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1. Introduction

Protecting New Zealand’s natural environment and agricultural industries from inva-
sive species has long been a priority of the Ministry for Primary Industries (MPI). It is
well known that prevention and early detection is the best approach for many pests
due to the high costs that eradication programs carry and the significant damages that
come with an incursion.

This project covers a fourth year of work, building on the work completed in previ-
ous years for projects 1706211 and 1606E2 . The first and second years of the project es-
tablished a framework for representing the biosecurity system across three main areas
(pre-border, border and post-border) with four main pathways (craft, cargo, mail and
passenger) overlaid with the seven groups of biosecurity risk assessment/management
activities as identified in Schneider et al. (2020) - (Anticipate, Prevent, Screen, Prepare,
Detect, Respond and Recover). The third year of the project tested and finalised the
biological component (i.e. estimates of risk reduction across intervention activities of
the system) of the risk decision support tool by running a selected set of five priority
pests identified by MPI through the matrix. This final stage of the project looks at over-
laying an economic cost of interventions to provide an overview of the greatest return
(risk reduction) on investment. We consider the post border activities in particular and
propose a model for assessing the optimal surveillance of a pest using traps. We apply
this to a case study of Gypsy Moth but it may be applied to a number of other pests
on MPI’s priority list3 such as fruit flies (e.g. Queensland Fruit Fly, Oriental Fruit Fly,
Medfly), ants (e.g. Red Imported Fire Ant) and other moths (e.g. Nun Moth, Painted
Apple Moth) for which traps are also used for surveillance.

A key benefit of this model is that it requires a small number of parameters so is very
useful in a practical setting where data is limited. It can help to determine a surveil-
lance strategy without the need for complex habitat suitability models and other infor-
mation that is not readily available in practice. Our model extends the work outlined
in Kompas et al. (2016) in which they developed a simple model for determining opti-
mal surveillance of sleeper weeds. This project adapts the model so that it is suitable
for pests that are detected using traps.

This report begins in Chapter 2 by introducing the economic model that we will be
using in a general sense. We start by showing the cost of an incursion of a known
size and we then go on to show our detection probability function and finally tie it
all together by defining the cost of multiple incursions and the optimisation problem
that we use to determine optimal surveillance. In Chapter 3, we apply the model to
Gypsy Moth and discuss the results. Finally, Chapter 4 acts as a space for discussion
and conclusions.

1https://cebra.unimelb.edu.au/__data/assets/pdf_file/0007/3350374/CEBRA_170621_Yr2_Final.pdf
2https://cebra.unimelb.edu.au/__data/assets/pdf_file/0012/2946558/Final-Report-1606E.pdf
3https://www.mpi.govt.nz/protection-and-response/finding-and-reporting-pests-and-

diseases/priority-pests-plant-aquatic/



2. Economic Model

This chapter describes an economic model for Gypsy Moth incursions which are dis-
covered using a static surveillance grid. The method outlined in this chapter closely
follows the method used by Kompas et al. (2016) with the complex mathematics pre-
sented in Appendix A for the more technical reader. Appendix A follows the same
narrative as this chapter so if the reader desires more mathematical context on a par-
ticular aspect of the model, it is clear which section each equation relates to. There are
certain essential parameters that this model relies on as well as key variables that we
will be using throughout this chapter. We define these as follows:

Table 2.1.: Parameter and variable definitions
Parameter
/Variable Type Definition

x0 Parameter Infestation size of an initial incursion
r Parameter Infestation growth rate
ρ Parameter Economic discount rate
c Parameter Cost of eradication per unit area
d Parameter Damage per unit area per unit time
l Parameter Detection radius from trap
b Parameter Mean interval between incursions
σ Parameter Standard deviation of interval between incursions
T Variable Time

x(T ) Variable Size of the infestation at time T
s Variable Surveillance expenditure

y(s) Variable Grid size for surveillance expenditure s

All parameters and variables must use the same scale in both area and time. We first
calculate the cost of a known incursion size, then outline how the detection probability
would be calculated and finally combine these two sections to calculate the total cost
of multiple incursions.

2.1. Cost of an incursion of known size

We consider a particular land parcel that may have traps on it or may not. An infesta-
tion of size x0 establishes within the land parcel area with some frequency b. The size of
the infestation has growth rate r > 0 and so we can calculate the size of the infestation
at time T as a function of x0, r and T which we call x(T ):

x(T ) = x0e
rT (2.1)
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Throughout this section, we calculate everything at a given time T . Once we know
the size of the infestation, we can calculate the eradication cost at time T as a function
of ρ, c, T and x(T ) where c is the cost of eradication per unit area and ρ is the discount
rate. This we call R(T ):

R(T ) = eradication cost per unit area × size of infestation when it is discovered︸ ︷︷ ︸
discounted to today’s money

(2.2)
The second cost that needs considering is the losses associated with an infestation.

These may be avoided to some extent by choosing a strategy of early eradication and
are cumulative; so, the more time that the Gypsy Moth is present, the more losses
are incurred. These may be environmental, agricultural, social or one of many other
factors that might be affected. We parametrise all these damages and say that d is the
damage per unit area per unit time. Since damages are cumulative, we must consider
all damages from time 0 when the incursion first started to time T when eradication is
successful. We define the present value of the losses associated with an incursion as:

L(T ) = damages per unit area per unit time× size of infestation︸ ︷︷ ︸
across all times that the infestation is present, discounted to today’s money

(2.3)

Kompas et al. (2016) showed how the condition for which immediate eradication is
efficient is

d+ cr > cρ (2.4)

and the same is true in this case. In particular, if the damages are sufficiently large
and the cost of eradication would increase more than your money could increase by
investing then it is best to eradicate as soon as the pest is discovered. This equation
is derived from the first order conditions for cost minimisation by optimising over the
time to eradication.

2.2. Detection probability

The cost of controlling a known invasion is R(T ) +L(T ). Both of these aspects depend
on the size of the incursion when it is discovered which is a direct result of surveillance
effort. Surveillance is not 100% effective and we use a detection probability function to
represent this.

We use a practical detection function that should be more useful in practice than
many standard probability distributions since there is no need to estimate abstract pa-
rameters that have little grounding in real life.

In practice, high priority areas where surveillance activity takes place have pheromone
traps placed on preferred host trees in a grid pattern. In fact, the area is divided into
cells of a certain size and the traps are placed on a tree at the centre of each grid cell.
The traps can effectively lure Gypsy Moths from a certain distance with some proba-
bility so when the traps are examined, MPI will be notified of a Gypsy Moth in the area
and further investigation can take place and an eradication programme can commence.

A number of studies have been done into the effectiveness of Gypsy Moth traps.
Schwalbe (1981) and Keyes (1997) tested the proportion of moths returned for a given

3
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intertrap distance (ITD). For our purpose, in order for a trap to effectively alert us to
an infestation, we need just one moth to be caught. Gypsy Moths lay approximately
500-1000 eggs at a time (Glare et al., 2003) so if an egg mass is at a distance l from a trap
whereby the probability that a moth will be caught at distance l is 0.01, then at least one
moth will be caught with probability 0.99. We say that l is the minimum distance from
the trap where an infestation would be successfully detected and call it the detection
radius. As such, the trap detection is as depicted in Figure 2.1. In New Zealand, areas
are identified as being good for trapping and the land is divided into a grid. Traps are
then placed on trees as centrally to the grid cell as possible, as illustrated in Figure 2.1.
In fact, if we assume that the incursion takes the shape of a circle with radius k, then the
probability that the incursion is detected is the proportion of the grid that is covered
by the circle with radius l + k.

Figure 2.1.: Demonstration of trap detection effectiveness.

To formulate this mathematically, we consider the three scenarios outlined in Fig-
ure 2.2. In particular, although the detection radius l is fixed, as we vary the surveil-
lance budget, the length of the grid cells y may increase or decrease. In Figure 2.2,
the grey areas indicate the portions of the grid cell where an incursion would not be
detected. Calculating the proportion of the square that is covered by the circle is trivial
for scenarios (a) and (c) but it gets more complicated in scenario (b) when we need to
account for the segments of the circle that are outside the cell area. In practice, there are
many grid cells that are adjacent to other grid cells and therefore the probability of de-
tection would increase in scenario (b) where the trapping areas overlap. For modelling
purposes, we treat each grid cell as independent. For full details on how the detection
function is calculated for scenario (b), see Appendix B.

Figure 2.2.: Three scenarios for calculating detection probability.

4
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In fact, whichever scenario we are considering, we can define the probability of de-
tection as a function of x(T ), y and l:

p(x, y) =
area of the circle where detection radius intersects with incursion

area of grid cell
− area of segments outside grid cell

(2.5)

Figure 2.3 plots the marginal probabilities from Equation A.6. Figure 2.3a fixes the
infestation radius k = 21m and varies the grid size y along the horizontal axis. Simi-
larly, Figure 2.3b fixes the grid size y = 750m and varies the infestation radius k along
the horizontal axis. In both plots, the detection probability p(x, y) is shown on the ver-
tical axis and, as would be expected, the functions are monotonic and continuous and
take values only in the interval [0, 1].

(a) Detection probability with fixed k = 21m (b) Detection probability with fixed y = 750m

Figure 2.3.: Plots of the marginal probabilities from Equation A.6.

2.3. Total cost of multiple incursions

The previous equations have all been for a single incursion; we now consider the sub-
sequent problem whereby there are a series of entries arriving approximately at a given
interval b. We use the method proposed in Kompas et al. (2016) where the entry times
of the species are denoted as a random walk process. Then, for a given surveillance ex-
penditure s, we combine L(T ), R(T ) and p(x, y) for all entries to get the present value
of all the expected damages and eradication expenditure across all incursions:

C(s) = expected eradication costs + expected damages︸ ︷︷ ︸
given when we think we would find the incursion, for all
time, discounted to today’s money, for all incursions, given
a set surveillance budget

(2.6)

We present the cost as a function of surveillance expenditure rather than, say, grid
size because it is a metric that decision makers are familiar with at all levels and it
enables people to clearly see the connection between investment in surveillance and
expected eradication costs and damages. The final cost that must be considered is
that of the surveillance programme itself. This is more simple to calculate and may be

5
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parametrised as constant s. Now that we have all the individual pieces, we can say
that the optimal surveillance budget is that which minimises the following:

minimise
s≥0

(s+ ρC(s)) (2.7)

The benefit of considering the problem in terms of unique land parcels is that it
allows us to easily account for the fact that different geographical locations will hold
different likelihoods and consequences of an incursion and this information can be
captured in the input parameters. An additional convenience of this model is that it is
unit-free and the land parcels can be to any scale that we choose as long as the units
are consistent across all the parameters.

6



3. Gypsy Moth

We applied the model outlined in Chapter 2 to a Gypsy Moth case study. Gypsy Moth
is a problematic pest in many countries around the world (McEwan et al., 2009; Lieb-
hold et al., 1992; Elkinton & Liebhold, 1990) and is currently not established in New
Zealand. It is believed that were Gypsy Moth to be introduced to New Zealand, it
would have a devastating effect on the natural environment and agricultural indus-
tries (Matsuki et al., 2001; Pitt et al., 2007; Walsh et al., 1993; Glare et al., 2003). New
Zealand currently uses traps for early detection of Gypsy Moth (Ross, 2005; Kean et al.,
2008) which so far have been successful at keeping the pest out. Gypsy Moth traps
use pheromones (disparlure) to attract the male Gypsy Moths (Sharov et al., 2002) and
the traps are inspected fortnightly. The trap placement in New Zealand has particular
focus on airports, ports and large population centres.

3.1. Parameters

It is common in the field of biosecurity that rich data that would be needed to train
complex models is not available (Burgman et al., 2011), so it is standard practice in such
a scenario to use expert judgement as a source of data (Sutherland, 2006; Sutherland
& Burgman, 2015). The previous phase of this project carried out substantial expert
elicitation activities in the area of Gypsy Moth so we were able to use these outputs
directly. The experts gave an estimate of the size of an initial incursion under the
current surveillance so we determined that x0 = 1344.60 hectares.

They carried out some analysis on the experts’ estimations of approach rate and
determined that there is an approximate rate of an establishment every 61 years; there-
fore, b = 61. The experts also gave estimations of damages for a given incursion size
and eradication costs for a given incursion size, thus we inferred that c = 0.65 ($ per
square metre) and d = 0.29 ($ per square metre per year).

We used a spread rate of r = 0.26 (Leuschner et al., 1996) and a discount rate of
ρ = 0.03 as is standard in environmental problems. We note that with these parameters,
the conditions for Equation A.5 do indeed hold so it is preferable to eradicate Gypsy
Moth as soon as it is discovered.

We used MPI data that recorded the current surveillance programme costs as being
$408,860 per year, $260,678 of which are variable costs. Fixed costs cover the general
cost of having a surveillance programme at all and these costs are not insignificant.
Variable costs are items such as the cost of the traps themselves and the salaries of the
people who inspect the traps - these will vary depending on the scale of the surveil-
lance programme. The data also showed that 1,525 individual traps are part of this
surveillance programme and that each grid cell measures 750 x 750 metres. Using
this information, we calculated a cost per trap of $171 and a total trapping area of 858
square kilometers. We kept the total trapping area constant when varying the surveil-
lance effort so that an increased surveillance budget meant finer grid cells rather than
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more area covered by traps. We did this for a number of reasons, not least because land
parcels cannot be assumed to be the same in terms of risk; we must assume that the
traps that are currently in use are in the most susceptible areas and therefore the most
useful for trapping.

Finally, we needed information on the trap’s effectiveness at luring an individual
moth. We used data from release-recapture experiments carried out (Schwalbe, 1981;
Keyes, 1997) to train a log-linear model. We then used this model to predict the radius
which recaptures 1% of Gypsy Moths and found that the detection radius was around
l = 186m.

3.2. Optimal surveillance

We ran the model from Chapter 2 with the parameters from Section 3.1 and obtained
a solution as demonstrated in Figure 3.1. Here, we see a somewhat flat version of
the familiar U-shaped function where damages and eradication costs decrease before
rising surveillance costs drag us back out of optimality. We see that the optimal budget
is around $603,000.

Figure 3.1.: Surveillance trade-off between cost components for Gypsy Moth

We carried out sensitivity analysis on some of the parameters to determine how
stable our solution was and how precise our parameter estimates would need to be.
Firstly, we compared the sensitivity of entry rate and entry size. Table 3.1 shows the

8
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results of this analysis and we see that the results do not vary substantially when these
parameters change.

Table 3.1.: Sensitivity analysis for entry rate (b) and entry size (x0)
Entry rate (b)

Entry size (x0) 50 61 72

800 603000 601000 600000
1344.6 605000 603000 602000
1800 606000 604000 603000

Next, we did sensitivity analysis on the spread rate and discount rate. We see a
slightly larger deviation from the original solution here but not significantly so. The
results can be seen in Table 3.2. Interestingly, an increase in spread rate does not equate
to an increase in optimal surveillance budget. This is due to the large initial incursion
size so as the spread rate increases, the incursion will be found with certainty more
quickly, without the need for additional traps.

Table 3.2.: Sensitivity analysis for spread rate (r) and discount rate (ρ)
Spread rate (r)

Discount rate (ρ) 0.2 0.26 0.32

0.02 600000 595000 591000
0.03 607000 603000 600000
0.04 613000 610000 607000

We then varied the damage and eradication costs per unit area. We found that again
there was a small deviation but nothing significant. The results are outlined in Table 3.3

Table 3.3.: Sensitivity analysis for damage (d) and eradication (c) costs per unit area
Damage cost per unit area (d)

Eradication cost per unit area (c) 0.23 0.29 0.35

0.55 595000 601000 607000
0.65 597000 603000 609000
0.75 600000 606000 611000

Finally, we varied the detection radius and the cost per trap. In Table 3.4, we see far
more sensitivity than in the other variables. Our estimation of detection radius was
based on a small dataset, however most of the points cluster around an ITD of 125-375
(detection radius 62.5-187.5) so our estimate of detection radius should be reasonably
accurate for the 0.01 threshold. However, this threshold was chosen as the lower bound
on the size of an egg mass which can be between 100-1200 eggs. If we based our
parameter choices on an egg mass of 1200 eggs, the threshold would be much lower
and therefore the detection radius would be much larger. However, without more data
on the population density of Gypsy Moths, this is the best we will be able to do.

Additionally, the current surveillance budget of $408860 does not sit in the range of
even the most sensitive estimates, indicating that directing additional funding towards

9
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Table 3.4.: Sensitivity analysis for detection radius and cost per trap
Detection radius

Cost per trap 170 186.5 200

160 602000 577000 558000
170 627000 601000 582000
180 652000 625000 605000

Gypsy Moth surveillance through smaller grid cell sizes would save valuable time and
is cost-effective in the event of an incursion.

10



4. Discussion & Conclusions

This project applied an economic lens to part of an existing risk model and considered
optimal surveillance from a rate of return perspective rather than purely risk based.
We developed a new, highly practical detection probability function for pests that are
detected using traps and applied the whole model to Gypsy Moth. The model showed
us that putting more funding towards Gypsy Moth surveillance would yield a greater
rate of return. In particular, carrying out surveillance in a finer grid would improve
detectability in those areas.

Further work might include applying a similar rate of return approach to other ar-
eas of the model developed in the earlier stages of the project such as pre-border and
border. It would also be interesting to consider eradication feasibility and the cut-off
when a Gypsy Moth infestation becomes too large for it still to be economically effi-
cient to eradicate an infestation. An extension of this work could also include a Monte
Carlo simulation of the biophysical parameters (time to detection) under the current
grid and the optimal grid. Additionally, testing this method on other species of inter-
est such as Queensland Fruit Fly or Red Imported Fire Ant would be interesting; since
the model requires so few parameters, it is widely adaptable to many applications. Fi-
nally, further investigation could be done into the trade off between increasing grid
fineness and commencing surveillance in a new area entirely. Given sufficient data
about the characteristics of different land parcels, a variation of this tool could be used
to determine optimal surveillance across multiple sites.
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A. Economic Model

The mathematics in this appendix borrows significantly from Kompas et al. (2016) with
some additional explanation and modest adaptation.

A.1. Cost of an incursion of known size

We consider a particular land parcel that may have traps on it or may not. An infesta-
tion of size x0 establishes within the land parcel area with some frequency b. The size
of the infestation has growth rate r > 0 so we might say that at time T , the infestation
is of size

x(T ) = x0e
rT (A.1)

The cost of eradication varies with the size of the infestation. If c is the cost of eradi-
cation per unit area, then the discounted total eradication cost at time T with discount
rate ρ is

R(T ) = e−ρT cx(T ) (A.2)

Here, cx(T ) is the actual cost of eradication at the time it is taking place. In order to
compare costs across different times, we discount everything to what it would be worth
in today’s money so that we can make a fair comparison. The e−ρT term represents
what the money could have been worth were it invested instead of being spent on, in
this case, the eradication of Gypsy Moth from an area of New Zealand. We substitute
x(T ) using Equation A.1 so that the simplified, discounted cost of eradication is

R(T ) = cx0e
(r−ρ)T (A.3)

The second cost that needs considering is the losses associated with an infestation.
These may be avoided to some extent by choosing a strategy of early eradication and
are cumulative; so, the more time that the Gypsy Moth is present, the more losses
are incurred. These may be environmental, agricultural, social or one of many other
factors that might be affected. We parametrise all these damages and say that d is the
damage per unit area per unit time. Since damages are cumulative, we must consider
all damages from time 0 when the incursion first started to time T when eradication is
successful. As such, we integrate over this time period and obtain the present value of
the loss associated with an incursion which is defined as

L(T ) =

∫ T

0

[dx(t)]e−ρtdt = x0
d

r − ρ
[e(r−ρ)T − 1] (A.4)

Note that the e−ρt term is being used again to discount the costs to the present value
and the dx(t) term is the future value of the damages incurred at time t.
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Kompas et al. (2016) showed how the condition for which immediate eradication is
efficient is

d+ cr > cρ (A.5)

and the same is true in this case. In particular, if the damages are sufficiently large
and the cost of eradication would increase more than your money could increase by
investing then it is best to eradicate as soon as the pest is discovered.

A.2. Detection probability

The cost of controlling a known invasion is the sum of Equation A.3 and Equation A.4.
Both of these aspects depend on the size of the incursion when it is discovered which
is a direct result of surveillance effort. Surveillance is not 100% effective and we use a
detection probability function to represent this.

We use a practical detection function that should be more useful in practice than
many standard probability distributions since there is no need to estimate abstract pa-
rameters that have little grounding in real life.

In practice, high priority areas where surveillance activity takes place have pheromone
traps placed on preferred host trees in a grid pattern. In fact, the area is divided into
cells of a certain size and the traps are placed on a tree at the centre of each grid cell.
The traps can effectively lure Gypsy Moths from a certain distance with some proba-
bility so when the traps are examined, MPI will be notified of a Gypsy Moth in the area
and further investigation can take place and an eradication programme can commence.

A number of studies have been done into the effectiveness of Gypsy Moth traps.
Schwalbe (1981) and Keyes (1997) tested the proportion of moths returned for a given
intertrap distance (ITD). For our purpose, in order for a trap to effectively alert us to
an infestation, we need just one moth to be caught. Gypsy Moths lay approximately
100-1200 eggs at a time so if an egg mass is at a distance l from a trap whereby the
probability that a moth will be caught at distance l is 0.01, then at least one moth will
be caught with probability 1. We say that l is the minimum distance from the trap
where an infestation would be successfully detected and call it the detection radius.
As such, the trap detection is as depicted in Figure A.1. In fact, if we assume that
the incursion takes the shape of a circle with radius k, then the probability that the
incursion is detected is the proportion of the grid that is covered by the circle with
radius l + k.

Figure A.1.: Demonstration of trap detection effectiveness.
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To formulate this mathematically, we consider the three scenarios outlined in Fig-
ure A.2. In particular, although the detection radius l is fixed, as we vary the surveil-
lance budget, the length of the grid cells y may increase or decrease. In Figure A.2,
the grey areas indicate the portions of the grid cell where an incursion would not be
detected. Calculating the proportion of the square that is covered by the circle is trivial
for scenarios (a) and (c) but it gets more complicated in scenario (b) when we need to
account for the segments of the circle that are outside the cell area. For full details on
how the detection function is calculated for scenario (b), see Appendix B.

Figure A.2.: Three scenarios for calculating detection probability.

In practical terms, (a) shows the scenario with the largest grid size where the traps
are furthest apart from each other; in contrast, (c) shows the scenario where the grid
size is sufficiently small that there is some overlap between adjacent traps. We use
these three scenarios to calculate the detection probability function as in Equation A.6.
The first scenario, where l + k ≤ y

2
, relates to scenario (a) in Figure A.2. Likewise, the

second scenario where y
2
< l + k <

√
2y2

2
relates to scenario (b) and the third scenario

with l + k ≥
√

2y2

2
relates to scenario (c).

In Equation A.6, we assume that l is fixed, and calculate the probability of detection
for various cell lengths (y) and infestation sizes (x) with x = πk2.

p(x, y) =


π(l+k)2

y2
, if l + k ≤ y

2

π(l+k)2−4cos−1( y
2(l+k))(l+k)2+2y

√
(l+k)2−( y

2 )
2

y2
, if y

2
< l + k <

√
2y2

2

1, if l + k ≥
√

2y2

2

(A.6)

Figure A.3 plots the marginal probabilities from Equation A.6. Figure A.3a fixes
the infestation radius k = 21m and varies the grid size y along the horizontal axis.
Similarly, Figure A.3b fixes the grid size y = 750m and varies the infestation radius k
along the horizontal axis. In both plots, the detection probability p(x, y) is shown on the
vertical axis and, as would be expected, the functions are monotonic and continuous
and take values only in the interval [0, 1].
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(a) Detection probability with fixed k = 21m (b) Detection probability with fixed y = 750m

Figure A.3.: Plots of the marginal probabilities from Equation A.6.

A.3. Total cost of multiple incursions

The previous equations have all been for a single incursion; we now consider the sub-
sequent problem whereby there are a series of entries arriving approximately at a given
interval b. We use the method proposed in Kompas et al. (2016) where the entry times
of the species are denoted as a random walk process:

ti = ti−1 + b+ εi for i = 1, . . . ,∞; t0 ≡ 0 and ε ∼ N (0, σ2) (A.7)

Here, ti is the time of the ith entry, b is the approximate interval between entries and
ε is an independent, normally distributed random variable that allows for variation in
the arrival interval. Then we combine Equations A.3, A.4 and A.6 for all entries to get
the present value of the expected damages and eradication expenditure:

C(s) =
∞∑
i=1︸︷︷︸

for all in-
cursions,
for all
time

Eti {e−ρti︸ ︷︷ ︸
discounted
to to-
day’s
money

Exi{L(T (x)) +R(T (x))︸ ︷︷ ︸
eradication + damages
given when we think we
would find the incursion

|(ti, y(s))︸ ︷︷ ︸
given
a set
surveil-
lance
budget

}}

=
∞∑
i=1

Eti{e−ρti
∫ ∞
x0

[L(T (x)) +R(T (x))]
∂p(x, y(s))

∂x
dx}

(A.8)

Here, Eti and Exi are the expectation operators for ti and xi respectively and T (x) is
the inverse of Equation A.1. The first row of Equation A.8 is a summation over time of
the expected value of damages (L(T (x))) and eradication costs (R(T (x))). Within the
first expectation operator Eti , the expectation with respect to xi is discounted to the
present value as in previous equations. The key difference in this discounting to what
we have seen previously, however, is that now it is discounting to the present to allow
for multiple incursions over a long time; whereas, previously, it was just discounting
to the start of the incursion. The second row of Equation A.8 summarises Exi in the
form of an integral. In particular, the expected value of a continuous random variable
X is calculated as:

E(X) =

∫ ∞
−∞

xf(x)dx (A.9)
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where f(x) is the probability density function (PDF) of X . In our case, Equation A.6
gives us the probability values for varying x and y; in order to obtain the PDF from this,
we partially differentiate with respect to x and hence obtain the result in the second
row of Equation A.8. We integrate across all times that the incursion may be discovered
- in particular, it may be discovered as soon as it arrives or it may continue to grow until
the point of natural detection.

The final cost that must be considered is that of the surveillance programme itself.
This is more simple to calculate and may be parametrised as constant s. Now that we
have all the individual pieces, we can say that the optimal surveillance budget is that
which minimises the following:

minimise
s≥0

(s+ ρC(s)) (A.10)

The benefit of considering the problem in terms of unique land parcels is that it
allows us to easily account for the fact that different geographical locations will hold
different likelihoods and consequences of an incursion and this information can be
captured in the input parameters. An additional convenience of this model is that it is
unit-free and the land parcels can be to any scale that we choose as long as the units
are consistent across all the parameters.
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B. Detection probability for scenario
(b)

The proportion of the square that is covered by the circle is defined as

Area proportion =
Area of the circle−Area of the segments outside the square

Area of the square
(B.1)

Figure B.1.: Steps for calculating the segment area.

To calculate the area of the segments outside the square, we first calculate the angle
θ as displayed in Figure B.1 as

θ = 2cos−1
(

y

2(l + k)

)
(B.2)

Using this, we calculate the area of the sector as

Sector area =
θ(l + k)2

2
(B.3)

We then calculate the length between the two points of intersection as

Length =

√
(l + k)2 −

(y
2

)2
(B.4)

Then we calculate the area of the triangle

Triangle area = Length× y

2
(B.5)
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Finally, we calculate the segment area as

Segment area = Sector area− Triangle area (B.6)

We can multiply this by 4 to account for all sides of the grid cell so that the detection
probability function for scenario (b) is

p(x, y) =

π(l + k)2 − 4

(
2cos−1( y

2(l+k))(l+k)2

2
− y

√
(l+k)2−( y

2 )
2

2

)
y2

(B.7)

We simplify Equation B.8 to obtain

p(x, y) =
π(l + k)2 − 4cos−1

(
y

2(l+k)

)
(l + k)2 + 2y

√
(l + k)2 −

(
y
2

)2
y2

(B.8)
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