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Biosecurity and the challenge of scale
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Biosecurity and the challenge of scale

# Suppose we manage the sea container pathway so
that 0.1% of shipping containers carry a biosecurity
risk.

# As the volume of containers coming into the country
increases, we scale up intervention activities to keep
this rate of leakage constant.

# This means that...

◦ if 1 million containers are imported, we will have
1000 leakage events.

◦ if 2 million containers are imported, there will be
2000 leakage events.

# As volumes increase, higher levels of intervention
are required maintain current levels of risk.
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Machine Learning can help

# Machine learning aims to develop computational
models that can solve time-consuming and repetitive
tasks.

# Given an input (passenger information, image,
document, video, text, etc.) a machine learning
model can support or automate decision making.

1Image taken from DAWE’s Innovative Biosecurity 3D X-ray Project
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Machine Learning problems are everywhere in biosecurity

# Does an X-ray image contain a potential biosecurity
risk?

# Given what we know about a particular passenger or
cargo consignment, are they likely to be carrying
biosecurity risks?

# Are the documents provided with a consignment
fraudulent?

# Does the biofouling on this vessel pose a
biosecurity risk?
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The Project

Can we develop a method to assist/automate the assessment of images and
footage for biofouling?
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The Project: Use Cases
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Building a machine learning model

1. What is the decision that I need the computer to make?
2. What data could be used to train the model?
3. Does my model perform well enough?
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1. What is the decision that I need the computer to make?

# Biosecurity regulators care about the overall state of
the vessel

◦ Overall, how severe is fouling on the vessel?
◦ Are particular areas badly fouled (e.g. sea chests)
◦ Are there species of concern?

# These high level questions are challenging!
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Defining a labelling scheme

An easier question: In an image, what is the degree of fouling present?

9



The data-labelling process
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2. What data could be used to train the model?

# Obtained over 10,000 images from NZ MPI, the Australian DAWE and
California’s SLC.

# Around 300 vessels represented including commercial, recreational and barge
vessels.

# Dataset was highly imbalanced! Around 70% of images were clean, 20%
lightly fouled, and 10% heavily fouled.
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Processing the data
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Training the models

1. Split the data into a training and a
test set.

2. Optimise the model on the training
set.

3. Evaluate model performance on the
with-held test data.

13



3. Does the model perform well enough?

# Accuracy — proportion of images correctly
identified.

# Recall — proportion of images with a biosecurity
risk that we correctly identify (true positives versus
false negatives)

# Precision — proportion of flagged images that
actually have a biosecurity risk (true positives versus
false positives)

# As model output is a raw number (e.g. 0.45) we need
to define thresholds to obtain predicted classes
before we can calculate precision and recall!

Accuracy = 12/22
Precision = 5/8
Recall = 5/12
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Model criteria: precision-recall curve
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Comparing the neural network model to expert agreement
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Apply the model to real-world data
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Next steps

# A multi-year CEBRA project is currently ongoing to further develop and
support the operationalization this work. The key objectives include:

◦ Expanding the image dataset to include examples from commercial vessel
surveys

◦ Develop cost-effective strategies for labelling and incorporating new data
◦ Extend the approach to video data
◦ Integrating the neural network models with a prototype user interface
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