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1. Introduction

The Department of Agriculture, Water, and the Environment (the department) and
CEBRA have collaborated on a 3-year project to develop a framework and candidate
performance indicators for measuring the health of the biosecurity system. This techni-
cal report supports the final report of CEBRA Project 170714, Health of the Biosecurity
System, and should be read accompanying that report.

The department has long recognised the importance of risk-based approaches to
managing the biosecurity risk of various pathways within which biosecurity risk mate-
rial may enter Australia. Importantly, pathway biosecurity risk management mostly
involves the imposition of regulatory requirements. The purpose of border inspection
is primarily to verify whether the pathway is compliant with regulations.

Schneider and Arndt (2019) described the biosecurity system as comprising actions
classified under seven categories, namely anticipate, prevent, screen, prepare, detect,
respond, and recover & adapt. Here we report the use of proposed performance
indicators that are computed using departmental interception data to assess some
aspects of the performance of the biosecurity system to anticipate and prevent the arrival
of biosecurity risk material at our borders1. We focus on an international pathway for
which the needed data are readily available, unlike most other pathways.

Performance indicators that can be used to help manage pathway risk have been
developed by a number of CEBRA reports (Robinson et al., 2011; Robinson et al., 2013;
Hoffmann et al., 2016), with four particular indicators recommended as follows:

• Approaching Compliance (AC), the proportion of items arriving at the border that
is compliant;

• Residual Compliance (RC), the proportion of items that is compliant after inter-
vention;

• Non-compliance Effectiveness (NCE), the proportion of non-compliant items that
are identified and corrected or removed; and

• Hit Rate, the proportion of interventions that identify non-compliance.

In this report we demonstrate the use of two of these performance indicators (namely
approaching compliance and non-compliance effectiveness) which we describe in
greater detail in sections 2.1 and 2.2 respectively. We focus mostly on approaching
compliance in order to reflect the performance of the biosecurity system with respect
to its capacity to Anticipate and Prevent the arrival of biosecurity risk material at our
borders.

Robinson et al. (2011), Robinson et al. (2013), and Hoffmann et al. (2016) briefly
discuss how confidence intervals may be used by an analyst to suggest when the

1The focus of this report is unusual in that border inspection data are more commonly used to assess
performance in Screening.
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pathway may require some form of intervention, but none of these reports develop
confidence intervals for comparisons over time, nor for aggregation at different levels
of the pathway.

In order to estimate the performance indicators, we require either a random sample of
inspection results on the pathway, or full inspection of units on the pathway. Moreover,
we must either assume that inspection efficacy is 100% (that is, if a unit is contaminated,
it will always be found), or have a sufficient estimate of the efficacy of inspection. When
a pathway does not have every unit inspected, and those that are selected have not
been sampled completely at random (e.g., when units have been selected based on
profiling2 and risk assessment), an endpoint survey may be used to enable estimation
of the performance indicators.

An endpoint survey is an inspection of units that have already been cleared at the
border. Endpoint surveys allow the estimation of the leakage rate, which is the rate of
biosecurity risk material that is not intercepted upon initial inspection at the border.
Thus, endpoint surveys are required for two important reasons:

1. The volume of some pathways is so large that not every unit is inspected. Hence,
units on the pathway are profiled for inspection, leading to a biased sample for
estimation of the performance indicators; and

2. Inspection of units is not always perfect, which leads to leakage (i.e. some non-
compliant units not being found during inspection).

We use multiple performance indicators to monitor the health of various pathways,
as each indicator is appropriate for various parts of the pathway. As an example,
leakage rates and non-compliance effectiveness provide information on border activities,
whilst approaching compliance rates provide information on pre-border and offshore
biosecurity activities.

Each indicator can be further classified according to the level of the system that it is
monitoring. For example, all air passengers is a pathway. However, this pathway can
be broken down by location, where passengers entering a location is also a pathway.
Each of these pathways may have different risks of biosecurity risk material, so that
estimating performance indicators for each is necessary. And second, within each
pathway, there may be many different intervention methods. Each of the intervention
methods (for example, manual inspection and canine inspection) are likely to have
different levels of efficacy, meaning that leakage rates will differ between them.

Monitoring what may account to several hundred indicators—depending on the
different combinations of pathway and intervention methods—is not possible for a
high-level report on the health of the pathway. Accordingly, we require a framework
that accounts for the various combinations of pathways and intervention methods, that
will simultaneously produce a smaller number of key headline indicators to monitor.

This technical report proposes a framework that allows the monitoring of multiple
performance indicators at a higher level, whilst also being flexible enough to monitor
all of the component pathways. Section 2 describes the performance indicators in
more detail, including how they can be calculated. Section 3 describes the estimation
and modelling of leakage rates, and proposes a general framework for monitoring
performance indicators. Case studies of two pathways were undertaken and described

2Here, profiling is the application of risk-based intervention by focusing extra inspection resources
on pathways that have a history of higher biosecurity risk.
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in detail in a full version of this report provided to the department. While the details of
these case studies are omitted from this summary report due to data sensitivities, the
underlying models are described in Section A. Section 4 discusses some of the issues
related to measurement and monitoring of the indicators.

3



2. Calculation of Performance
Indicators

In this section we describe the performance indicators in more detail, including descrip-
tions of how they may be calculated. This section is based on Hoffmann et al. (2016), to
which we refer readers for more detail. Figure 2.1 provides a simplified description of
how units interact with the department, and is derived from similar figures in Hoffmann
et al. (2016).

The flow of units through the pathway is as follows: VI units are required to be
inspected (e.g. due to profiling, left side of Figure 2.1), and VNI units are not required
to be inspected (right side of Figure 2.1). As it is expected that not all non-compliance
will be detected by inspection (and there will be some units that aren’t inspected, yet
are actually non-compliant), an endpoint survey is used to estimate how much leakage
(see Section 3) has occurred. The endpoint survey is conducted on a random sample
of N1 inspected units that were deemed to be compliant, and N2 units that were not
inspected. In the inspected units, the endpoint inspection finds that NC1 were actually
non-compliant, whilst in the units that were not inspected, the endpoint survey finds
that NC2 units were actually non-compliant.

Incoming
Volume, V

Inspection, VI
No Inspection,

VNI

Compliant, CI
Non-compliant,

NCI
Compliant, CNI

Non-compliant,
NCNI

Endpoint
Inspection, N1

Endpoint
Inspection, N2

Compliant, C1
Non-compliant,

NC1
Compliant, C2

Non-compliant,
NC2

Figure 2.1.: Flowchart depicting how units interact with the department (simplified). Dot-
ted lines denote that endpoint inspections occur only on a (random) sample
of units. Volumes at each stage are provided after the stage label (e.g., the
incoming volume is V ). The true number of compliant and non-compliant
units that were not inspected (CNI and NCNI respectively) are unknown.
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2.1. Approaching Compliance Rate

The approaching compliance rate is the proportion of units that are compliant before
any intervention by the department, for example, inspection. Figure 2.1 shows the
number of units that are compliant prior to interaction with the department is some
fraction of CI , which is the number of units that are labelled as compliant following
inspection, plus CNI (which is unknown). CNI can be estimated by multiplying the
number of units that weren’t inspected (VNI), by the fraction of units that were truly
compliant following the endpoint inspection (C2/N2). Thus, we can estimate the total
number of compliant units, say Ĉ, prior to interaction with the department as:

Ĉ = CI
C1

N1

+ VNI
C2

N2

(2.1)

We can then write down an estimate of the approaching compliance rate AC as

ÂC =
Ĉ

V
(2.2)

2.2. Non-compliance Effectiveness

The non-compliance effectiveness (or simply effectiveness) is the number of units that
were detected as non-compliant following inspection, divided by the total number of
non-compliant units. Effectiveness thus provides a measure of how well our profiling
and inspection is working: if effectiveness were 1, then there would be zero leakage, i.e.
our profiling and inspection were perfect. The total number of non-compliant units is
made up of those units deemed non-compliant following inspection (NCI); the units
that we ‘missed’ following inspection, i.e. the number of units that should have been
deemed non-compliant following inspection; and the number of units that we didn’t
inspect, but were actually non-compliant. Putting these together, we can write down an
estimate of the total number of non-compliant units, say N̂C, as

N̂C = NCI + CI
NC1

N1

+ VNI
NC2

N2

(2.3)

We can then write down an estimate of the effectiveness, NCE as

N̂CE =
NCI

N̂C
(2.4)

2.3. A Note on Leakage

Sections 2.1 and 2.2 demonstrated how to calculate the performance indicators that we
use in this report. Endpoint surveys provided important information in each of these
calculations, due to the (likely) presence of leakage; that is, inspection is unlikely to be
perfect, so we miss some non-compliant units, and profiling is unlikely to be perfect, so
we don’t inspect some units that are actually non-compliant.

The estimation of leakage rates is thus pivotal to the estimation of the performance
indicators. Estimation of the leakage rates will be developed in the following sections.
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3. Pathway Leakage Rates

A key component of estimating the performance indicators (Section 2) is the estimation
of the leakage rate. In this chapter we demonstrate estimation of point estimates of the
indicators (Section 3.1). We then develop a framework for monitoring the performance
indicators over time (Section 3.2) and then provide some arguments for why statistical
modelling is required for this framework. Finally we demonstrate how we can mon-
itor the indicators at various levels of the pathway via pathway volume aggregation
(Section 3.4).

3.1. Estimating Leakage Rates

Leakage rates may vary significantly over time, as well as within different intervention
method pathways (also called channels). This can be for a range of reasons, including
the types of risk material presented, and the change in inspection effort. Pathways can be
disaggregated by the location the items pass through (the entry point), the intervention
method used, and the item classes. For convenience, we refer to a combination of
entry point, item class (if relevant), and intervention method as a sub-pathway. The
leakage rate is calculated as the fraction of non-compliant units following the endpoint
inspection; from Figure 2.1, the estimated leakage rate following inspection would be
calculated as NC1/N1.

Leakage rates can vary across sub-pathways, as well as within sub-pathways over
time. If only point estimates of the leakage rates were to be used, this variability may
lead to false outcomes when monitoring the health of the sub-pathway. Furthermore,
there is no way to handle missing data when using point estimates. Thus, a framework
for monitoring performance indicators derived from leakage rates will clearly need to
account for both missing data, and the variability not only between sub-pathways, but
also within sub-pathways over time.

In some cases the aggregated rate is much smaller than the rates for individual sub-
pathways. This demonstrates an important issue: we don’t want to monitor (possibly)
hundreds of separate performance indicators, but at the same time, aggregating sub-
pathways to the pathway level loses a large amount of information; the assumed
variability within individual sub-pathways is smoothed over. Furthermore, aggregation
may result in a change in the estimated leakage rate. This is due to the combination of
varying volumes passing through alternative modes of inspection; those with larger
volumes will contribute more to the aggregated indicator, and consequently have higher
impact on the estimated leakage rate.

A framework for monitoring performance should provide the ability to respond to
both component pathways, as well as the aggregate pathway—i.e. it is a combination of
the two figures. The next section proposes a framework that will permit such a general
solution.
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3.2. Framework for Monitoring

In this section we will suggest a framework for monitoring the performance indicators.
The framework that we develop will be based on probabilities of certain events occur-
ring, whilst accounting for various sources of uncertainty, for example variability due
natural variation in the arrival rates, as well as sampling variability.

We suggest two key features in our monitoring framework:

1. Trend comparisons to judge if an indicator is increasing or decreasing over time;
and

2. Benchmark comparisons to judge if an indicator is meeting minimum performance
requirements.

To judge if an indicator is increasing (decreasing) over time, we use the derived
calculation of the probability that the indicator increased (decreased) between two
periods of interest. The choice of whether to monitor for an increase or decrease should
be based on the definition of the indicator. The approaching compliance rate, for
example, should be monitored for a decrease between periods of time, as we would like
to have warning when compliance is decreasing.

The length between the two periods of interest may also be important. For example,
it may be useful that the monitoring is responsive to short term shocks to the pathway,
whilst also retaining the ability to detect subtle trends over the long term: if multiple
short term decreases in the approaching compliance rate occur, each one by itself
may not be detected with sufficient probability to produce a warning1. The decrease
over multiple periods might, however, be significant, and this may be desirable in a
monitoring framework. To simplify the monitoring framework description and the case
studies, we do not include this long term monitoring further in our discussion, but we
do recommend that any adoption of this framework investigate the adoption of long
term monitoring.

Benchmark comparisons also feature in our monitoring framework. Appropriate
target levels for indicators (set by the department and its stakeholders) can be monitored
using a similar probability framework as described above. For the case of benchmarks
however, we do not consider any long term effects—we focus attention on whether the
probability that the indicator is higher (or lower) than the benchmark is sufficiently
large.

The monitoring framework requires cutoffs to determine the state of the pathway. As
we have two features to monitor (trend and benchmark of the indicator), we require
a decision matrix to assign a ‘health’ level of the pathway. Table 3.1 shows such a
decision matrix. There are two points to note about this decision matrix: (i) we require
setting cutoff probabilities for the indicators themselves, and (ii) the setting of the health
rating (as determined by the combination of the indicators) needs to be determined.
We tentatively suggest the decision matrix in Table 3.1 as an example; further scrutiny
by the department should be made to determine the actual cutoffs and assignments as
appropriate. Similarly, the probability cutoffs that determine which state the pathway is
in (P1 and P2) along with the actual decision are parameters that are required to be set
by the department, in consultation with appropriate stakeholders.

1This may be due to low sample size in the endpoint survey.
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The labels that we have attached to the health of the pathway are arbitrary, but
chosen to convey meaning at a glance to the pathway manager. For a pathway where
a decreasing trend and being below a benchmark is undesirable, Table 3.1 can be
understood as follows:

Acceptable The pathway has a sufficiently low probability of being below the bench-
mark, and/or the probability of a decreasing trend is sufficiently low. No action is
required at present on this pathway.

Pay Attention There is a moderate probability of being below the benchmark and a
moderate to high probability that there is a decreasing trend, or there is a high
probability of being below the benchmark and a low probability of a decreasing
trend. Paying attention to this pathway is recommended.

Take Action There is a high probability that the indicator is less than the benchmark,
and a moderate to high probability of a decreasing trend. Managerial action is
recommended for this pathway.

3.2.1. Using the Decision Matrix

We now provide a brief example on how to use the decision matrix (Table 3.1) just
introduced. As in the previous section, we assume that decreasing trends of an indicator
are undesirable, as is the indicator being below a given benchmark. Assume that the
probability cutoffs in Table 3.1 are P1 = 0.9 and P2 = 0.6. After analysing our pathway,
we find that the probability that the indicator is decreasing is pi = 0.7, and the probability
that the indicator is less than the benchmark is pb = 0.95. Using Table 3.1, we see that
P2 = 0.6 < pi = 0.7 < P1 = 0.9, so we are in the second row; also pb = 0.95 > P1 = 0.9,
so we are in the first column. Thus in this example, our pathway would be given the
Take Action rating.

Table 3.1.: Decision matrix to assign the health of the pathway based on monitoring the
trend and level of the indicator. This decision matrix is for an indicator that
should be high, so that being below the benchmark, or a decreasing trend is not
desirable.

Probability (pb) that the indicator is less
than the benchmark
pb > P1 P2 ≤ pb < P1 pb < P2

Probability (pi) that the in-
dicator is decreasing

pi > P1 Take Action Pay Attention Acceptable
P2 ≤ pi < P1 Take Action Pay Attention Acceptable
pi < P2 Pay Attention Acceptable Acceptable

8
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3.3. Statistical Modelling of Leakage Rates

In order to implement the monitoring framework detailed above, we need a method to
estimate the probabilities of exceeding the benchmarks and time trends of the indicators.
The most appropriate way to estimate these probabilities will be via the estimation of a
statistical model.

For some combinations of item class by intervention method, the rates show consid-
erable variability in both level (how much they change over time) and precision (how
well we can estimate them, i.e. the width of the probability intervals surrounding the
estimates). Due to this variability, point estimates of the performance indicators will
not be sufficient for a sophisticated pathway monitoring system.

As the performance indicators we use in this report are functions of known counts
and estimates of the leakage rate (Section 2), we only require a statistical model for the
evolution of the leakage rate. Some advantages of taking a modelling approach for the
leakage rates are as follows:

• Sparsity may be smoothed over within each sub-pathway. In other words, if there
are data gaps (for example, no endpoint surveys conducted in a sub-pathway one
year for some reason), a model will allow the leakage rate to have been predicted,
conditional on data from previous years and other sub-pathways;

• Sub-pathway estimates can easily be aggregated via volume counts2. That is, we
can still calculate an overall leakage rate, adjusted for the varying sub-pathways;

• Variability due to the estimation of leakage rates is easily propagated through to
the various performance indicators of interest; and

• Probability intervals can be calculated easily for any quantity of interest in the
model, for example the probability that the leakage rate is increasing. This al-
lows decisions to be made about increases/decreases in leakage (and hence per-
formance indicators), in an unambiguous, transparently designed monitoring
system.

There are some disadvantages to modelling the leakage rates as we propose in this
report: the foremost being the technical expertise required to implement such models.
The particular statistical models that we suggest (see Appendix A for technical details),
are not basic models that could be implemented using spreadsheets, but rather require
statistical modelling software—we used R Version 3.5.0 (R Core Team, 2018), and RStan
Version 2.17.3 (Stan Development Team, 2018).

There are other possibilities for monitoring leakage rates and the associated indicators
derived from them. Some of these methods were discussed in Fox (2007), for example
Shewhart charts and exponentially weighted smoothing average charts. These methods
fall under the broader term of statistical process control, and are commonly seen in
industrial applications. The methods described in Fox (2007) use traditional statistical
significance testing to ‘signal’ when the indicator deviates from a fixed (known) trend,
such as that set by a benchmark. Such approaches can be semi-automated, and simple
interfaces added (e.g. through RShiny).

The application under consideration is characterised by nested indicators, and (at
present) a short time series of suitable data. Much of the statistical process control

2Also known as post-stratification.
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literature has been focused on the analysis of single, long period series. A long series is
required in the traditional setting due to two phases of monitoring: Phase I is used to
set appropriate control parameters, and Phase II is used for monitoring. These phases
mean that analysis of multidimensional series, such as those considered in this report,
become difficult to manage, due to the complex structure of the data. Furthermore,
there is currently no satisfactory method for dealing with high dimensional monitoring
data, and particularly aggregation (see Section 3.4) of multiple series. For a review of
trends and issues in statistical process control, see the review article by Woodall and
Montgomery (2014).

3.4. Aggregation of Pathway Levels

As discussed in Section 1, a pathway may be further classified into sub-pathways ac-
cording to structural components within the pathway—for example, a pathway can be
broken down by location of the entry point, the item type, and the intervention method.
Because of the multiple levels on which a pathway may be monitored, the framework
provided in Section 3.2 can be applied at each of these levels.

We suggest that for reporting, the lowest level of the pathways be aggregated to
higher levels via post-stratification. What this means is that we combine low-level
performance indicators by a weighted sum of each indicator, where the weights are the
total volume of the pathway within each level. Suppose that we have 4 entry points
and 5 intervention methods, and we reference each combination of entry point and
intervention method by the index j. Given the known volume of the pathway within
each level nj , Equation (3.1) demonstrates how to calculate the aggregated indicator
value (θs) for a given entry point, s.

θs =

∑
j∈s njIj∑
j∈s nj

(3.1)

where Ij is the modelled value of the indicator in the pathway level j. Items monitored
by multiple methods have to be handled as a unique class.

10



4. Discussion

While not shown here, our case studies revealed that assessments of the health of
the pathway may differ when monitoring different indicators. We found that while
overall pathways might have Acceptable health, individual sub-pathways can have
Take Action ratings, for example due to a greater number of non-compliant items
arriving along those sub-pathways.

For our case studies we chose the probability cutoffs to determine the health ratings
via the decision matrix (Section 3.2). Whilst these are sensible cutoffs, they were chosen
arbitrarily, and the department may wish to choose alternative cutoffs to better align
with departmental and stakeholder values.

Some benchmarks are likely to be very difficult to set. As an example, consider
approaching non-compliance volume, which is dependent on the volume of items
passing through each entry point. If this volume is highly variable within and between
entry points, setting a benchmark for the indicator would depend on the entry point,
and would be difficult to set.

Issues with different indicators notwithstanding, it is important to note that each of
them does provide different information on the pathways. For example, the leakage rate
and effectiveness of profiling provide information on border activities; the approaching
compliance rate and approaching non-compliance volume provide information on
pre-border activities and management of offshore biosecurity.

In each of the case studies that we conducted, non-compliance was determined as any
failure to meet the biosecurity regulations for that pathway. As an example, a failure
of compliance due to incorrect documentation would be considered as non-compliant.
Consequently, the biosecurity risk of the non-compliance is not currently accounted for
in the indicators we have developed. CEBRA understands that the nature of risk for
each non-compliance is recorded in databases that underpin these indicators—these
risk classifications were not available for analysis at this time.

It is important to reiterate that endpoint surveys are required in order to estimate
approach rates for pathways that are not fully inspected, or where we cannot assume
that inspection efficacy is 100% (see Section 1). In order to attempt to make an estimate
of the approach compliance rate in such pathways, we need to make an assumption
about the inspection efficacy. This may depend on both the location at which the
inspection is taking place, and the intervention method. Nonetheless, an estimate, or
more appropriately, an assumed distribution for the effectiveness will be required; such
a distribution could be made via expert elicitation, however this will be very pathway
dependent, and a very intensive exercise.

For fully inspected pathways (for example, the cut flowers cargo pathway), there
are two options available; the first assumes that inspection is 100% effective, such that
there is no leakage. The approaching compliance rate can then be estimated using
all non-compliance data. The second option is to use an estimate of effectiveness
(as discussed above) to inflate the observed non-compliance to account for imperfect
detection. Neither of these options is entirely satisfactory, but if monitoring is required
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for these pathways, one of these options will need to be adopted until such time as
endpoint surveys are implemented on these pathways.
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A. Statistical Models

This appendix details the type of statistical model underlying the analyses performed
for this report. We develop the statistical models from the most specific to the most
general. This is standard in computational statistics in which we make incremental
advancements.

For the purpose of the following examples, we will assume a pathway with four entry
points, four item classes, and four intervention methods.

A.1. Example 1

Example 1 uses a model within a single entry point, and considers a single item class
and single intervention method. We model the leakage count as arising from a Binomial
distribution, with parameter nt the number of items inspected in the endpoint survey at
time t, and pt the leakage rate to be estimated:

Yt ∼ Binomial(nt, pt) (A.1)

We use a dynamic (random walk) model for the progression of the leakage rate over
time; in particular, we assume that the leakage rate at time t depends on the leakage
rate at time t− 1:

pt = h(θt)

θt = θt−1 + δt (A.2)

where in our application we use h(·) = logit(·).
This formulation means that we don’t have to specify the functional form of the

leakage rate over time: δt provides the trend/innovation of each time period. To
complete the specification, we provide priors for the initial (t = 1) leakage rate and the
trend term δt:

θ1 ∼ Normal(0, 1)
δt ∼ Normal(0, σδ) for t ∈ 2, . . . , T

σδ ∼ Cauchy(0, 2.5)

A.2. Example 2

Example 2 expands upon Example 1 by using data from all four entry points, but is
still restricted to items of a single item class, and inspection using a single intervention
method. The outcome model is again Binomial:

Yt,j ∼ Binomial(nt,j, pt,j) (A.3)
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for the jth entrypoint at time t.
To account for entry point specific trends (with functional form unspecified), we again

use a dynamic model at the (transformed) entry point level:

pt,j = h(θt,j)

θt,j = µ+ αj + δt,j

δt,j = δt−1,j + ηt,j (A.4)

where µ is an overall intercept and αj a entry point specific intercept. Entry point
specific time dependence is modelled through the dynamic term δt,j .

Again the specification is completed with priors for the initial (t = 1) dynamic terms
δ1,j , and priors for the intercept terms:

µ ∼ Normal(0, 1)
αj ∼ Normal(0, σα), ∀j
δ1,j ∼ Normal(0, 1),∀t
ηt,j ∼ Normal(0, σηj),∀j, t ≥ 2

σα, σηj ∼ half-Cauchy(0, 2.5),∀j

A.3. Example 3

Example 3 expands upon Example 2 by now bringing in data from all four item classes.
The outcome model is again Binomial:

Yt,j ∼ Binomial(nt,j, pt,j) (A.5)

for the jth entry point by item class combination at time t. Here j = 1, . . . , 16 as there
are four entry points, and four item classes.

For ease of explanation, we will define the entry point by item class combinations as
sub-pathways (e.g. Section 1). We now account for sub-pathway specific trends (with
functional form unspecified), by again using a dynamic model at the (transformed)
sub-pathway level:

pt,j = h(θt,j)

θt,j = µ+ αf [j] + βc[j] + δt,j

δt,j = δt−1,j + ηt,j (A.6)

where µ is an overall intercept, αf [j] is the entry point specific intercept for the jth

sub-pathway, and βc[j] is the item class specific intercept for the jth sub-pathway. Sub-
pathway specific time dependence is modelled through the dynamic term δt,j .

Again the specification is completed with priors for the initial (t = 1) dynamic terms
δ1,j , and priors for the intercept terms:

µ ∼ Normal(0, 1)
αf ∼ Normal(0, σα),∀f
βc ∼ Normal(0, σβ),∀c
δ1,j ∼ Normal(0, 1),∀t
ηt,j ∼ Normal(0, σηj),∀j, t ≥ 2

σα, σβ, σηj ∼ half-Cauchy(0, 2.5),∀j

16
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A.4. Example 4

Example 4 is the natural extension to Example 3, and now brings in the full cross-
classified dataset including all item classes and intervention methods. The outcome
model is again Binomial:

Yt,j ∼ Binomial(nt,j, pt,j) (A.7)

for the jth entry point by item class by intervention method combination at time t. Here
j = 1, . . . , 64 as there are four entry points, four item classes, and four intervention
methods.

As before (Appendix A.3), we will define the entry point by item class by interven-
tion method combinations as sub-pathways (e.g. Section 1). Our model is similar to
Equation (A.6), but now includes an intercept term for the inspection method:

pt,j = h(θt,j)

θt,j = µ+ αf [j] + βc[j] + γi[j] + δt,j

δt,j = δt−1,j + ηt,j (A.8)

where the parameters are as in Appendix A.3, with the addition of γi[j] as the inspection
method specific intercept for the jth sub-pathway.

Again the specification is completed with priors for the initial (t = 1) dynamic terms
δ1,j , and priors for the intercept terms:

µ ∼ Normal(0, 1)
αf ∼ Normal(0, σα),∀f
βc ∼ Normal(0, σβ),∀c
γi ∼ Normal(0, σγ),∀i
δ1,j ∼ Normal(0, 1),∀t
ηt,j ∼ Normal(0, σηj),∀j, t ≥ 2

σα, σβ, σγ, σηj ∼ half-Cauchy(0, 2.5), ∀j

17
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