

Inventing biosecurity insurance: Using incentives to sustainably fund biosecurity

Susie Hester

Gary Stoneham, Arthur Campbell, Peter Wilkinson, Tim Carew, Rachelle Clark, Holly Blackwood, Connie De Marco, Daniel Passer, Eugene Georgiades, Rui Zhou

CEBRA

September 29, 2022

Outline

- Context
- What can economics offer?
- CEBRA 21C
 - Incentive-compatible policy design
 - The framework
 - Diagnosis
 - Addressing the problem
 - Demonstration (biofouling, cut flowers)
 - Embedding in policy-design process
- Conclusion

Context

- Humans are largely responsible for pest and disease spread
- The current biosecurity system:
 - Science focused
 - Risks assessed and interventions developed
 - human behaviour and incentive effects are not explicitly considered
 - Regulations are used to manage human behaviour
 - Effective in preventing catastrophic outcomes
 - Not effective when aim is to modify behaviour
- What can economics offer?

What can economics offer?

- An objective: right level and type of protection from biosecurity threats
- A way to frame biosecurity system problems:
 - 1. Delegation creates risks
 - 2. Divergent motives of stakeholders
 - 3. Information is unevenly distributed
 - 4. Stakeholder actions aren't always observable
- Solutions that will improve efficiency
 - Science-based interventions are not enough to deal with 1-4
 - link science, economics and technology

What can economics offer?

- Assistance with incentives!
 - Biosecurity regulations create incentives
- A framework for incorporating incentives into the biosecurity system:
 - i. Economic theory (e.g. market design, principle-agent theory)
 - ii. A process for trialling and refining interventions in a controlled way (economic experiments)

Laffont & Martimort (2002). In The Theory of Incentives: The Principal-Agent Model

Roth (2016) Who Gets What — and Why: The New Economics of Matchmaking and Market Design.

- Create 'incentive compatible' rules:
 - where taking the desired actions (good biosecurity behaviour) will be better than outcomes from other available choices.
 - 'Best' decision for stakeholder is the desired one from DAFF's standpoint

Risk creators:

Importers, vessel operators, passengers

- Actions expose Australia to financial losses
- Can't attribute loss exposure to specific risk creators (externality)
- Self-interested
- Hold information relevant to the objective
- Behave strategically
- Can't always observe actions

What interventions align the actions of risk creators with the biosecurity objective?

Regulator

Biosecurity authority – DAFF

- Acting in the national interest
- Implements the *Biosecurity Act 2015*
- Intervenes in the economy to regulate

- The framework:
 - i. Diagnosis
 - ii. Solution
- Demonstrate framework using case studies:
 - Biofouling
 - Cut flowers
 - And?
- Embed the framework into DAFF policy design process

CEBRA 21C: the framework – diagnosis

- Key Questions:
 - Is non-compliance deliberate, despite the policy?
 - what are the potential consequences to entity?
- Resolve whether the non-compliant behaviour:
 - Results in significant non/monetary benefits to entity
 - Is likely to be detected or, biosecurity risks identified and attributable to the risk creator
 - Results in consequences to the entity or individual
- Determine the scale of the problem

CEBRA 21C: the framework – addressing the problem

Key steps:

- understanding the current driver/s of non-compliant behaviour
- connecting this information to outcomes that the individuals or organisations care about
- Two approaches to implementing incentive design:
 - 1. Pathway 'overhaul' rethink or redesign a pathway using biosecurity risk insurance
 - Pathway 'fine-tuning' identify potential vulnerabilities and modify/design policies to be 'strategy proof'
- Limits perceived or actual to possible changes

CEBRA 21C: the framework – demonstration

Case study 1:

Biofouling — pathway overhaul

Case study 2:

Cut flowers — pathway fine-tuning

CEBRA 21C: framework demonstration — biofouling

 Without intervention by DAFF there would be no incentive for vessel owners to remove biofouling in niche areas

CEBRA 21C: framework demonstration — biofouling

- DAFF is reviewing policies around biofouling
- Diagnosis phase: is there an incentive problem?
 - Non-compliance results in significant benefits
 - Resource pressures in DAFF impact on ability to detect non-compliance
 - Penalties for non-compliance are large but seldom applied

CEBRA 21C: framework demonstration – biofouling

- Addressing the incentive problem
 - Biofouling is a class of risk (Stoneham et al. 2021)
 - Risks are managed through insurance
 - Diagnose why biosecurity insurance is absent
 - Design an insurance mechanism
- Solution mechanism: biosecurity insurance
 - Apply actuarial principles to biofouling risk
 - Apply incentive theory
 - A new type of insurance

CEBRA 21C: framework demonstration — biofouling

Biosecurity insurance mechanism:

- Vessel operators required to purchase biofouling risk insurance
 - Premiums calculated by actuaries based on biofouling risk posed by vessels
- Link risk-rating to verifiable BMPs
 - No verifiable BMPs = high risk, high premiums
 - Incentives to reduce biofouling risk
- Insurance pool (accumulated premium payments)
 - Funds biosecurity agency costs
 - Funds response effort
 - Financially sustainable model

CEBRA 21C: framework demonstration — cut flowers

Context

- History of relatively high non-compliance
- Recent policy changes appear to have significantly improved compliance
- Diagnosis phase: Disentangle policy changes:
 - Understand how/if elements of policy change affected incentives
- Addressing problems
 - Design/fine-tune elements of policies to improve incentives
 - Test and refine policy (economics laboratory)
 - Evaluate through a field pilot

- The framework:
 - i. Diagnosis
 - ii. Solution
- Demonstrate framework using case studies:
 - Biofouling
 - Cut flowers
 - And?
- Embed the framework into DAFF policy design process
 - Insert Q: "is the policy incentive-compatible?"
 - Limits perceived or actual to possible changes
 - Use of in-house vs external expertise

Conclusion

- This project offers an opportunity to bring science and economics together to future-proof the biosecurity system.
- Explicit consideration of incentives will:
 - Improve efficiency and effectiveness of biosecurity interventions
 - Build on science knowledge and skills of DAFF staff
 - Require new skills: actuaries, (market design) economists, tech. specialists
- Biosecurity insurance is:
 - A new type of insurance
 - Potentially applicable across the biosecurity system
 - A financially sustainable funding model

Acknowledgements

- Project team
- Cut flower staff: Jess
 Sibley, Angus Baird, Doug
 Kerruish, Tasfia Rashid
- Carl Ng