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Executive Summary  
A major challenge for eradication managers is deciding when a program can be deemed 
successful. Regan et al. (2006) were the first to pose this problem within a decision theory 
framework, minimising the net expected cost of the decision. The optimal time to declare 
eradication was based on the number of consecutive surveys in which the species was not 
found (‘absent surveys’). Their formulation used estimates of detectability and persistence—
parameters that are often difficult to estimate—in order to calculate the probability that the 
invasive species is still present. 
 
Here we use a similar decision-making framework but instead predict presence based on the 
pattern of sightings using a method developed by Solow (1993a) and a modification in which 
the pre-extinction sighting rate declines. This method does not require estimates of detectability 
and persistence. We find the optimal number of absent surveys after which to declare 
eradication using three approaches: a stochastic dynamic program, which finds the exact 
optimal solution, a rule of thumb, and an approximation. We compare this with results using a 
different method for calculating the probability of presence, which assumes the sighting rate 
declines. 
 
Both the rule of thumb and approximation give results that are close to the exact optimal 
solution. The rule of thumb with the declining sighting rate generally gives a larger optimal 
number of absent surveys. 
 
Analysing this problem within a decision theoretic framework enables us to minimise the 
expected cost of declaring eradication. By using the more readily available sighting data, we 
make this framework applicable to a wider range of invasive species. Our approximation is a 
simple calculation, making it an accessible tool that could be applied by managers of 
eradication programs for invasive species. 
 
Introduction  
 
Eradication requires the removal of every individual of a species from a target area—for plants 
this entails the removal of both adults and seeds. There have been many successful 
eradications of both animals and plants (Mack & Lonsdale, 2002; Simberloff, 2002; Simberloff, 
2003). A large challenge facing eradication managers is deciding when a program can be 
declared successful (Morrison et al., 2007). Survey techniques are imperfect, so the failure to 
detect a species does not necessarily mean it is absent. An invasive species can re-emerge if 
eradication is declared prematurely, and monitoring stopped, with resulting ecological impacts 
and costs of further management. Despite this risk, eradication is still declared on an ad hoc 
basis (Regan et al., 2006), for example after 3 years without detection (Rejmanek & Pitcairn, 
2002). 
 
Regan et al. (2006) took an economic approach to the question of when to declare eradication, 
using decision theory. They found the stopping time (based on the number of previous 
consecutive surveys in which the species is not found, hereafter referred to as absent surveys) 
that minimises the net expected cost. This is essentially a trade-off between the cost of 
continued surveying and the cost if eradication is declared when the species is still present. 
 
Although this work represents a new way of thinking about how we approach setting guidelines 
for invasive species eradication, its practicality is reduced by the data requirements of the 
model. To calculate the probability that an invasive species is still present after a number of 
absent surveys, Regan et al. (2006) used probabilities of persistence and detection. These 
parameters are difficult to estimate for many invasive species. For example, in the field of 
population viability analysis, uncertainty around the estimates of probabilities of persistence 
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can span zero and one (Ludwig, 1999; McCarthy, Burgman & Ferson, 1996). Similarly, 
methods for estimating detection probabilities usually require labour intensive data (MacKenzie 
et al., 2002; Tyre et al., 2003; Wintle et al., 2004), and detection probabilities for newly invading 
species are likely to be very uncertain. Instead of estimating these parameters, we can use the 
presence-absence sighting record of the species. 
 
There are several methods documented in conservation literature that use a species’ sighting 
record to infer persistence. Solow (1993a) used a presence-absence sighting record, and 
assumed a constant pre-extinction sighting rate. This essentially assumes the species 
population level remains constant prior to extinction. Solow (1993b) described a variation of the 
equation for use in declining populations where the pre-extinction sighting rate declines. Both 
these methods assumed sightings are independent of one another, and approximately random. 
Solow & Helser (2000) provided a summary and discussion of these methods. Solow & 
Roberts (2003) described a nonparametric test, based on the two most recent sightings of the 
species. All these methods, and variations, are summarised in Solow (2005). 
 
In addition to these, several papers have focused on using sighting records and collection data 
to identify declining or threatened species. Burgman, Grimson & Ferson (1995) used a discrete 
form of Solow’s equation (Solow, 1993a), extended to account for multiple sightings within one 
time period. They also explored methods that are sensitive to patterns in sighting data, and use 
a runs test (Grimson, Aldrich & Wanzer Drane, 1992) to calculate the probability of the longest 
period for which the species was not observed. McCarthy (1998) used five different methods of 
identifying declining species from museum records, including Solow’s equation, a runs test, a 
trend analysis, and partial versions of the trend analysis and Solow’s equation, which account 
for variable collection effort. McInerny et al. (2006) commented that Solow’s equation may not 
detect extinction of recently discovered species (those with a short initial sighting period). They 
modified the equation to remove the influence of the length of this initial sighting period. 
 
Two other studies tested these statistical methods and applied them to real data sets. Burgman 
et al. (2000) calculated the power of Solow’s equation and the runs test by applying them to 
data generated from a scenario where the ‘true’ rate of population decline was known. They 
found both equations had a type 1 error rate (probability of detecting a decline when there is 
none) of less than or equal to the conventional limit of 0.05. They also applied Solow’s 
equation, the runs test, and the partial Solow equation (McCarthy, 1998) to herbarium data for 
all Western Australian Acacia species. Robbirt, Roberts & Hawkins (2006) used herbarium data 
for endemic Ecuadorian species of Guzmania (Bromeliaceae) to apply five different methods: 
Solow’s equation, the Solow & Roberts equation (Solow & Roberts, 2003), partial versions of 
Solow’s equation and the Solow & Roberts equation, and the sighting rate equation from 
McInerny et al. (2006). They found a close to significant rank correlation (p<0.1) between the 
partial equations, which account for collection effort, and IUCN red list categories. 
 
We use the Bayesian formulation of the equation from Solow (1993a) to calculate the 
probability that a weed is still extant, given a presence-absence sighting record. This equation 
assumes a constant pre-extinction sighting rate. We incorporate this into the decision-making 
framework of Regan et al. (2006) to determine the optimal number of absent surveys after 
which eradication should be declared. We first examine the analytical solution of the new 
equation, and find a simple approximation for when to declare eradication. We then use 
stochastic dynamic programming to find an exact optimal solution that incorporates the 
possibility that the weed may be seen in future surveys. We also include a solution assuming 
the pre-extinction sighting rate declines. We apply these methods to the example of bitterweed 
(Helenium amarum), the same case study used by Regan et al. (2006). 
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Methodology  
 
We apply the method from Solow (1993a) to cases in which active surveys for a species are 
conducted. The sighting record is assumed to follow a Poisson process with a constant but 
unknown pre-extinction sighting rate m. We use the number of surveys as a unit for the sighting 
record. A total of S surveys have been performed, and the species has been sighted in n of 
these (s1, s2,…, sn). The species has not been seen for the last S – sn surveys. These surveys 
do not occur with reference to time, but they must occur far enough apart as to be independent 
observations. The probability the species is extant given its sighting record s  is: 
 

,)]})(/[)1{(1()|extant( 1−−+= ss Bp ππ    (1) 
 
where π is the prior probability the species is extant, independent of the sighting record (Solow 
1993a).  is the Bayes factor, the ratio of likelihoods: )(sB
 

extinct)|(extant)/|()( sss llB = , 
 
which, is (Solow 1993a): 
 

]1)//[()1()( 1 −−= −n
nsSnB s .      (2) 

 
Rule of thumb 
 
Regan et al. (2006) outlined a ‘rule of thumb’ for finding when an invasive species should be 
declared eradicated. Their framework is based on finding the number of consecutive surveys in 
which the species is not found after which eradication should be declared. The optimal number 
of consecutive absent surveys is that which gives the lowest net expected cost (NEC). The 
NEC of stopping after an absent survey is the cost of surveying, plus the expected cost of 
escape and damage if the species was present but went undetected (Regan et al., 2006). The 
net expected cost (NEC) of stopping after d  absent surveys (where d = S – sn) is: 
 

es CdpCddNEC )()1()( +−= ,  
 
where Cs is the cost of one survey, Ce is the expected cost of escape and damage, p(d) is the 
probability that the species is present after d absent surveys.  
 
In Regan et al. (2006), p(d) is given by [ ]dqh )1( − , where h is the annual probability the species 
persists and q is the annual probability of detection. Instead, we substituted p(d) with equation 
1 to give: 
 

)]})(/[)1{(1()1()( sBCCddNEC es ππ−++−= .   (3) 
 
where  is given by equation 2. The minimum NEC (and thus the optimal value of d, 
denoted d*) occurs where the derivative of this equation with respect to d is equal to 0, that is: 

)(sB

 

C s +
C e ( n − 1) 2 (π − 1)πy n

sn (1 − π ) y n − (1 − nπ ) y( )2 = 0 ,    (4) 
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where y = (sn + d*)/sn. We cannot rearrange this equation to give d* directly, so instead we find 
d* numerically by calculating equation 3 for a range of integer values of d and identifying the 
value with the lowest NEC.  
 
Approximation 
 
We can also derive an approximate direct expression for d*. We cannot rearrange equation 4 
for d*, but we can rearrange it to find the value of the cost ratio R (i.e. R =Cs Ce ) where the 
NEC is minimised. We name this value Rcrit, a critical value of R at which it becomes optimal to 
stop surveying, i.e. for R < Rcrit we should keep surveying, while for R > Rcrit we should stop. 
Rcrit is: 
 

[ ]2
2

)1()1(
)1()1(

ynys
ynR

n
n

n

crit
ππ

ππ
−−−

−−
= ,  

 
and its natural log is: 
 

))1()1ln((2)ln()ln()1ln()1ln(2)ln( ynyynnR n
crit ππππ −−−−++−+−= . 

 
Where y is large, ln(Rcrit) is approximately linear with respect to ln(y). A Taylor series 
approximation of ln(Rcrit) around a large value of y gives: 
 

)ln()1ln()ln()1ln(2)ln( ynnRcrit −−−+−≈ ππ , 
 
which means 
 

n
n

crit ys
nR

)1(
)1( 2

π
π

−
−

≈ . 

 
We can then substitute y = (sn + d*)/sn and rearrange to get the expression: 
 

n

n

n
n s

Rs
nsd −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

≈

1
2

)1(
)1(*
π
π

.      (5) 

 
This approximation to the rule of thumb can be used to find the approximate optimal value of d 
(not necessarily an integer value), without repeatedly calculating the net expected cost. 
 
Stochastic dynamic programming 
 
The rule of thumb (equation 3) and its approximation (equation 5) do not include the possibility 
that the species may be seen in a future survey, incurring further costs of surveying and 
possible escape and damage. To incorporate these future expected costs, we can use 
stochastic dynamic programming. Stochastic dynamic programming is an optimisation 
algorithm that can be applied to any system with a finite number of states, where the dynamics 
are described by a Markov chain and sequential decisions must be made (Bellman, 1957; 
Lubow, 1996; Mangel & Clark, 1988). It works backwards over time, finding optimal decisions 
for each possible management scenario that take into account future expected costs (Bellman, 
1957; Lubow, 1996; Mangel & Clark, 1988).  
 

 10



Optimal allocation of resources to emergency response actions for invasive species 

 
The formulation of our stochastic dynamic program (SDP) is similar to that in Regan et al. 
(2006). In each time step m (1 to M) there are two possible management decisions: to survey 
or to stop. The optimal decision is the one with the lowest expected cost. As outlined 
previously, the species has a sighting record in which it is seen n times in sn surveys, and then 
not seen for d surveys. The optimal stopping time for particular values of n and sn is the 
smallest d where the expected cost of stopping is less than the expected cost of surveying. The 
expected cost of stopping is the probability that the species is extant given its sighting 
record, multiplied by the expected cost of escape and damage: 
 

,),,|extant species(),,,( ennstop CdsnpsndmE =  
 
which substituting equation 1 becomes: 
 

)]}),(/[)1{(1/(),,,( sBCsndmE enstop ππ−+=  
 
where  is given by equation 2. The expected cost of surveying must encompass two 
possibilities: the species is detected or not detected. The sighting record can be updated for 
each case. If the species is detected, the number of sightings n becomes n + 1, while the most 
recent sighting s

)(sB

n becomes sn + d. The number of absent surveys d becomes 0. If the species 
is not detected, d becomes d + 1, while n and sn remain constant. The expected cost of 
surveying is thus: 
 

).(
)() , ,1 ,1())detected()extant(1(

),1 ,0 ,1()detected()extant(),,,(

MmC
MmsndmEpp

dsnmEppCsndmE

s

nopt

noptsnsurvey

==
<++−

+++++=
 

 
The probability that the species is extant is given by equation 1.  is the expected cost of 
future optimal decisions, where the optimal decision gives the lowest expected cost: 

optE

 
)].,,,(),,,,(min[),,,( nsurveynstopnopt sndmEsndmEsndmE =  

 
If the species went extinct immediately after it was last detected in survey sn, its probability of 
detection would be n/sn. However, if the species was extant but undetected for k of the d 
absent surveys, the detectability estimate would be n/(sn + k). The value of k could be 
anywhere between 0 and d. We can determine a general probability of detection by weighting 
the estimates for each possible k by the probability that the species was present at survey sn + 
k, but then went extinct before sn + k + 1: 
 

( )∑
=

⎥
⎦

⎤
⎢
⎣

⎡
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

=
d

k
nn

n
n ksnpksnp

ks
ndsnp

0

)1,,|extant(),,|extant(),,|detected( . 

 
The SDP is calculated backwards, so it begins by calculating the expected cost of each 
decision in the final time step M. The optimal decision is the one with the lowest expected cost. 
It then steps back to the previous time step M – 1 to calculate the expected cost of each 
decision, assuming the optimal action is taken in time step M. It continues to step backwards, 
repeating this process and finding the optimal decision for each time step. The optimal decision 
for the first time step thus accounts for future possibilities and costs, assuming that all future 
decisions are optimal. For this reason, we have focused our analysis of SDP results on those 
from the first time step. 
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Alternative sighting rate model 
 
The methods described above assume the sighting record of the species represents a Poisson 
process, with a constant pre-extinction sighting rate. A plausible alternative model is that the 
pre-extinction sighting rate λ is not constant, but declines with the number of surveys s. We 
define λ(s) as: 
 

,)( amss −=λ         (6) 
 
where m is a constant, and a is a constant between 0 and 1 (where a = 0 corresponds to the 
constant rate case above). We chose a simpler sighting rate function than that investigated by 
Solow (1993b), to enable us to calculate the Bayes factor. The Bayes factor for this model 
(integrated over all possible values of m) is: 
 

]1)//[()1)1(()( 1)1( −−−= −−an
nsSanB s . 

 
Details of this calculation are provided in Appendix A. To investigate the optimal decisions 
under this model, we substituted this Bayes factor into the rule of thumb (equation 3) to 
calculate the net expected cost of stopping after d absent surveys. 
 
Case study 
 
We apply the method to the eradication of Helenium amarum (bitterweed) in Queensland, 
Australia—the example that was used in Regan et al. (2006). H. amarum is toxic to stock, and 
if ingested causes vomiting, diarrhoea, and production of bitter undrinkable milk. It was first 
found in Queensland in 1953, and an eradication program began in the same year. After three 
years of herbicide and manual removal, only isolated patches of plants remained. Between 
1988 and 1992 no plants were detected, and the weed was declared eradicated (Tomley & 
Panetta, 2002). This eradication seemed to have been successful (Regan et al. 2006) but in 
March 2007 a small infestation of H. amarum was discovered at the site of original occupancy, 
and control activities are currently underway (D. Panetta pers. comm.). 
 
We used the best estimate parameters in Regan et al. (2006) and the raw sighting data of H. 
amarum to parameterise the models. The best estimate for the cost ratio R (Cs/Ce) is 0.00282, 
meaning the cost of escape is 354 times the cost of surveying (Regan et al. 2006). From 1953 
until the last sighting in 1987, 169 surveys were conducted (sn = 169), and H. amarum was 
seen in 142 of those surveys (n = 142). H. amarum was declared eradicated after 9 
consecutive absent surveys in the period 1988-1992 (d = 9). We used a non-informative prior 
probability of presence � of 0.5. In the SDP we found optimal decisions for twenty consecutive 
choices (M = 20), and we discuss the optimal decisions for the first of these as they incorporate 
the possible future outcomes of the next 19 choices. For the alternative model of sighting rate, 
we used WinBUGS software (Spiegelhalter et al., 2003) to fit the declining sighting rate model 
(equation 6) to the raw sighting data for H. amarum. The estimate was  when using a 
uniform prior. 

1.0≈a

 
Results  
 
Performance of rule of thumb and approximation 
 
The exact optimal number of absent surveys before stopping (calculated with the SDP) 
decreases as the sighting frequency n/sn increases (Figure S1). For most combinations of n 
and sn, the rule of thumb gives results that are within one absent survey of the exact optimal 
results from the SDP (Figure 1a). Larger differences occur when the sighting frequency is very 
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low, with the rule of thumb underestimating the exact optimal result. Similarly, the 
approximation gives results that are within one absent survey of the exact optimal for most 
combinations of n and sn, and tends to underestimate the optimal result when the sighting 
frequency is very low (Figure 1b). The approximation also tends to slightly overestimate the 
optimal result (by up to 3 surveys) when the sighting frequency is moderately low.  
 
 
 
 
a) 
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b) 

 

Figure 1: Performance of the a) the rule of thumb and b) the approximation as compared to the 
exact optimal results from the SDP. Mid grey shading indicates combinations of n and sn where 
the result was within one absent survey of the SDP result. Dark grey shading indicates where 
the optimal result was underestimated by more than one absent survey (up to 134 surveys for 
both methods), and light grey shading indicates where the optimal result was overestimated (by 
up to 2.23 surveys). 
 
 
Using the constant sighting rate model, the rule of thumb, SDP and approximation all give an 
optimal stopping time of 13 absent surveys (d* = 13) for H. amarum (Figure 2: rule of thumb, 
Figure S2: SDP, approximation d* = 13.15). The SDP finds the optimal decision, to keep 
surveying or stop, for every possible sighting record (every combination of n, sn and d). If there 
have been 12 consecutive absent surveys, it is optimal to stop surveying for many 
combinations of n and sn, but not for the initial sighting record of H. amarum (Figure S2a). After 
13 consecutive absent surveys, it is optimal to stop surveying for H. amarum (Figure S2b). As 
the number of absent surveys increases, the number of combinations for which it is optimal to 
stop surveying increases.  
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Figure 2: The net expected cost (NEC) as a function of the number of absent surveys for H. 
amarum, calculated using the rule of thumb (equation 3). The lowest NEC occurs after 13 
years of absent surveys (marked with dotted line), making this the optimal number after which 
to declare eradication. 
 
Sensitivity of optimal solution 
 
The results from the SDP are sensitive to the ratio of the cost of surveying to the cost of 
escape (R = Cs/Ce). For a particular combination of n and sn, decreasing this ratio R increases 
the optimal number of absent surveys. For sn = 200, the results for R = 1 and R = 0.1 are the 
same—stop surveying even if the weed has been seen in the previous survey (d* = 0) (Figure 
3). For smaller cost ratios (R = 0.01, 0.001, 0.0001), the optimal number of absent surveys 
decreases as n increases (Figure 3). The difference between results for each cost ratio is 
greater for smaller values of n (Figure 3). 
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Figure 3: SDP results for different values of the cost ratio R (Cs/Ce), for sn = 200. Squares: R = 
1 or 0.1, diamonds: R = 0.01, crosses: R = 0.001, circles: R = 0.0001. The prior probability of 
presence is kept constant at π = 0.5. 
 
 
The SDP results are also sensitive to the prior probability of species presence (π). Higher 
values of the prior give a larger optimal number of absent surveys (Figure 4). As with the cost 
ratio, the difference is larger for small values of n. The difference is also greater around the 
edges of the range for π, that is, when π is close to 0 or 1. For example, the difference in results 
between π = 0.9 and π = 0.9999 is similar to that between π = 0.1 and π = 0.9. 
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Figure 4: SDP results for different values of the prior π,, for sn = 200. Squares: π, = 0.0001, 
diamonds: π, = 0.1, crosses: π, = 0.9, circles: π, = 0.9999. The cost ratio is kept constant at R = 
0.00282. 
 
 
Declining sighting rate model 
 
When using the parameters for H. amarum (including a = 0.1) the rule of thumb with the 
declining sighting rate model gave an optimal d of 14, as compared with 13 from the original 
model. For any value of d, the declining sighting rate equation gives a higher probability that 
the species is extant than Solow’s equation, although both give much higher probabilities than 
the methods used in Regan et al. (2006) (Figure 5). 
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Figure 5: The probability that H. amarum is extant as a function of the number of consecutive 
absent surveys (shown up to d = 20), calculated with four different methods. The solid grey line 
is calculated as in the rule of thumb in Regan et al. (2006), and the dotted line is calculated as 
in the SDP in Regan et al. (2006). Both of these used the best estimate parameters for H. 
amarum described in Regan et al. (2006), and assumed surveys are conducted annually. The 
solid black line is calculated using Solow’s equation, and the dashed line is calculated using 
the declining sighting rate equation. Both of these used the sighting record for H. amarum (sn = 
169, n = 142), and π = 0.5 as the prior probability it is extant. The declining sighting rate 
equation used a = 0.1. 
 
 
The parameter a in this model represents the magnitude of decline in sighting rate over the 
original sighting period. When a = 0 this model is equivalent to the constant sighting rate 
model, and it gives the same optimal number of absent surveys (Figure 6). The optimal number 
of absent surveys then increases as a increases, but the increase up to a = 0.5 is gradual: 
when a = 0.5, d* = 23. 
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Figure 6: The optimal number of consecutive absent surveys found using the declining sighting 
rate equation, for different values of parameter a. All other parameters values are set for H. 
amarum. When a = 0, the declining sighting rate equation is equivalent to Solow’s equation. 
 
 
Discussion 
 
Regan et al. (2006) provided the first decision theoretic method for determining when to 
declare eradication of an invasive species. We examine alternative methods for calculating the 
probability an invasive species is extant, for use in their decision making framework. Although 
our results are not directly comparable with those in Regan et al. (2006) as they are in different 
units (surveys vs. annual surveys), it is clear that the method used to calculate this probability 
influences the optimal decision of when to declare eradication. The question is then: which 
method is more suitable? A benefit of methods that use sighting data is that they are amenable 
to power analysis through simulation, so their accuracy in different circumstances can be 
determined (see Burgman et al. 2000). Otherwise, the method used may simply depend on the 
type of data available. Regan et al.’s (2006) method requires estimates of annual detectability 
and annual probability of persistence. When these estimates are not available, methods that 
make use of the raw sighting data may be preferable. However, they instead require an 
estimate of the prior probability of presence. 
  
The prior probability of presence could be obtained by eliciting probabilities from one or more 
experts (McCarthy, 2007), or by summarising the success and failure of similar eradication 
attempts. For example, in a review of goat eradications from islands, Campbell & Donlan 
(2005) found 120 documented successes and 10 documented failures. In this case the prior 
probability of an unsuccessful eradication (and thus the prior probability that goats are still 
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present on an island following an eradication attempt) is 0.08. In some cases, probability of 
eradication can be predicted, a priori, as a function of characteristics of the site or species. For 
example, Campbell & Donlan (2005) show that eradication of goats from larger islands was 
less successful than from smaller islands. Similarly, eradication success will be a function of 
the level of effort. McCarthy & Masters (2005) illustrate this approach for predicting annual 
survival rates of birds by constructing regression models based on previously published data. A 
meta-analysis of the eradication literature would provide a means for generating prior 
probabilities of eradication failure, based on the characteristics of the eradication program.  
 
In the absence of such a meta-analysis, we initially chose a prior of � = 0.5 for H. amarum, and 
analysed the results over the entire range of �. We found the exact optimal results were 
sensitive to this prior probability, with sensitivities being more pronounced where the initial 
sighting frequency was very low. The exact optimal results were also more sensitive to 
changes in the cost ratio R when the sighting frequency was very low. For cryptic species with 
fewer sightings in the original sighting period, it is important to have reliable estimates of these 
parameters. 
 
We have explored here three different methods for finding the optimal number of absent 
surveys before declaring eradication: the SDP, rule of thumb, and an approximation. These 
three methods trade-off accuracy and accessibility. The SDP calculates the exact optimal 
result, but the method and the results it produces are both quite difficult to understand and 
interpret. Computer programming skills are required to conduct the analysis and summarise the 
results. The rule of thumb is more intuitive, but still requires time and some technical skills to 
calculate the net expected cost over a range of values of d to find the minimum. The 
approximation is a simple calculation that could be performed quickly with a calculator, making 
it an accessible tool that could be applied by decision-makers and managers of weed 
eradication programs. The rule of thumb and approximation perform well when compared with 
the exact optimal results from the SDP. Accuracy of these methods is only a concern for the 
most cryptic species where the initial sighting frequency is very low. 
 
As mentioned in the methods section, we have applied Solow’s equation to active surveys of 
species. In Solow (1993a), the pre-extinction sighting rate is constant over time, which is not 
sensible when surveys are being carried out—it implies the probability of sighting during a 
survey is the same as the probability of sighting between surveys. We have instead applied 
Solow’s method using the number of surveys as a unit for the sighting record. This means that 
the sighting rate is constant for each survey, regardless of how much time has passed in 
between surveys. However, enough time must pass for each survey to be considered an 
independent observation. If a species has been surveyed at regular time intervals throughout 
its sighting period then the number of surveys can be used as an index for time. 
 
The interpretation of the sighting record in units of surveys rather than time has little impact 
when assuming a constant sighting rate. However, care needs to be taken when interpreting 
results for our declining sighting rate model. The declining sighting rate can be interpreted as 
modelling a declining population: as the size of the population decreases the probability of 
sighting an individual declines. However, the sighting rate does not decline over time, but 
declines with the number of surveys s. This might be reasonable if eradication efforts respond 
to the surveys. 
 
We have provided two different models for the pre-extinction sighting rate: constant and 
declining. The constant sighting rate model is suitable for very small populations that are 
relatively stable but subject to rapid extinction (Solow, 1993b). This is a reasonable description 
of a population where declaring eradication is a possibility. We are focusing on populations that 
have already been reduced to a very low level, so if they are still declining, they are not likely to 
be declining at a great rate for any length of time. This was apparent when fitting the declining 
sighting rate model to our case study of H. amarum. If the decline in sighting rate is only slight, 
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our results suggest that the optimal number of absent surveys is not greatly different under the 
constant sighting rate model. In general, assuming a declining sighting rate increases the 
optimal number of absent surveys compared with a constant sighting rate.  
 
There are numerous other methods to calculate the probability of presence from sighting data 
(see Introduction), each with their own assumptions about the sighting record and species 
population. Within this decision-making framework, we could substitute a number of different 
methods, depending on the species in question and the type of data available. We are currently 
examining the range of results that might be achieved given plausible alternative models for 
how the probability of presence declines with the number of consecutive surveys in which a 
species is not found. Another way to account for uncertainty as to the most appropriate method 
of calculating the probability of presence is to find a decision that will deliver a satisfactory 
outcome and is most robust to uncertainty (Ben-Haim, 2006).  
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Appendix A. Derivation of Bayes factor for declining sighting rate 
model  
 

A total of S surveys have been performed, and the species has been sighted in n of these (s = 

s1, s2,…, sn). We assume this sighting record follows a non-homogenous Poisson process with 

rate function λ(s) (Cox & Lewis, 1966). The sighting rate declines with the number of surveys s 

such that: 

,)( amss −=λ  

where m is a constant, and a is a constant between 0 and 1. 
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The Bayes factor is the ratio of likelihoods: 

extinct)|(extant)/|()( sss llB = . 

The likelihood of the sighting record given the species is extant is: 

∫
∞

=
0
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where P(m) is the prior distribution for m. We assume m has a uniform prior distribution (Solow, 

1993), such that: 
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m
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For a non-homogenous Poisson process, the likelihood is then: 
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Integrating this by parts gives: 
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The likelihood of the data given that the species is extinct is: 

∫ ==
S

s eee
n

sdPsSll )()|(  extinct)|( ss , 

where se is the survey at which the species went extinct (between sn and S). Se is uniform 

random variable of which se is a realisation. P(se) is the prior distribution for se. We assume 

that, without knowledge of the sighting data, extinction is equally likely to occur during any 

survey in the sighting period (Solow, 1993): 

ee ds
S
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The function l(s | Se = se) is the likelihood of the sighting record given Se = se, which is: 
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Substituting this into the main likelihood function gives: 
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If we then substitute the expressions for �(si), 
es,0λ , and the prior distributions for se and m, this 

becomes: 
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The Bayes factor is then: 
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which simplifies to: 
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This last equation simplifies to the constant sighting rate case for a = 0. 
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Appendix B. Additional figures  
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Figure S1: Optimal number of absent surveys before stopping for sn = 200, calculated with the 

SDP. 
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b) 

 

 

Figure S2: Optimal decisions found with the SDP, using the costs for H. amarum. The optimal 

decision for H. amarum is at sn=169, n=142, indicated with the white diamond. Black: optimal 

decision is to keep monitoring, grey: optimal decision is to stop. 

a) After 12 absent surveys (d = 12), optimal decision for H. amarum is to keep 

surveying. 

b) After 13 absent surveys (d = 13), optimal decision for H. amarum is to stop. 
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