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Biosecurity and the challenge of scale
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Biosecurity and the challenge of scale

O Suppose we manage the sea container pathway so
that 0.1% of shipping containers carry a biosecurity
risk.
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O As volumes increase, higher levels of intervention
are required maintain current levels of risk.



Machine Learning can help

\_-
O Machine learning aims to develop computational T 39
models that can solve time-consuming and repetitive A/
oy ey, ¢ 44
tasks. g N

O Given an input (passenger information, image,
document, video, text, etc.) a machine learning ‘

model can support or automate decision making. Model D

Image taken from DAWE'’s Innovative Biosecurity 3D X-ray Project



Machine Learning problems are everywhere in biosecurity

O Does an X-ray image contain a potential biosecurity
risk?

O Given what we know about a particular passenger or
cargo consignment, are they likely to be carrying
biosecurity risks?

O Are the documents provided with a consignment
fraudulent?

O Does the biofouling on this vessel pose a
biosecurity risk?




The Project

Can we develop a method to assist/automate the assessment of images and

footage for biofouling?

Level of fouling X? Level of fouling Y? Level of fouling Z?
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Building a machine learning model

1. What is the decision that I need the computer to make?
2. What data could be used to train the model?

3. Does my model perform well enough?



1. What is the decision that | need the computer to make?

O Biosecurity regulators care about the overall state of

the vessel Uy AUNETE, S
o Overall, how severe is fouling on the vessel? . L 2 TS
o Are particular areas badly fouled (e.g. sea chests) N—;E‘.}g“ BN . R

o Are there species of concern?
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Defining a labelling scheme

An easier question: In an image, what is the degree of fouling present?
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(a) SLoF 0 (b) SLoF 1 (c) SLoF 2



The data-labelling process

Click here to w examples

Select the most appropriate box for the image
What fouling description best reflects this image? (hotkeys

Image can be zoomed with mousewheel and panned by clicking and
are1,2and 3)

dragging.

No fouling organisms, but biofilm or slime MAY be present.

Fouling organisms (e.g. barnacles, mussels, seaweed, tubeworms,
etc.) are visible but patchy (1-15% of surface covered).

A large number of fouling organisms are present (16-100% of surface
covered).

ubmit (hotkey enter)
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2. What data could be used to train the model?

O Obtained over 10,000 images from NZ MP], the Australian DAWE and
California’s SLC.

O Around 300 vessels represented including commercial, recreational and barge
vessels.

O Dataset was highly imbalanced! Around 70% of images were clean, 20%
lightly fouled, and 10% heavily fouled.

NZ Recreational NZ Commercial DAWE California SLC
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Processing the data
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Training the models

1. Split the data into a training and a

0.8-
test set. >
©
2. Optimise the model on the training 3 - B
é(’ 0.6- —— Training data
set.
3. Evaluate model performance on the ‘
04-

with-held test data.
6 1 (I)O 2(I)0 S(I)O 4(‘)0 5(IJO
Epoch
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3. Does the model perform well enough?

relevant elements

O Accuracy — proportion of images correctly false negatives true negatives
identified.

O Recall — proportion of images with a biosecurity
risk that we correctly identify (true positives versus
false negatives)

O Precision — proportion of flagged images that
actually have a biosecurity risk (true positives versus

false positives)

selected elements

O As model output is a raw number (e.g. 0.45) we need Accuracy = 12/22

Precision =5/8
Recall =5/12

to define thresholds to obtain predicted classes
before we can calculate precision and recall!
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Model criteria: precision-recall curve
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Comparing the neural network model to expert agreement
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Bloomfield, N. J., Wei, S., Woodham, B. A., Wilkinson, P., & Robinson, A. P. (2021). Automating the assessment of biofouling in images using expert 16

agreement as a gold standard. Scientific reports, 11(1), 1-10.



Apply the model to real-world data

SLoF 0 SLoF 1 SLoF 0
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Next steps

O A multi-year CEBRA project is currently ongoing to further develop and
support the operationalization this work. The key objectives include:
o Expanding the image dataset to include examples from commercial vessel
surveys
o Develop cost-effective strategies for labelling and incorporating new data
o Extend the approach to video data
o Integrating the neural network models with a prototype user interface
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