such as R
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If we draw nk sampling units by a noninformative procedure from the kth cluster, the
unconditional probability of finding xk contaminated units (i.e., without knowing the
cluster-level prevalence pk) is

bb(x;nk, α, β) =

(
nk
xk

)
B(α + xk, β + nk − xk)

B(α, β)
(3.6)

The probability of a completely clean sample from an individual cluster is therefore

bb(x = 0;nk, α, β) =
B(α, β + nk)

B(α, β)
(3.7)

giving, as the overall sensitivity S for a sample of n units, from n/nk clusters with nk in
each unit:

S = 1− bb(x = 0;nk, α, β)n/nk (3.8)

We can re-arrange Eq. 3.8 to derive an exact sample size formula for n given S, α, β,
and nk, the number of units sampled per crate9. The formula follows:

n =
nk ln(1− S)

lnB(α, β + nk)− lnB(α, β)
(3.9)
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Figure 3.3: a. Sample size for clustered data given by the beta-binomial model (approx-
imate and exact solution). b. Ratio of sample size for the beta-binomial
(approximate and exact) and the binomial distribution when varying ρ and
nk. To compare with the 600 samples rule, sensitivity was fixed to 0.95 and
p∗ to 0.005. As can be seen, the approximate equation is not consistent when
nk=1 (i.e., when cluster sampling converge to simple random sampling).

9To our knowledge, the exact formula derived in this report (Eq. 3.9) is original. Previously, an ap-
proximate formula based on the negative-binomial approximation to the beta-binomial was used (Venette
et al., 2002b). For the sake of comparison, we show sample size predictions for both the exact and ap-
proximate formula in Fig. 3.3.
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Case study with a risk cutoff of 0.5%. Typically, keeping the sensitivity of the test
constant with increasing ρ values requires sampling more units (Fig. 3.3). For example, in
the absence of clustering, a 95% chance of detecting an infestation rate of 0.5% requires
sampling ∼ 600 units (Eq. 3.2) whereas it can require sampling ∼ 860 units (10 units
per crate out of 86 crates) when ρ equals 0.1 and nk=10 units per crate (Eq. 3.9). The
sensitivity of the test also depends on how many units per crates are sampled. When we
sample only one unit per crate (nk = 1), the Beta-Binomial result collapses to the Bino-
mial case (Fig. 3.3), illustrating how simple random sampling of crates protects against
clustering. Increasing the number of units sampled per crate decreases the sensitivity of
the test. Keeping the sensitivity constant requires to increase the overall number of units
to sample in the consignment. For example, when ρ equals 0.1, reaching a sensitivity
of 95% for p∗ = 0.5% requires sampling 600 units when nk = 1 (600 crates), 860 units
when nk = 10 (86 crates), 1100 units when nk = 20 (55 crates), and 2600 units when
nk = 100 (26 crates). Choosing between a number of crates and number of units per crate
will depends on the relative costs and convenience of sampling a new crates vs. sampling
more units within the same crate. This will requires having an optimization procedure
minimizing the cost.

Case study with a risk cutoff of 0.01%. This is the case for the data from New
Zealand. The sample size given by the binomial equation is 29955, which in practice is
rounded up to 31,540. We consider a range of sample per cluster nk of 1–1000. As seen in
Fig. 3.4, if we sample from 30 clusters only (i.e., nk ∼ 1000), the effective sample size can
be much lower than expected for simple random sampling. For example, if the ICC is 0.1
and nk=1000, we will need to sample 23 times more units than under the binomial sample
size for simple random sampling, i.e., close to 700,000 seeds to reach a 95% sensitivity of
detecting a 0.01% infestation rate (this is 1,000 seeds per cluster from 700 clusters). If
we keep a sample size n of 31,540 units, the sensitivity at a design prevalence of 0.01%
is equivalent to sampling 31,540 / 23 units, i.e., a sensitivity of 13%. Equivalently, the
risk-cutoff for which we would have a 95% sensitivity would be for a design prevalence of
∼ 0.22%.
A better result can be achieved if we sample 100 seeds per cluster. In this case, we

would need to sample 130729 units (∼ 4.4 times more than for the binomial sample size)
to have a 95% sensitivity of detecting a 0.01% infestation rate (100 seeds per cluster from
1364 clusters). If we keep a sample size n of 31,540 units, the sensitivity at a design
prevalence of 0.01% is equivalent to sampling 31,540 / 4.4 units, i.e., a sensitivity of 51%.
Equivalently, the he risk-cutoff for which we would have a 95% sensitivity would be for a
design prevalence of ∼ 0.042%.

3.2.2.2 Estimating the intra-cluster correlation coefficient ρ from past data

One of the pre-requisites to applying Eq. 3.9 to clustered data is knowing the intra-
cluster correlation coefficient ρ of a pathway. The intra-cluster correlation coefficient
informs us on how similar the infestation rates among crates are. When ρ equals zero, the
infestation rate is the same for all crates and we can ignore the fact that we do clustered
sampling. When ρ increases, the variability in infestation rate among crates increases. In
a biosecurity setting, we would want to estimate ρ from past data on the pathway and
use Eq. 3.9 to fix the number of sample units per consignment of the pathway given S,
nk, p∗, and ρ. One question then is how much data do we need to reliably estimate ρ for a
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Figure 3.4: a. Sample size for clustered data given by the beta-binomial model (approx-
imate and exact solution). b. Ratio of sample size for the beta-binomial
(approximate and exact) and the binomial distribution when varying ρ and
nk. To compare with the 31,540 samples rule, sensitivity was fixed to 0.95
and p∗ to 0.01%.

given pathway? As we currently do not have a database reporting the number of infected
samples for each cluster of each consignment, we will rely on simulating datasets to get
an idea of the number of samples required to estimate ρ with sufficient precision.

Case study with a risk cutoff of 0.5% While in theory it might be possible to es-
timate ρ from only one consignment, in practice it will require a consignment and an
inspection that are much larger than usual (the typical sampling size of 600 units per
consignment with only one consignment doesn’t allow to reliably estimate ρ, cf. Fig. 3.6.
Exploratory analyses showed that getting reliable ρ estimates from only one consignment
might require sampling at least nk=50 units per crate from ncrates=200 crates, i.e., 10,000
samples). Additionally, this particular consignment might not be representative of the
pathway. Hence, in a situation where we have a pathway containing several consignments
and each consignment contains several crates, we suggest combining data from different
consignments to estimate ρ. However, in such a case, it would be necessary to account for
the heterogeneity among consignments before estimating the heterogeneity among crates
within consignments (the ICC=ρ). Below, we detail a possible implementation of such a
hierarchical Beta-Binomial model with two levels of heterogeneity (Fig. 3.5): the first level
represents the variability of infestation rate pj among consignments (Eq. 3.10 which we
modelled using a normal distribution with standard deviation σ on the logit scale10. The
second level represents the variability of infestation rate pjk among crates within a con-
signment j which we modelled using a beta-distribution. As a simplification, we assumed
the intra-cluster correlation coefficient ρ describing the heterogeneity among crates within

10In theory, it should be possible to use a hierarchical Beta Beta-Binomial model, with a first Beta
distribution modelling the heterogeneity of infestation rate among consignments (cf. section 3.1.3) and
a second Beta distribution modelling the heterogeneity among crates within one consignment (cf. this
section). However, the hierarchical Beta Beta-Binomial model proved to be unpractical and we had
convergence issues fitting the model. Hence we instead resorted to using the hierarchical logistic Beta-
Binomial model
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Consignment1
p1

Consignment2
p2

...

Consignmentj
pj

Cratej1
pj1

Cratej2
pj2

...

Cratejk
pjk

logit(pj) = γ1 + εj

εj ∼ Normal(0, σ)
logit(ρ) = γ2

pjk ∼ Beta(pj , ρ)

xjk ∼ Binom(pjk, njk)

⇔xjk ∼ BetaBinom(pj , ρ, njk)

Figure 3.5: Conceptual diagram of the hierarchical Beta-Binomial model. We have a
pathway made up of several consignments and each consignment has several
crates. Each consignment has its own infestation rate pj , sampled from the
pathway distribution. Within each consignment, each crate also has its own
infestation rate pjk sampled from a Beta distribution with mean pj and intra-
cluster correlation coefficient ρ. Note that ρ is assumed to be the same for
all consignments of the pathway.

a consignment to be the same among all consignments. The distribution of infected units
xjk in crate k in consignment j thus follows a Beta-Binomial distribution with mean pj,
ICC ρ, and number of sample per crate njk. The model follows:

xjk = BetaBinom(pj, ρ, njk) (3.10)
logit(pj) = γ1 + εj

εj ∼ Normal(0, σ)

logit(ρ) = γ2

We simulated data from a potential pathway using this model, and then fitted the
model to the simulated data to see if we were able to recover the parameters. As there is
no off-the-shelf solution for estimating heterogeneity among crates within consignments
(ρ) when there is heterogeneity among consignments, we implemented the model in the
Stan language. We did the simulations for 1, 10, 20, 30, ..., and 100 consignments, each
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Figure 3.6: Mean and standard deviation of ρ from the hierarchical beta-binomial model
estimated from potential plant pathways of different size. We used Eq. 3.10 to
simulate a typical pathway for the plant data and used parameters logit(p)=-
5.15, ρ=0.1, and σ=1.7. We then estimate ρ by fitting Eq. 3.10 to the
simulated pathway using Stan.

with 20 crates and 30 units sampled per crate (i.e., 600 samples per consignment). The
pathway we simulated was similar to a typical import plant pathway to Australia. The
distribution of infestation rates among different consignments in a typical plant pathway
follows a Beta(.17, 8) that we approximated using a normal distribution with mean of
-5.15 and standard deviation σ=1.7 on the logit scale11. We replicated the simulation 10
times for each pathway size.
With only one consignment of a typical size (20 crates, each with 30 units sampled

per crate), it seems difficult to reliably estimate ρ values: there is a high variability in
the mean estimate of ρ across the 10 simulations and the standard deviation associated
with each replicate is particularly high (the coefficient of variation mean/sd is close to
100%) (Fig. 3.6). However, aggregating data from several consignments seems to help.
Pathways with 30–40 consignments or more are able to give relatively precise estimates
of ρ (Fig. 3.6). Given these results, we suggest inspecting at least 30 consignments for
estimating ρ from a pathway.
For smaller pathways, it might even be possible to go one step further and build a

hierarchical model across pathway, with each pathway having its own p, ρ and σ (thus we
would get a distribution of ρ for different pathways).

Case study with a risk cutoff of 0.01% We simulated data from a potential pathway
using Eq. 3.10, and then fitted the model to the simulated data to see if we were able to
recover the parameters. We did the simulations for 1, 10, 20, 30, ..., and 100 consign-
ments, each with 30 crates and 1000 units sampled per crate (i.e., 30,000 samples per
consignment). The distribution of infestation rate among different consignments in a typ-
ical pathway imported in New Zealand follows a Beta(.253, 9623) that we approximated
using a normal distribution with mean of -11.4 and standard deviation σ=1.3 on the logit

11Both Beta(.17, 8) and 1

1+exp
(
−N(−5.15, 1.7)

) distributions have a similar mean and standard deviation

on the probability scale, however, their skewness is different so they do represent slightly different models
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Figure 3.7: Mean and standard deviation of ρ from the hierarchical beta-binomial model
estimated from potential pathways of different size. We used Eq. 3.10 to
simulate a typical pathway for the plant data and used parameters logit(p)=-
11.4, ρ=0.1, and σ=1.3. We then estimate ρ by fitting Eq. 3.10 to the
simulated pathway using Stan.

scale12. We replicated the simulation 10 times for each pathway size.
While the mean estimate of ρ seems well identified (Fig. 3.7), the posterior does not

actually do much better than the prior that we used for fitting the model (a normal
distribution of -3 with standard deviation of 1.5 in the logit scale, which has a mean
of 0.097 and standard deviation of 0.12). This means that we did not learn much from
the data as can be seen by the particularly large standard deviation in the posterior
distribution of ρ, even for large simulated pathways (Fig. 3.7b.). To see how much more
data might be needed to reliably estimate ρ from a pathway, we also simulated a pathway
with 1000 consignments. However, the uncertainties in the posterior distribution of ρ were
still fairly large ( SD=0.036, 95% credible interval of ρ = 0.038–0.173). We suspect that
the infestation rate of the pathway is too low and that too few crates within consignments
have BRMs to be able to learn about ρ.

3.2.3 Bayesian inference for clustered sampling

Bayesian inference can be used in two different ways when doing clustered sampling: The
first approach is only partly Bayesian and consists of using Bayesian inference to estimate
the parameter rho of the pathway. We then proceed similarly to model-based inference
and compute the sample size by fixing the sensitivity of the test and a given threshold
cutoff using Eq. 3.9. Indeed, as we could not fit the hierarchical model using classical
models in the model-based inference for clustered data section (section 3.2.2.2), we relied
on Bayesian estimation to estimate ρ of the pathway (Bayesian inference is especially well
suited to fitting hierarchical models).
The second approach is the equivalent to what we did in section 3.1.3 but for clustered

sampling: using some prior distribution for the pathway (heterogeneity at the consignment
level and heterogeneity at the crate within consignment level), we can compute the number

12Both Beta(0.253, 9623) and 1

1+exp
(
−N(−11.4, 1.3)

) distributions have a similar mean and standard

deviation on the probability scale, however, their skewness is different so they do represent slightly
different models
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of units free of BRM that needs to be sampled from a consignment in order to be 95%
sure that the infestation rate of the consignment is below a certain risk-cutoff. However,
unlike in the simple random sampling case, there is no closed form solution for Bayesian
clustered sampling. Still, we can compute the posterior distribution of pj after a clean
inspection by implementing the model in a Bayesian probabilistic programming language
(e.g., in our case, Stan).

Case study with a risk cutoff of 0.5%

Using an noninformative uniform prior pj ∼ Beta(1, 1) to describe the distribution of
infestation rate among different consignments of the pathway and fixing ρ=0.1 as prior
for the distribution of infestation rate among different crates within a consignment (e.g., ρ
might have been estimated from past data on the pathway as in section 3.2.2.2), we need
to inspect ∼ 45 crates, each with 30 sampled units (i.e., 1350 units) to have 95% of
the posterior distribution of infestation rate pj of the inspected consignment below 0.5%
(Fig. 3.8a.). While the inference framework is different, the answer is essentially the same
as for model-based inference for clustered sampling with ρ = 0.1 and nk = 30 (Eq. 3.9,
n=1321 units). As for model-based inference for clustered sampling (Fig. 3.3), sample
size will decrease for lower ρ and increase for higher ρ.
If we replace the uniform prior by an informative prior pj ∼ Beta(.17, 8), we now only

need to inspect ∼ 15 crates, each with 30 sampled units (i.e., 450 units free of BRM) to
have 95% of the posterior distribution of infestation rate pj of the inspected consignment
below 0.5% (Fig. 3.8b.). Using Bayesian inference with an informative prior on clustered
data allows reducing the sample size by a factor of three (450 units) compared to using
model-based inference or using Bayesian inference with noninformative prior (1350 units).
This gain is similar to the gain between informative and noninformative prior in the simple
random sampling setting (183 vs. 600 units, see section 3.1.3). Similar to Bayesian
inference for simple random sampling, the reduction in sample size is due to combining
inspection data for a specific consignment with external information on the pathway.
However, the same safeguards also apply and we should be cautious of the stationarity
assumption implied by using prior information estimated from past data on the pathway.
For Bayesian with informative priors, clustered sampling (with ρ = 0.1) required sampling
∼ 450 units vs. 183 units for SRS (ratio of ∼2.46).
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Figure 3.8: Posterior distribution of pj after a clean inspection sample with a 0.5% risk
cutoff. a. We used an noninformative prior on the distribution of infestation
among consignments in the pathway and a pathway ρ of 0.1 (ρ can be esti-
mated from past data on the pathway, see section 3.2.2.2). After inspecting
45 crates, each with 30 samples (1350 samples free of BRM), 95% of the pos-
terior mass distribution of the infestation rate of the inspected consignment
is below 0.5%. b. We used an informative prior on the distribution of infesta-
tion among consignments in the pathway (pj ∼ Beta(.17, 8)) and a pathway
ρ of 0.1. After inspecting 15 crates, each with 30 samples (450 samples free
of BRM), 95% of the posterior mass distribution of the infestation rate of the
inspected consignment is below 0.5%. The models were fitted using Stan.

Case study with a risk cutoff of 0.01%

Using a noninformative uniform prior pj ∼ Beta(1, 1) to describe the distribution of
infestation rate among different consignments and fixing ρ=0.1 as prior for the distribution
of infestation rate among different crates within a consignment, we need to inspect ∼ 700
crates, each with 1000 sampled units (i.e., 700,000 units free of BRM) to have 95% of
the posterior distribution of infestation rate pj of the inspected consignment below 0.01%
(Fig. 3.9a.). If we replace the uniform prior by an informative prior pj ∼ Beta(.253, 9623),
we now only need to inspect ∼ 60 crates, each with 1000 sampled units (i.e., 60,000
units free of BRM) to have 95% of the posterior distribution of infestation rate pj of
the inspected consignment below 0.01% (Fig. 3.9b.). Using Bayesian inference with an
informative prior on clustered data allows reducing the sample size by a factor of 11
(60,000 units) compared to using model-based inference or using Bayesian inference with
noninformative prior (700,000 units). This gain is similar to the gain between informative
and noninformative prior in the simple random sampling setting (2,580 vs. 29,955 units,
see section 3.1.3). Similar to Bayesian inference for simple random sampling, the reduction
in sample size is due to combining inspection data for a specific consignment with external
information on the pathway. However, the same safeguards also apply and we should be
cautious of the stationarity assumption implied by using prior information estimated from
past data on the pathway.
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Figure 3.9: Posterior distribution of pj after a clean inspection sample with a 0.01% risk
cutoff. a. We used an noninformative prior on the distribution of infestation
among consignments in the pathway and a pathway ρ of 0.1 (ρ can be esti-
mated from past data on the pathway, see section 3.2.2.2). After inspecting
700 crates, each with 1000 samples (700,000 samples free of BRM), 95% of
the posterior mass distribution of the infestation rate of the inspected con-
signment is below 0.01%. b. We used an informative prior on the distribution
of infestation among consignments in the pathway (pj ∼ Beta(.253, 9623))
and a pathway ρ of 0.1. After inspecting 70 crates, each with 1000 samples
(70,000 samples free of BRM), 96% of the posterior mass distribution of the
infestation rate of the inspected consignment is below 0.01%. The models
were fitted using Stan.

3.2.4 Dempster-Shafer theory of evidence for clustered sampling

We found no articles in the literature on the application of Dempster-Shafer theory of
evidence when the data is clustered. While it does not mean that the Dempster-Shafer
theory cannot deal with clustered data, more research might be needed before we are able
to apply the framework to this situation.

3.2.5 Imprecise probabilities for clustered sampling

To our knowledge, the theory of imprecise probability has not been developed when
clustered data. Furthermore, imprecise probability theory does not allow using external
information when doing inference.

3.3 Systems approach

Systems approach is an integrated method for addressing biosecurity threats that com-
bines two or more independent risk-reducing measures on a pathway (IPPC, 2002). The
independence of the risk reduction measures comes from using different actions (e.g., pest
monitoring, insecticide spraying, cold storage, heat treatment, intermediate inspections...)
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that are applied at different production stages (pre-harvest, harvest, post-harvest...) (see
vanKlinken et al., n.d., for a review). Since we typically expect pathways following a
system approach to have lower infestation rates than similar pathways not following a
system approach, this might allow reducing the sample size of a border inspection.
Note that a four-year national Australian project started in 2018 and led by the Com-

monwealth Scientific and Industrial Research Organisation (CSIRO) currently reviews the
use of systems approach in biosecurity and develops new methods for quantifying the risk
reduction associated with using systems approach (vanKlinken et al., n.d.). Thus, in our
report, we will not try to be comprehensive with regards to how systems approach data
can be analyzed (especially since the effect of many of the actions e.g., insecticide spraying
or cold storage, might be pathway or pest specific). Rather, we will focus on how differ-
ent inference frameworks (design, model-based, Bayesian inference, and Dempster-Shafer
theory of evidence) might deal with this type of data. Specifically, we will focus on one
risk-reduction action: the presence of intermediate inspections in a pathway (one advan-
tage of focusing on intermediate inspections is that the effect is not pathway specific) and
for which we have analytical formula.
Characterizing the effect of other types of systems approach interventions (cold stor-

age, bait trapping, insecticide spraying...), might require additional data, e.g., control-
treatment experiments or expert elicitation (Jarrad et al., 2011; Hemming et al., 2018) to
quantify how they would reduce the infestation rate of a consignment. These information
might in turn be used differently in different inference framework (e.g., external infor-
mation cannot be used in Design-based inference, it can be used as a prior in Bayesian
inference, and it be used in combination similarly to any other source of information in
Dempster-Shafer theory of evidence).

3.3.1 Design-based inference

The simplest way to combine results from an intermediate inspection and a final border
inspection is to assume (or ensure) that the units sampled in the intermediate and in the
final border inspection are independent (i.e., assume that different units are sampled in
both inspections, which is not unreasonable given that each inspection typically sample
only a small fraction of the population and which is assured when sampling is destructive).
In such a case, the number of BRMs resulting from two independent random samples of
size n1 and n2 sampled from the same population give a similar result to a single inspection
of size n1 + n2 (the sensitivity of an inspection with a sample size of n1 + n2 is given in
Eq. 3.1).
Hence, if we inspect n1 = 200 units in the intermediate inspection, the final border

inspection only needs to sample n2 = 397 units to have a 95% chance of detecting a
prevalence of 0.5%.
While in theory it is possible to relax the independence assumption by using partial re-

sampling estimators (see Ware and Cunia, 1962), it leads to additional issues in practice.
For example, we would need to know what is the proportion of units that are sampled
in both inspections. Additionally, part of the improved efficiency that comes from using
partial resampling inspections instead of independent inspections, comes from being able
to estimate the covariance between two successive inspections on the same sampling units.
However, since we will only get clean inspection samples with zero BRMs, it is not pos-
sible to estimate this covariance (the issue is similar to the one encountered when using
design-based inference for clustered sampling, where the design-based estimator was not
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able to estimate the intra-cluster correlation coefficient from clean inspection data, see
section 3.2.2.2).
One obvious issue with this method (which is also common to other inference frame-

works) is that if the intermediate inspection sampled 600 units, then we would not need
to sample any units in the final border inspection to declare the consignment compliant.
This is obviously too optimistic as it ignores potential issues with the reliability of the
first inspection (was the intermediate inspection done properly?) and also the potential
for re-infestation during transport. To circumvent this issue, we might chose to lower the
effective sample size of the intermediate inspection (e.g., for an intermediate inspection
of 600 units, we might consider that it corresponds to 300 units inspected), we might
chose to always carry a small sample size inspection for the final border inspection (say
we always sample 100 units), or it might be necessary to run audits or specific analyses
to see if the systems approach was implemented properly.

3.3.2 Model-based inference

The reasoning that was developed for design-based inference can also be developed for
model-based inference: If an intermediate inspection of size n1 with a population preva-
lence of pj is inspected, the number k1 of BRMs will follow the Binomial distribution
k1 ∼ Binom(n1, pj). Similarly, if a border inspection of size n with a population preva-
lence pj, the number k2 of BRMs will follow the Binomial distribution k2 ∼ Binom(n2, pj).
The number k of BRMs when combining both inspection will follow the binomial distribu-
tion k ∼ Binom(n1+n2, pj), which will have a 95% chances of detecting a 0.5% infestation
rate when n1 + n2 = 598.

3.3.3 Bayesian inference

In a Bayesian inference framework, including the effect of an intermediate inspection in
the pathway is straightforward: If the infestation rate in a consignment before inspection
is described by pj ∼ Beta(α, β), the posterior distribution after finding zero BRM out of
n inspected samples is pj ∼ Beta(α, β + n). For example, if we start with a Beta(1, 1)
prior (any infestation rate in the 0–1 range is equally likely a priori) and conduct a
clean 200 sampled units intermediate inspection, then the posterior distribution is pj ∼
Beta(1, 201). The Beta(1, 201) distribution can in turn be used as prior for the final
border inspection. In such a case, the final inspection will only need to sample 397 units
as the posterior pj ∼ Beta(1, 201 + 397) has 95% of its posterior mass below 0.5%. Thus
the answer using a non-informative prior is essentially the same as for design and model-
based inference.
Similar to what we wrote in section 3.1.3, we might need to penalize the prior informa-

tion to account for the fact that the intermediate inspection might not be 100% reliable or
for potential re-infestations of the pathway. Alternatively, we might try creating a more
mechanistic model of how this re-infestation might happen at different production stages
of the pathway (which seems to be the approach taken in CSIRO’s project, vanKlinken
et al., n.d.).

3.3.4 Dempster-Shafer theory of evidence

As we are combining evidence from different inspections (i.e., different sources of infor-
mation), a similar methodology to what was presented in section 3.1.4 can be applied
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here: For example, after a first clean 200 samples inspection, we are 63.49% sure that
the infestation rate is below 0.5% (in R, pbeta(0.005, 1, 1 + 200) ∼ 0.64, focal element
{C} associated with a compliant consignment) and 36.51% confident of not knowing the
correct status of the consignment (focal element {C,NC}). The focal element {NC} for
non-compliance gets a probability of zero as we did not find any infested samples. After a
second clean 397 samples inspection, we are 86.4% sure that the infestation rate is below
0.5% (in R, pbeta(0.005, 1, 1+397) ∼ 0.86) and 13.6% confident of not knowing the correct
status of the consignment. Combining both sources of information (i.e., a combined sam-
ple size of 597) with the Dempster’s combination rule and using 100% reliability for both
inspections (using the ‘dComb’ function from the ‘EvCombR’ package in R), we would
be 95% sure that the infestation rate of the consignment is below 0.5%, which provides
us with enough assurance to mark the consignment as compliant.
Additionally, if we think that the results from the first inspection are not 100% reliable

(whether because the inspection was not done properly or because there is a chance of
re-infestation following the first inspection), it is possible to reduce the reliability of the
first inspection before combining both sources of information. For example, if we fix
the reliability of the first inspection to be 70% (and keep the reliability of the second
inspection to be 100%), we will need to sample 480 samples (instead of the original 397)
in the second inspection be 95% sure that the consignment is compliant after combining
both sources of data using Dempster’s combination rule.
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4 Adaptive Inspection Schemes

4.1 Introduction

Although they do not formally fall within the coverage of this project, adaptive inspection
schemes provide plans that can be used to choose to inspect or not inspect consignments
based on the recent inspection history of the pathway. In a sense such plans use recent
history to provide assurance about the pathway, and therefore also the next consignment.
We therefore cover them here briefly for completeness.
Such schemes have been in use for some time in both Australia (the Department of

Agriculture’s Compliance-Based Inspection Scheme, CBIS1) and New Zealand (risk-based
inspection of low-risk fresh produce such as green beans imported from Australia).
We briefly review several schemes gathered under two sampling principles, namely:

(i) do not inspect all consignments, however when we inspect we do so with constant
within-consignment intensity; and (ii) inspect all consignments but alter the intensity.

4.2 Inspect Only Some Consignments

Adaptive sampling plans involve electing to not inspect some consignments. Consequently,
they should only be used on pathways in which some leakage can be tolerated (but see
Section 5). The Department of Agriculture has applied such plans in pathways that show
low contamination rates, such as dried apricots and hulled sesame seeds.
The principle value of these plans is that they will naturally tend to allocate more

inspection effort to domains of the pathway that have the higher interception rate, without
requiring predictive statistical modeling or machine learning. The price to pay is that the
plans will always experience a delay in response to changes in the pathway contamination
rate, whereas predictive modeling allows for the possibility of anticipation.
The original variants of the adaptive sampling theme were the continuous sampling

plans developed in the 1940’s and thereafter by mathematicians to make quality control
more efficient.
Very readable accounts can be found in Stephens (2001) and Montgomery (2009).

4.2.1 Continuous Sampling Plans

Numerous continuous sampling plans have been developed in the past 70 years, for ex-
ample Stephens (2001) lists nine variants.

4.2.1.1 CSP-1

The original continuous sampling plan, CSP-1, was proposed by Dodge (1943) as a way
of managing a continuous flow of consignments offered to the inspector. Briefly, the

1http://agriculture.gov.au/import/goods/plant-products/risk-return
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algorithm works as follows.

Rule 1 Inspect 100% of the consignments, and when c consecutive consignments are
found clear of defects, switch to Rule 2.

Rule 2 Inspect a random sample of f% of the consignments, and when any such inspec-
tion identifies a defect, switch to Rule 1.

The operation of the plan is then set by choosing the variables c and f . Dodge (1943)
developed a number of performance indicators that could be used to guide the choice of
these parameters, namely the average fraction of the total units inspected in the long
run (AFI), the expected fraction of defective units in the long run (AOQ), and its mode,
called the AOQL, which can be interpreted as the highest AOQ for all possible values of
the underlying contamination rate.
One argument against the use of CSP-1 is that it does not distinguish between tempo-

rary and permanent increases in the failure rate. That is, a single interception is sufficient
to flip the pathway from fractional inspection to 100% inspection. This suggests that the
plan does not tolerate isolated instances of contamination, which contradicts the principle
that they should only be applied to pathways in which some leakage can be tolerated.

4.2.1.2 CSP-2

Dodge and Torrey (1951) introduced two additional CSP plans, namely CSP-2 and CSP-
3. The difference between CSP-2 and CSP-1 is that the plan does not return to 100%
inspection when an isolated incident of contamination is found.

Rule 1 Inspect 100% of the consignments, and when c consecutive consignments are
found clear of defects, switch to Rule 2.

Rule 2 Inspect a random sample of f% of the consignments, and when any such inspec-
tion identifies a defect, switch to Rule 3.

Rule 3 Inspect a random sample of f% of the consignments, until k units have been
inspected. If any are contaminated, apply Rule 1. If not, then apply Rule 2.

The advantage of CSP-2 relative to CSP-1 is that it allows occasional and isolated
contamination to pass through without triggering a return to 100% inspection. Dodge
and Torrey, 1951 showed that CSP-2 is generally more economical than CSP-1 when the
arriving contamination rate p is smaller than AOQL.

4.2.1.3 CSP-3

As noted above, Dodge and Torrey (1951) also introduced CSP-3. This plan follows CSP-
2 in that it allows for isolated incidents of contamination, but in a sense it takes out some
insurance by briefly increasing the inspection rate after detecting contamination. The
rule is as follows.

Rule 1 Inspect 100% of the consignments, and when c consecutive consignments are
found clear of defects, switch to Rule 2.

Rule 2 Inspect a random sample of f% of the consignments, and when any such inspec-
tion identifies a defect, switch to Rule 3.
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Rule 3 Inspect the next b (usually, 4) consignments. If any are contaminated, then apply
Rule 1. If not, then apply Rule 4.

Rule 4 Inspect a random sample of f% of the consignments, until k − b consignments
have been inspected. If any are contaminated, then apply Rule 1. If not, then apply
Rule 2.

CSP-3 is used by the Department of Agriculture for the Compliance-Based Inspection
Scheme2. However, CSP-1 was preferred for a recent CEBRA project because it is simpler
and easier to communicate to stakeholders, who are thus likely to develop a clearer un-
derstanding of the incentive properties of the inspection rule (Susie Hester pers. comm.,
also see Rossiter et al., 2018). Furthermore, Rossiter and Hester (2017) suggested that
the CSP-1 algorithm would be preferable from the biosecurity regulator’s perspective,
particularly where the consequences of biosecurity risk material leakage are perceived to
be relatively large. Under the scenarios modelled, CSP-1 and CSP-3 had higher payoffs to
the regulator than mandatory inspection, and of those two, CSP-1 had the highest payoff
to the regulator.

4.2.2 Skip-Lot Sampling Plans

Skip-Lot Sampling Inspection is an extension of the Continuous Sampling Plan that sup-
ports sampling and inspection of sub-consignment items, such as the inspection of articles
of fruit within a consignment. Montgomery (2009) noted:

“[. . . ] one should be careful to use skip-lot sampling plans only for situations in
which there is a sufficient history of supplier quality to ensure that the quality of
submitted lots is very good. Furthermore, if the supplier’s process is highly erratic
and there is a great deal of variability from lot to lot, skip-lot sampling plans are
inappropriate. They seem to work best when the supplier’s processes are in a state
of statistical control and when the process capability is adequate to ensure virtually
defect-free production.”

Dodge (1955) introduced Skip-Lot Sampling by applying the principles of CSP-1 to a
series of consignments defined as batches of material, in which the user examines only
a single unit from each consignment of units. This sampling plan is useful when the
consignments are small or inspection is slow and costly.
Perry (1973) extended skip-lot sampling to SkSP-2, which operates as follows. First,

instead of examining only a single unit from each selected consignment, we nominate a
reference plan, that is, we select a sample of units from the consignment according to a
selected sample design — for example, simple random sampling: selecting and inspecting
a simple random sample of n units from each consignment and counting the number of
defective units d; if d = 0 then accept the consignment, otherwise reject the consignment.

Rule 1 Inspect every consignment using the reference plan until c consecutive consign-
ments have been accepted. Then use Rule 2.

Rule 2 Apply the reference plan to a fraction f of the consignments submitted until any
consignment is rejected, at which point return to Rule 1.

2http://agriculture.gov.au/import/goods/plant-products/risk-return
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Confusingly enough, both SkSP and SkSP-2 are extensions of CSP-1. There are nu-
merous variations on skip-lot sampling, for example Vijayaraghavan (2000)’s SkSP-3 is a
variant of CSP-2.

4.3 Inspect All Consignments; Vary Intensity

The second type of plan can be thought of as a generalization of the first. In the first
type, consignments were inspected or not inspected based on the recent performance of
the pathway. In the second type, all consignments are inspected, but the intensity of
inspection varies according to recent history. We cover one such plan, namely the Lot-by-
Lot Attributes Single Sampling Procedure prescribed by MIL-STD-1916 (Defense, 1996;
Stephens, 2001).

4.3.1 MIL-STD-1916

The Lot-by-Lot Attributes Single Sampling Procedure prescribed by MIL-STD-1916 in-
volves inspecting every consignment but with intensity that depends on recent history.
There are seven levels of verification, namely I – VII. The user starts by selecting a
verification level.
According to the standard, the verification level should depend on the nature of the

characteristic that is the target of the inspection: critical, major, or minor. For example
a critical characteristic is one that “. . . judgment and experience indicate must be met
to avoid hazardous or unsafe conditions for individuals using, maintaining, or depending
upon the product; or that judgment and experience indicate must be met to assure per-
formance of the tactical function of a major item such as a ship, aircraft, tank, missile,
or space vehicle.” A major characteristic is “A characteristic, other than critical, that
must be met to avoid failure or material reduction of usability of the unit of product for
intended purpose.”, and a minor characteristic is “A characteristic, other than critical or
major, whose departure from its specification requirement is not likely to reduce mate-
rially the usability of the unit of product for its intended purpose or whose departure
from established standards has little bearing on the effective use or operation of the unit.”
(Defense, 1996).
The supporting documentation goes on to say “For Critical Characteristics - VL VII

should always be used. This inspection is a verification of the automated screening or
fail-safe manufacturing operation implemented in accordance with paragraph 4.4 of MIL-
STD-1916. Majors should typically use VL levels between III and VI. Minors should
typically use VL levels between I and III. The more important the characteristic is, the
higher the VL. Lower VL’s may also be considered where relatively small sample sizes
are necessary and large sampling risks can or must be tolerated as, for example, when
inspection costs are high. If no VL is specified, then VL IV for majors and VL II for
minors should be used.” (Defense, 1999). From our point of view, biosecurity risks
can most likely be characterised as critical ; consequently for biosecurity inspection the
invocation of MIL-STD-1916 would be at verification level VII.
Each level of verification corresponds to a sample size for any given consignment size.

The sample size classes corresponding to the consignment size and the verification level
are presented in Table 4.1.
The rule starts at a level elected by the regulator. Each level corresponds with three

sampling plans, namely reduced, normal, and tightened. Each sampling plan is charac-
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Table 4.1: Code letters for entry into the sampling tables for MIL-STD-1916 (from De-
fense, 1996).

Lot Size VII VI V IV III II I

2–170 A A A A A A A
171–288 A A A A A A B
289–544 A A A A A B C
454–960 A A A A B C D
961–1632 A A A B C D E
1633–3072 A A B C D E E
3073–5440 A B C D E E E
5441–9216 B C D E E E E
9217–17408 C D E E E E E
17409–30720 D E E E E E E
30721 and above E E E E E E E

terised by a sample size. In Table 4.2, the tightened/reduced plan can be determined as
the verification level to the left/right of the specified normal verification level respectively.
Tightened inspection of VL-VII is T, and reduced inspection of VL-I is R. For a pathway
comprising large consignments such as lots of 32,000 seeds for sowing, sampling against a
critical characteristic (requiring VL VII) corresponds to code E. In this pathway, Normal
sampling is 3072 seeds, Reduced is 1280, and Tightened is 8192.

Table 4.2: Attributes sampling plans for MIL-STD-1916 (from Defense, 1996). When
the lot size is less than or equal to the sample size, 100 percent attributes
inspection is required.

Code Tight VII VI V IV III II I Reduced

A 3072 1280 512 192 80 32 12 5 3

B 4096 1536 640 256 96 40 16 6 3

C 5120 2048 768 320 128 48 20 8 3

D 6144 2560 1024 384 160 64 24 10 4

E 8192 3072 1280 512 192 80 32 12 5

The switching rules between the three plans are then applied as follows (Defense, 1996):

Normal to Tightened When normal inspection is in effect, tightened inspection shall be
instituted when 2 consignments have been withheld from acceptance within the last
5 or fewer consignments.

Tightened to Normal When tightened inspection is in effect, normal inspection may be
instituted when the following conditions are both satisfied:

1. The cause for producing the nonconformances is corrected.

2. 5 consecutive consignments are accepted.
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Normal to Reduced When normal inspection is in effect, reduced inspection may be
instituted when the following conditions are all satisfied:

1. 10 consecutive consignments are accepted while on normal inspection.

2. Production is at a steady rate.

3. The contractor’s quality system is considered satisfactory by the Government.

4. Reduced inspection is considered desirable by the Government.

Reduced to Normal When reduced inspection is in effect, normal inspection shall be
instituted when one of the following conditions occur.

1. A consignment is withheld from acceptance.

2. Production becomes irregular or delayed.

3. The contractor’s quality system is unsatisfactory.

4. Other conditions warrant that normal inspection be re-instituted.

Failing under Tightened Finally, If sampling inspection of lots or batches remains in
tightened inspection due to discovery of nonconformances, the Government reserves
the right to discontinue acceptance of the product until the causes of nonconfor-
mances are eliminated or other means acceptable to the procuring agency have
been instituted. When sampling inspection is restarted after discontinuation of
acceptance, it shall be at the tightened inspection stage.

The acceptance number (that is, acceptable number of contaminated items per con-
signment) for this regime is 0, which is somewhat controversial. Stephens (2001) argues
that this prescription gives the decision rule unattractive properties.
It is worth noting that the documentation of MIL-STD-1916 provides a number of

other useful prescriptions, for example detailed requirements and specifications to which
providers must adhere (Defense, 1996).

4.4 Choosing operational parameters

This chapter provides an overview of several approaches to using recent inspection history
to assess the pathway level of assurance. Two types of approaches were covered: (i) not
inspecting all consignments, but those that are inspected are inspected using the same
sample design (the reference plan); and (ii) inspecting all consignments but varying the
intensity of the inspection. The latter approach is arguably a generalization of the first if
it includes the possibility that the within-consignment sampling intensity could be 0.
No matter which approach is used, it is necessary to select operational parameters that

dictate how the system should be applied. All approaches are provided with documented
performance indicators that provide insight into the performance of the inspection regime
based on assumptions about the inspection efficacy and the contamination rate of the
pathway.
Having chosen an approach, it is then necessary to select one or more of these perfor-

mance indicators that then guide selection of combinations of operational parameters. For
example, usage of the CSP family of plans can be guided by the AOQ or the AOQL (see
Section 4.2.1). This means that combinations of the clearance number c and monitoring
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fraction f can be selected by deciding on a value of AOQL and using a look-up table to
identify the corresponding values of f and c.
A further complication is that the effects of f and c on the performance indicators in-

teract with one another, so several different combinations of these parameters will achieve
the same AOQL. In order to select between these combinations we have to interpret the
effect of the parameter choices on the management of pathway biosecurity risk. Each
operational parameter can be classified according to its effect on the sampling process
and therefore its interpretation in terms of managing biosecurity risk.
Regardless of the system, most operational parameters can be classified into one of

three types, namely (i) the number of inspected and compliant consignments that it takes
to change the proscribed inspection levels down, (ii) the number of inspected and non-
compliant consignments that it takes to change the proscribed inspection levels up, and
(iii) the amount of effort (number of consignments to be inspected or number of units per
consignment) at any given level.
For example, in CSP-3, there are four parameters, namely: the monitoring fraction f ,

the clearance number c, the number of inspected consignments within which two detected
contaminations results in switching to 100% inspection k, and the number of consignments
that must be inspected after the detection of any contamination, b. Each has at least one
direct operational interpretation, as follows.

c the clearance number sets the number of consecutive compliant consignments that it
takes to convince us that the pathway can be monitored instead of fully inspected.
This can be interpreted as a required level of assurance (We need to see 20 compliant
consignments in a row before we’re convinced) or an incentive (the stringent require-
ment becomes an incentive for stakeholders to ensure that the pathway achieves and
maintains a high level of compliance), or both.

f the monitoring fraction sets the amount of effort that is imposed on the pathway when it
is in sampling mode. It can be interpreted as a required level of assurance (We need
to see 25% of the consignments as a warranty that the pathway contamination rate
and risk haven’t changed) or an incentive (the reduction in sampling effort translates
to a reward for high biosecurity compliance by the pathway stakeholders), or both.

k the minimum spacing of two detected contaminated consignments provides a sensitivity
to what constitutes a change in pathway status as opposed to an isolated incident.
Having seen one contaminated consignment, we are effectively on alert. How many
clear consignments do we need to see before we can relax again?

b the duration of temporary 100% inspection allows us to set a preference for how long
we scrutinize the pathway after detecting non-compliance. It provides a greater sen-
sitivity to discerning between isolated incidents and important changes in pathway
status.
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5 Discussion

The previous chapters include a considerable amount of discussion, but a few topics need
further exploration.
It is important to recognize that although ideally the effect of border intervention

would be to totally prohibit entry by contaminated items, the reality is that all border
intervention can do is to intercept a portion of the contamination, hence reducing the
arrival rate. This would be true even if every consignment were inspected and every
unit examined within every consignment; some infections are sub-clinical, some pathways
simply cannot be regulated, such as wind and tide, and so on.
Indeed, the most stringent border intervention operation known to the authors is that

imposed by Chevron Corporation for entry into Barrow Island, a Class A environmental
heritage area off the coast of Western Australia. Chevron has close to total control over
the pathway, wrapping equipment before shipping, and undertaking careful inspection
of all passengers. Nonetheless, the careful post-border surveillance exercise ongoing at
that location shows that leakage still occurs. It is impossible to imagine that a federal
regulator would have the resources, or indeed the imprimatur, to impose so stringent a
system. Hence, leakage should be accepted as being inevitable, echoing Beale et al.’s “Zero
risk is unattainable and undesirable,” (Beale et al., 2008).
Consequently, there is no chance that a border intervention operation will entirely elim-

inate risk. Instead, the goals of a border intervention operation should be: (i) verify the
overall compliance to biosecurity regulation and policy of the pathway, and (ii) where
necessary as part of an end-to-end biosecurity regulatory framework, reduce the approach
rate sufficiently that it is impossible for pests to establish a minimal viable population
(MVP). Note that this prescription is not quite the same as keeping the pathway con-
tamination rate below a given level because contamination is variable in nature. Half an
MVP of pest A and half of an MVP of pest B will not result in an establishment.
This view of border intervention has important implications. A key element to the

application of risk-based reduced intervention regimes is: because intervention will be
reduced, the probability of contamination leakage will necessarily increase — at least on
the part of the pathway that experiences the effort reduction. Unfortunately this element
of risk-based intervention is enough to deter some regulators, who are squeamish about the
political or biological implications of taking any action that increases risk, even knowing
that doing so might provide an opportunity to decrease risks elsewhere. As noted above,
even the most stringent border intervention program can not and will not guarantee zero
leakage. That is: leakage will happen regardless of the border activity, and a risk-based
approach may increase the leakage marginally, but at a substantial cost savings.
Another aspect to tolerating leakage that is not often appreciated is the necessity of

gathering information about portions of the operation that one does not consider risky.
Given a risk profile, it’s tempting to assume that (a) the risk profile is known exactly,
and (b) the risk profile will never change, and so it is safe and reasonable to devote all
the limited resources available to reducing the known risks. However, risks are never
known exactly in operational settings, and risks are not necessarily constant, so it is
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critically important that the regulator develop some mechanism for assessing the quality
and timeliness of the information that underpins the risk profiles. In short, this means that
a small amount of inspection needs to be done on all pathways to guard against changes in
infestation rates, as a hedge against possible fraud, and just in case the original assessment
was wrong.
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6 Summary, recommendations, and
conclusions

Several inference frameworks can be used to develop assurance about the regulatory com-
pliance of consignments of germplasm. While some frameworks allow using external infor-
mation when making inference (Bayesian, Dempster-Shafer, and to some extent, model-
based inference) others do not (design-based inference, imprecise probability theory) (see
table 3.1). Frameworks that do not allow using external information are of limited use for
systems approach (analyzing systems approach data requires combining different sources
of evidence). Below, we summarize the pro and cons of the five framework reviewed in
this report.

Design-based inference

• This is the main type of inference used for border biosecurity inspection.

• In design-based inference, we can draw conclusions about the population from the
sample because we know exactly how the sample was collected. No additional
assumption is required which makes the method particularly objective.

• When the inspected units comes from a simple random sample, we can use the
binomial sample size formula (Eq. 3.2) to compute sample size. This is the basis
of the ‘600 samples’ rule often used in biosecurity and also the basis for the 31,540
samples used for the plant product data supplied by New Zealand.

• When the data arrives in clusters but we still manage to do simple random sampling,
we can also use Eq. 3.2 to compute sample size (simple random sampling protects
against the detrimental effect of clustering on sensitivity and sample size).

• Does not allow using external information.

Model-based inference

• In model-based inference, we postulate a model that might have generated the data
(i.e., the inspection data might have been generated from a Binomial model), check
the assumptions of the model, and make inference about the infestation rate.

• When the data comes from simple random sampling, model-based inference give the
same sensitivity and sample size than design-based inference (Eq. 3.2).

• When there is clustering, we can use Eq. 3.9 to compute sample size. This re-
quires estimating or fixing the intra-cluster correlation coefficient (ICC) of the path-
way. The ICC can be estimated using a hierarchical logistic Beta-Binomial model
(Eq. 3.10) implemented in probabilistic software. When the risk cutoff is 0.5%, the
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ICC can reliably be estimated from a pathway with at least 30 consignments, each
with 600 samples (30 crates, each with 20 samples per crate) (Fig. 3.6). However,
when the risk cutoff is 0.01% and the infestation rate is very low, even large pathway
size (> 100 consignments) do not contain enough information to estimate the ICC
(Fig. 3.7).

• Allows limited use of external information (for example, to estimate the ICC of the
pathway from past data, section 3.2.2.2).

Bayesian inference

• In Bayesian inference, we postulate the potential values that the parameter of in-
terest might take (prior information before seeing the data) as well as a model that
might have generated the inspection data. We then combine the prior and the
model with the inspection data to make our inference on the parameter of interest
(typically the infestation rate of the consignment being inspected).

• When we use a non-informative uniform prior on the infestation rate of the consign-
ment being inspected, Bayesian inference gives the same sample size as design-based
and model-based inference for simple random sampling data (section 3.1.3) and as
model-based inference for clustered sampling (section 3.2.3).

• The strength of Bayesian inference however is that it allows combining external
information (informative prior) with inspection data (likelihood) to draw conclusion
about the infestation rate of a consignment. Using informative prior (for example
calibrated from past data on the pathway) allows to reduce sample size in both the
simple random sampling and the clustered sampling cases (sections 3.1.3 and 3.2.3).
In the case of a potential 0.5% pathway, the sample size can be reduced by a factor
of around three compared to design-based inference. In the case of a potential 0.01%
pathway, the sample size can be reduced by a factor of around 11.

• One issue that arises when using an informative prior is the assumption of sta-
tionarity (past data are representative of future data). We suggest monitoring and
re-estimating the distribution of infestation rate among different consignments of
the pathway regularly (perhaps every year). We can also use mixture priors to
‘robustify’ our prior.

• Another issue with Bayesian inference is that we do not always have analytical
solutions for our estimates or our decision criteria. In the case of simple random
sampling, we have an analytical distribution for the posterior pj but we have to
compute the sample size numerically. In the case of clustered sampling, both the
posterior distribution of pj and the sample size have to be computed numerically
(by fitting the hierarchical model to a clean inspection data of different sizes and
observing the effect on the posterior).

Dempster-Shafer theory of evidence

• Dempster-Shafer theory of evidence works directly on the decision scale (probability
of compliance) rather than the infestation rate of the population. Dempster-Shafer
theory is typically used to combine different lines of evidence when making inference.
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Each line of evidence can arise from a model and inspection data (e.g., a Binomial
model generated the observed inspection data) or can be completely subjective
(e.g., experts think that the proportion of compliant consignments in this specific
pathway that used a systems approach is 90%).

• With only one source of evidence and in the simple random sampling case, the
sample sizes are similar to those given by Bayesian inference with non-informative
prior.

• The framework might be difficult to extend to support clustered sampling.

• The Dempster-Shafer framework allows combining external information when mak-
ing inference. There are several ways to do so and perhaps not much to decide
between them (see for example Rathman et al., 2018).

Imprecise probability theory

• Imprecise probability theory is a specific type of Bayesian analysis that was created
to avoid having to fix a specific non-informative prior when we are ignorant about
the value of the parameter of interest.

• The sample sizes are similar to Bayesian inference with a uniform prior in the case
of simple random sampling.

• The framework might be difficult to extend to support clustered sampling.

• Does not allow using external information when making inference (Imprecise prob-
ability theory is all about non-informative priors).

Adaptive Inspection Schemes

• Adaptive inspection schemes provide a light-touch approach for implementing risk-
based intervention.

• The sample sizes depend on recent inspection history.

• Reasonably easy to implement.

• Does not explicitly allow using external information when making inference but
work-arounds are possible.

Conclusion and recommendations.

Of the five frameworks reviewed, Bayesian inference seems to be the most promising
to allow incorporating sources of data other than the current inspection sample when
making a decision. Bayesian inference is also compatible with current methods used in
biosecurity: when using non-informative priors (i.e., representing our ignorance of the
infestation rate of the consignment before inspection), Bayesian answers are similar to
design and model-based inference (e.g., after a clean ‘600 samples’ inspection with a
uniform prior, Bayesian methods infer that there are 95% chances that the infestation
rate of the inspected consignment is below 0.5%). If available, Bayesian inference allows
using information from external sources of data, which reduces the sample size required
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to make a decision on the compliance of a consignment. However, this comes at a cost:
if future data are different from past data, we are no longer guaranteed to detect a given
prevalence with a given sensitivity (as with the design-based inference procedure). There
are different ways to penalize an informative prior. The most promising approach is to use
a mixture prior that combines the informative prior with a uniform prior. This approach
allows for the possibility that some of the future consignments might have an infestation
rate higher than what we have seen in past data.
Data collected from a clustered population can result in noticeably reduced sensitivity

for an inspection scheme. Keeping the sensitivity constant (with respect to simple random
sample inspection) requires sampling more units. How many more units to sample will
depends on the intra-cluster correlation coefficient ρ (i.e., the degree of similarity among
units sampled from the same cluster) and the number of units sampled per cluster nk (the
higher ρ and nk, the higher we will need to increase the sample size to be to keep the
sensitivity constant) (see Fig. 3.3). When the infestation rate is relatively high (in the
0.5–2% range), it is possible to reliably estimate ρ for a pathway using model-based or
Bayesian inference. However, when the infestation rate is very low (e.g., in the case of NZ
data, with a typical mean infestation rate of 0.003%), it is difficult to reliably estimate ρ
from a pathway, even for large pathways (100 consignments).
Adaptive inspection regimes might be a useful first step if early action is valuable and

when we do not have enough data to apply Bayesian approaches.
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