AUTOMATED IMAGE ANALYSIS

FOR IDENTIFYING BIOFOULING RISK OF VESSELS

Nathaniel Bloomfield, Bartholomew Woodham, Timothy Carew and Andrew Robinson

Date: 26/04/2022

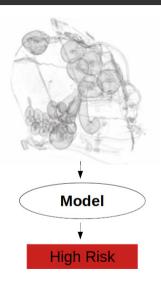
 Suppose we manage the sea container pathway so that 0.1% of shipping containers carry a biosecurity risk.

- Suppose we manage the sea container pathway so that 0.1% of shipping containers carry a biosecurity risk.
- As the volume of containers coming into the country increases, we scale up intervention activities to keep this rate of leakage constant.

- Suppose we manage the sea container pathway so that 0.1% of shipping containers carry a biosecurity risk.
- As the volume of containers coming into the country increases, we scale up intervention activities to keep this rate of leakage constant.
- This means that...

- Suppose we manage the sea container pathway so that 0.1% of shipping containers carry a biosecurity risk.
- As the volume of containers coming into the country increases, we scale up intervention activities to keep this rate of leakage constant.
- This means that...
 - if 1 million containers are imported, we will have 1000 leakage events.

- Suppose we manage the sea container pathway so that 0.1% of shipping containers carry a biosecurity risk.
- As the volume of containers coming into the country increases, we scale up intervention activities to keep this rate of leakage constant.
- O This means that...
 - if 1 million containers are imported, we will have 1000 leakage events.
 - if 2 million containers are imported, there will be 2000 leakage events.

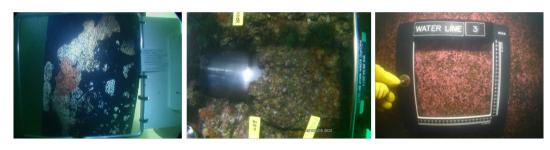


- Suppose we manage the sea container pathway so that 0.1% of shipping containers carry a biosecurity risk.
- As the volume of containers coming into the country increases, we scale up intervention activities to keep this rate of leakage constant.
- O This means that...
 - if 1 million containers are imported, we will have 1000 leakage events.
 - if 2 million containers are imported, there will be 2000 leakage events.
- As volumes increase, higher levels of intervention are required maintain current levels of risk.

Machine Learning can help

- Machine learning aims to develop computational models that can solve time-consuming and repetitive tasks.
- Given an input (passenger information, image, document, video, text, etc.) a machine learning model can support or automate decision making.

¹Image taken from DAWE's Innovative Biosecurity 3D X-ray Project


Machine Learning problems are everywhere in biosecurity

- Does an X-ray image contain a potential biosecurity risk?
- Given what we know about a particular passenger or cargo consignment, are they likely to be carrying biosecurity risks?
- Are the documents provided with a consignment fraudulent?
- Opes the biofouling on this vessel pose a biosecurity risk?

The Project

Can we develop a method to assist/automate the assessment of images and footage for biofouling?

Level of fouling X? Level of fouling Y? Level of fouling Z?

The Project: Use Cases

Building a machine learning model

- 1. What is the decision that I need the computer to make?
- 2. What data could be used to train the model?
- 3. Does my model perform well enough?


1. What is the decision that I need the computer to make?

- Biosecurity regulators care about the overall state of the vessel
 - Overall, how severe is fouling on the vessel?
 - o Are particular areas badly fouled (e.g. sea chests)
 - Are there species of concern?
- These high level questions are challenging!

Defining a labelling scheme

An easier question: In an image, what is the degree of fouling present?

The data-labelling process

Click here to show examples

Select the most appropriate box for the image

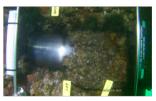
Image can be zoomed with mousewheel and panned by clicking and dragging.

What fouling description best reflects this image? (hotkeys are 1, 2 and 3) $\,$

No fouling organisms, but biofilm or slime MAY be present.

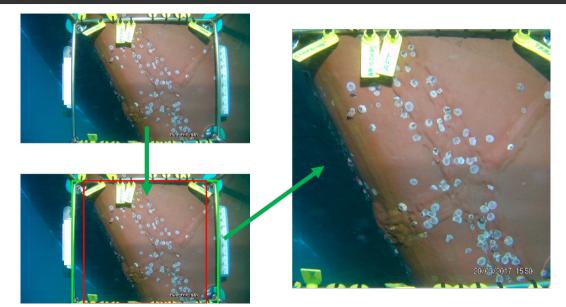
Fouling organisms (e.g. barnacles, mussels, seaweed, tubeworms, etc.) are visible but patchy (1-15% of surface covered).

covered).


Submit (hotkey enter)

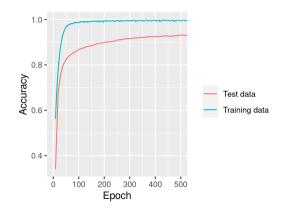
2. What data could be used to train the model?

- Obtained over 10,000 images from NZ MPI, the Australian DAWE and California's SLC.
- Around 300 vessels represented including commercial, recreational and barge vessels.
- Obataset was highly imbalanced! Around 70% of images were clean, 20% lightly fouled, and 10% heavily fouled.

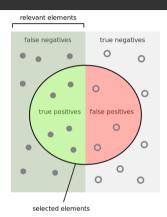

NZ Recreational

NZ Commercial

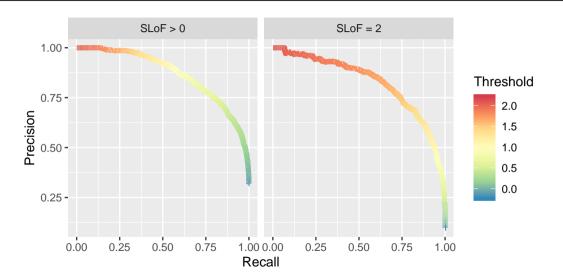
DAWE


California SLC

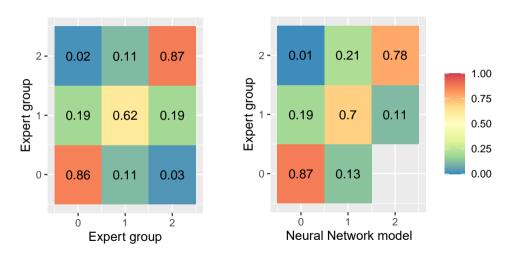
Processing the data


Training the models

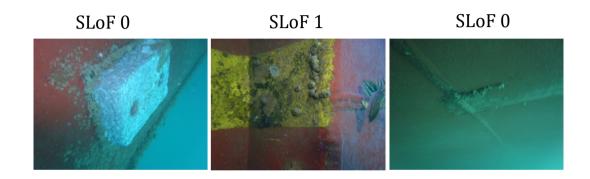
- Split the data into a training and a test set.
- 2. Optimise the model on the **training** set.
- 3. Evaluate model performance on the with-held **test** data.


3. Does the model perform well enough?

- Accuracy proportion of images correctly identified.
- Recall proportion of images with a biosecurity risk that we correctly identify (true positives versus false negatives)
- Precision proportion of flagged images that actually have a biosecurity risk (true positives versus false positives)
- As model output is a raw number (e.g. 0.45) we need to define thresholds to obtain predicted classes before we can calculate precision and recall!



Accuracy = 12/22Precision = 5/8Recall = 5/12


Model criteria: precision-recall curve

Comparing the neural network model to expert agreement

Apply the model to real-world data

Next steps

- A multi-year CEBRA project is currently ongoing to further develop and support the operationalization this work. The key objectives include:
 - Expanding the image dataset to include examples from commercial vessel surveys
 - Develop cost-effective strategies for labelling and incorporating new data
 - Extend the approach to video data
 - Integrating the neural network models with a prototype user interface

Acknowledgments

- Thanks to Ramboll New Zealand for providing experts to classify our test set of images and the Mechanical Turk workers that contributed to the project.
- Thanks to Daniel Kluza from the New Zealand Ministry of Primary Industries for providing their biofouling dataset.
- Thanks to Chris Scianni from the Californian State Lands Commission for providing their biofouling dataset.
- This research was undertaken using the LIEF HPC-GPGPU Facility hosted at the University of Melbourne. This Facility was established with the assistance of LIEF Grant LE170100200.