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Executive Summary  
In this article, I discuss an argument that purports to prove that probability theory is 
the only sensible means of dealing with uncertainty. I show that this argument can 
succeed only if some rather controversial assumptions about the nature of 
uncertainty are accepted. I discuss these assumptions and provide reasons for 
rejecting them. I also present examples of what I take to be non-probabilistic 
uncertainty.  
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Introduction  
Uncertainties are ubiquitous in risk analysis and, on the face of it, we must contend 
with a number of quite distinct sorts of uncertainty. There are many methods on 
hand to deal with uncertainty, so it is important to select the method best suited to 
the uncertainty in question. There is, however, a temptation to want to deal with all 
uncertainty in one fell swoop. That is, it would be desirable to have a single method 
capable of quantifying all uncertainty. One candidate for this task is probability 
theory. For such a program to succeed, a demonstration that all uncertainty is 
probabilistic is required, and a number of people have attempted to defend positions 
along these lines. In this article, I investigate one way this claim might be supported 
and I find it inadequate.  
 
My strategy is to first show that the claim that probability theory is the only coherent 
means of dealing with uncertainty is implausible.

1 
I do this by considering different 

kinds of uncertainty and showing that probability theory seems ill-suited to the 
uncertainty arising in situations where the logical principle of excluded middle fails. 
Of particular interest is the uncertainty arising from vagueness. Next, I examine a 
very interesting technical result of Cox, which, according to some, proves that non-
probabilistic methods are inappropriate for the quantification of uncertainty. I pay 
careful attention to the assumptions of Cox’s result, with particular interest in the 
logical assumptions. I show that this result does not prove that non-probabilistic 
approaches to the quantification of uncertainty are illegitimate. The reason being that 
the proof of Cox’s theorem employs principles of classical logic for which no 
justification is offered. Moreover, these logical assumptions are precisely those 
disputed by many advocates of non-probabilistic approaches to uncertainty. Thus, 
any appeal to Cox’s theorem to “prove” that probability theory is the only coherent 
approach to uncertainty is circular.  
 
The significance of this to risk analysts is in the take-home message that probability 
theory does not seem to be able to deal with all uncertainty. When uncertainty arises 
as a result of vagueness and ambiguity, other methods are required. And, as we 
shall see, risk analysis is rife with such uncertainty.  
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TWO KINDS OF UNCERTAINTY  
In order to see just how ill-equipped probability theory is for dealing with all 
uncertainty, we need to reflect a little on uncertainty itself. There are two quite 
distinct ways in which an agent can be uncertain about the state of a system. The 
first is where there is uncertainty about some underlying fact of the matter. So, for 
example, an agent might be uncertain about the levels of some toxin in a water 
supply. The agent might be in possession of some probabilistic information about the 
toxin levels—either numerical (“the probability that the toxin levels are above some 
critical threshold is x”) or nonnumerical (“it is more likely that the toxin levels are 
above the threshold”). Now compare this with a second, quite different kind of 
uncertainty where there is no fact of the matter about whether the system is in the 
state in question or not. For example, consider uncertainty about the rate of loss of 
biodiversity. Arguably, there is no fact of the matter about this because of ambiguity 
in the term “biodiversity.” It all depends on how you measure it (species diversity, 
higher-taxa diversity, genetic diversity, and so on).

(1) 
In such cases, there is 

uncertainty, in part, because there is no underlying fact of the matter. In this second 
case, it appears that an agent cannot be in possession of probabilistic information. 
After all, what does it mean to say that the probability that biodiversity is being lost at 
some rate is p, when there is no fact of the matter about what biodiversity is?  

Probability theory presupposes that there is an underlying fact of the matter. To see 
this, consider one of the axioms of probability theory (where, throughout, I use the 
standard logical notation: ^ is read as “or,” ¬ is read as “not,” and v is read as “and”):  

Pr(P v ¬P) =1.  

This implies that the proposition P v¬P is certain, and the possibility that neither P 
nor ¬P is true is excluded. This axiom of probability theory is the probabilistic analog 
of the logical principle of excluded middle. It would seem then that in any domain 
where excluded middle fails, probability theory is an inappropriate tool for 
representing uncertainty. For example, let us suppose that P is the proposition that 
Sherlock Holmes walked down Goodge Street exactly seven times in his life. Now, I 
assume that this proposition is neither proved true nor proved false (either directly or 
by implication) from the Conan Doyle stories—it is (arguably) a proposition that is 
neither true nor false, and so (again arguably) P v¬P is not true.

2 
Why? Because 

there is no Sherlock Holmes to make true or false claims about his walking history 
beyond what is in the Conan Doyle stories. In fiction, there is nothing more to the 
story than what is written and its natural implications. Fiction, by its nature, is 
incomplete, so that the law of excluded middle should fail here.

3  

 
 
 
1 By “coherent” I do not mean consistent (provably consistent) in the logician’s sense of consistent—I simply mean 

something like: “is not known to lead to contradiction or seriously clash with well-established intuitions.”  
2 Excluded middle fails in most three-valued logics. One notable exception is supervaluational logic, where, although P 

is neither true nor false, “P or not P” is a theorem (i.e., it is logically true). See Reference 2 for details.  
3 It is for considerations not unlike these that led L. E. J. Brower and other intuitionists to reject classical logic (with its 
principle of excluded middle) in favor of intuitionistic logic.

(3) 
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I give this example just as an illustration. As we shall see, there are other more 
scientifically relevant domains where excluded middle fails. And in such cases, the 
applicability of probability theory is highly questionable. The claim that probability 
theory is the only coherent approach to uncertainty suggests (among other things) 
that there are no domains about which we reason with uncertainty where excluded 
middle fails. On the face of it at least, this is false—there are many such domains. 
Apart from fictional domains and situations of ambiguity (both mentioned above), 
there are domains employing vague predicates. The latter are widespread and 
apparently violate excluded middle. At least, if they do not violate excluded middle 
(see References 4 and 5), an argument as to why they do not is required. I will 
return to this issue later in this article. For now, I turn to the task of clarifying what is 
meant by “vagueness”; it is only once we understand this term that we can fully 
appreciate how unreasonable it is to expect probability theory to be able to deal with 
vagueness.  



Evaluation and development of formal consensus methods 
   
 

 10

SOURCES OF UNCERTAINTY  
First Consider Epistemic Uncertainty. This is the uncertainty associated with our 
knowledge of the state of some system (where the system is in some state or other). 
It includes uncertainty due to limitations of measurement, insufficient data, 
extrapolations and interpolations, and variability over time and space. For instance, 
we might be uncertain about the population size of a given species because the 
resources are not available for the relevant surveys to be conducted, the population 
has changed since the last survey, and so on. Epistemic uncertainty is uncertainty 
about some determinate fact. We are uncertain because we are not in possession of 
the complete information. The population of the species (at a given time) takes a 
certain value—it is just that we are uncertain what that value is. Typically, epistemic 
uncertainty is dealt with by various statistical methods (such as standard probability 
theory). I should mention that in many applications, it is desirable to distinguish 
temporal variability (i.e., stochasticity or aleatory uncertainty) from other kinds of 
uncertainty. By grouping them together here, I do not mean to imply that there is no 
interesting distinction. It is just that the distinction that I am most interested in is the 
distinction between epistemic uncertainty and vagueness (see Reference 6 for 
discussion of the different types of epistemic uncertainty).  

Vagueness, by contrast, is a source of uncertainty that is (arguably) linguistic in 
origin. Here, the uncertainty arises out of vagueness in the language, in particular, 
from vague predicates. A vague predicate is one that permits borderline cases. So, 
for example, the predicate “is a mature individual” is vague because it permits 
borderline cases (such as adolescents, which are borderline between adults and 
nonadults). It is not generally thought that there is an unknown fact of the matter 
about whether an adolescent is an adult or not. Rather, there is no fact about our 
linguistic practices that determines whether an adolescent is an adult or not. It 
follows that there can be no fact of the matter, for, after all, there are no other facts 
but the linguistic facts here (cf. Reference 4). There are various methods for dealing 
with vagueness. The most obvious of which is to eliminate it by more careful 
attention to our language. There are many problems with this approach, not least of 
which is that despite the claims of some, it is extremely difficult, if not impossible, to 
accomplish. For example, Morgan and Henrion, in their book on uncertainty,

(6) 

devote only a page and a half to vagueness (they also seem to confuse it with other 
kinds of linguistic uncertainty). They claim that it is “usually relatively easy to remove 
with a bit of clear thinking” (1990, p. 62). If it were so easy to remove, you would 
expect them to be able to state this thesis without appeal to at least four vague 
terms.  
 
Other problems with such an approach revolve around the arbitrariness of the 
demarcations required. For example, if we decide to regiment the vague term 
“endangered” (as applied to animal species) to mean “less than n individuals,” we 
have to admit that n is arbitrary—why not n + 1or n – 1? Worse still, this arbitrary 
precision can lead to problems when populations are close to n. Let us suppose that 
the population of some species is n + 1. Furthermore, suppose that government 
funding is available for the implementation of various conservation management 
strategies (captive breeding programs, the establishment of wildlife reserves, and 
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the like) for all endangered species. But, since the species in question is not 
endangered according to our newly-defined use of the word “endangered,” the 
species is not able to attract government funding. It might thus turn out that the best 
course of action for those interested in preserving this species is to see to it that a 
couple of individuals disappear or die!  
 
These and other problems (see Reference 7 for more on this) have led most 
commentators on vagueness to prefer other more sophisticated approaches. These 
approaches include fuzzy logic (and fuzzy set theory),

(8,9) 
supervaluations,

(2,5,10) 

intuitionistic logic,
(11) 

three-valued logic,
(12) 

paraconsistent logic,
(13,14) 

and modal logic 
(pp. 270–275).

(3,15) 
Some authors use the term “fuzziness” to describe what I am 

calling “vagueness.” I follow Sorensen,
(16) 

Williamson,
(4) 

Read,
(17) 

and others and use 
the term “vagueness” because, unlike “fuzziness,” it does not prejudice the question 
of what the best method of dealing with the phenomenon is.  
 
It is worth noting here that vagueness can give rise to uncertainty in the following 
way. Let us suppose that we wish to know how many mature individuals there are in 
a given population. We will be uncertain about this figure because of the vagueness 
of the predicate “is a mature individual.” You may also be uncertain about this figure 
for other reasons due to the dynamics of the population or due to the limitations in 
our estimation methods, for instance. In short, you may have to deal with epistemic 
uncertainty and uncertainty arising from vagueness.  
 
It is important to distinguish vagueness from other kinds of uncertainty that also have 
linguistic origins. These include context dependence, ambiguity, and 
underspecificity. The first, context dependence,is uncertainty arising from failing to 
specify the context in which a proposition is to be understood. For example, suppose 
that it is said that some person is tall. Without specifying the context, the audience is 
left wondering whether the person in question is tall for a jockey, tall for a basketball 
player, or tall in some other unspecified context. Note that “tall” is also vague, but the 
vagueness and the context dependence are quite separate issues. The vagueness 
persists after the context has been fixed. That is, even after we are told that we are 
concerned with the predicate, say “tall-for-ajockey,” we are still faced with borderline 
cases (see Reference 18 for a very interesting discussion on how context 
dependence is not well handled by standard fuzzy methods). 
 
Ambiguity is uncertainty arising from the fact that a word can be used in more than 
one way, and in a given context, it is not clear which way it is being used. For 
example, the word “bank” is ambiguous (in some contexts) between a financial 
institution and the edge of a river. Notice that once again this source of uncertainty is 
quite distinct from vagueness (despite commonly being confused with vagueness). 
The ambiguity in the word “bank” does not give rise to borderline cases in the way 
“mature individual” does—there is nothing that is borderline between a financial 
institution and the edge of a river.  
 
The final linguistic source of uncertainty that I will mention here is underspecificity. 
This is where there is unwanted generality; the statement in question does not 
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provide the degree of specificity we desire. For example, the statement that there 
will be rainy days ahead is underspecific because we are left wondering: Which days 
will be rainy? How many of them will be rainy? And so on. (Of course “rainy days” is 
also vague—does a day with light mist counts as a rainy day? But again such issues 
are quite distinct from the underspecificity issues.) The uncertainty associated with 
such statements is clearly distinct from that associated with borderline cases. 
Unfortunately, the word “vague” is commonly used for both underspecificity and 
borderline cases. I follow Sorensen

(16) 
here and suggest that the term “vagueness” 

be reserved for the borderline-case sense.  
 
In many situations of interest to risk analysts, several sources of uncertainty—both 
epistemic and linguistic—are to be found, typically giving rise to difficult 
assessments of the compound uncertainties in question. Vagueness is an important, 
but under-appreciated, contributor to this mix. One only needs to reflect on some of 
the key terms used in various risk assessments to see the prevalence of vagueness: 
“mature individual,” “close to critical levels,” “negligible chance,” “endangered,” 
“tested under a wide range of temperatures,” and so forth. These terms are all vague 
and may give rise to uncertainty as a result of their vagueness (see References 19 
and 20 for further discussion of the importance of vagueness for conservation and 
environmental risk analyses).  
 
For the rest of this article, I will focus on vagueness (in the borderline-case sense) 
as my primary example of linguistic uncertainty. I mention ambiguity, context 
dependence, and underspecificity just to distinguish these from vagueness and to 
make it clear that I am not including these quite distinct linguistic sources of 
uncertainty when I speak of vagueness.

4 
Now I move to the main topic of this article: 

arguments that purport to prove that all uncertainty admits a probabilistic treatment.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4 See Reference 19 for details of the treatment of other forms of linguistic uncertainty.  
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COX’S THEOREM  
There are a number of arguments used in support of the claim that probability is 

the only coherent approach to uncertainty,
(21–24) 

of which Cox’s theorem
(25) 

is 
undoubtedly the most well known.  

THEOREM (COX): Any measure of belief is isomorphic to a probability measure.  

The theorem is explicitly based on the following assumptions: (i) an agent’s belief 
in ¬P is a function of his/her belief in P and (ii) an agent’s belief in P ^ Q is a function 
of the agent’s belief of P given Q and the agent’s belief of Q.  

Let us consider what this theorem might tell us about belief and uncertainty. 
There are a number of possible messages to glean from the theorem. The following 
are some of the more interesting ones.  

 (1) Bayesian subjective probabilities are legitimate means of quantifying 
(epistemic) uncertainty.  
 (2) Bayesian subjective probabilities are the only legitimate means of 
quantifying (epistemic) uncertainty.  
 (3) Probabilities are the only legitimate means of quantifying (epistemic) 
uncertainty.  
 (4) Probabilities are the only legitimate means of quantifying uncertainty.  
 
I think it is fair to say that the primary purpose of Cox-like results is to provide a 
justification of Bayesian (subjective) probability.

(26) 
Clearly, if Bayesian methods have 

a place at all in the treatment of uncertainty, we require an argument for (1) and the 
more evangelical Bayesians might prefer an argument for (2). Cox’s theorem and its 
kin aim to establish (1), since if degrees of belief turn out to be isomorphic to a 
probability measure (as the theorem suggests), then degrees of belief are a 
legitimate interpretation of this calculus. It is much less clear how the theorem is 
supposed to support the stronger conclusion (2), but let us put that matter aside and 
consider how, if one is not careful, one might slide from (2) to (4). First, note that if 
(2) is true, then the phrase “Bayesian subjective” in (2) is, in some sense, 
unnecessary. After all, if Bayesian subjective probabilities are the only legitimate 
means of quantifying uncertainty, then it might be argued that these are the only 
legitimate interpretations of the probability calculus. So, on the assumption of (2), it 
is not implausible to also hold (3). Next, note that if one were to hold the view that all 
uncertainty is epistemic uncertainty, then (4) follows straightforwardly from (3). It is 
clear, however, that (4) is a more radical claim than even (2), and that (4) does not 
follow from (1) or (2) without additional argument and some fairly controversial 
premises—such as that all uncertainty is epistemic uncertainty.  
 
It is well known that fuzzy approaches to uncertainty, such as possibility theory,

(27) 

are not isomorphic to probability theory.
(28–32) 

Thus, it has been suggested that Cox’s 
theorem tells us that possibility theory, for instance, is not viable as a means of 
quantifying uncertainty (e.g., Reference 21). Indeed, if we accept this line of thought, 
it would seem that the whole literature on non-probabilistic means of quantifying 
uncertainty (e.g., References 7, 28, 33– 35) is misguided. Others insist that there is 
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something wrong with Cox’s theorem. The obvious place to look for what is wrong is 
in the assumptions. There has been a great deal of discussion on the assumptions 
of the Cox’s theorem,

(36–40) 
but there has been little attention paid to the logical 

assumptions. I will examine these and show that it is not just possibility theory that 
apparently flies in the face of Cox’s theorem.  
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THE EXPLICIT AND THE IMPLICIT ASSUMPTIONS  
Recall the explicit assumptions of Cox’s theorem:  

 (i) An agent’s belief in ¬P is a function of his/her belief in P.  
 (ii) An agent’s belief in P ^ Q is a function of the agent’s belief of P given Q 
and the agent’s belief of Q.  
 

There are also some implicit assumptions, namely:  

(iii) Belief is a real-valued function.  
 (iv)The underlying logic is classical propositional calculus.  
 (v) The following substitution principle holds: if an agent believes P to some 
degree, b, and  
 

P is logically equivalent to Q, then the agent believes Q to degree b.  
(vi) The function in (ii) is twice differentiable.  

In the discussion on Cox’s theorem, assumptions (iv) and (v) are rarely mentioned, 
let alone questioned. These two assumptions, however, are very important in the 
proof of Cox’s theorem. For example, in the proof that the belief in P v¬P is maximal, 
Cox invokes them both, but let us focus on the use of (iv). In particular, Cox 
assumes the classical principle of double-negation elimination: ¬¬P is equivalent to 
P. The question is whether this is a reasonable assumption. Unfortunately, the 
answer is “no”—at least not when considering uncertainty in the broadest sense 
(including vagueness). For example, let us suppose that some object is borderline 
red. That is, the object in question is neither red nor not red. So, it is not the case 
that the object is not red, but it does not follow that the object is red. In settings 
where vagueness is present, there is good reason to believe that double-negation 
elimination fails. It fails for the same reasons for which excluded middle fails.  
 
In fuzzy logic, double-negation elimination holds, so the fuzzy logician cannot object 
to this particular step in Cox’s proof. There is, however, another step that the fuzzy 
logician should object to: the use of assumption (vi). The problem here is that (at 
least the most common variety of) fuzzy logic employs maximum and minimum 
functions for disjunction and conjunction, respectively. These functions are not twice 
differentiable. So, we see that implicit assumption (vi) of Cox’s theorem rules out 
such fuzzy approaches from the start.

(36) 

 
We might also question the substitution principle (v) Cox implicitly invokes, for this 
principle implies that all agents are logically omniscient. Cox invokes this assumption 
throughout the proof of the theorem. For example, on page 7, he assumes that an 
agent’s belief in ¬¬b given a is the same as an agent’s belief in b given a. This move 
assumes double-negation elimination—that ¬¬b is equivalent to b—and that the 
agent knows that ¬¬b is equivalent to b. Cox justifies the move in question merely by 
appeal to double-negation elimination. But also in need of defense here is the 
substitution principle implying that all agents have access to logical equivalences. 
The problem is that you may not know about the equivalence, but the substitution 
principle (v) does not allow this. It is clear that this is a nontrivial and by no means an 
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uncontroversial assumption. This is another avenue one might pursue in criticizing 
Cox’s theorem.
 
It should be clear that it is not just possibility theory that runs into problems with 
Cox’s theorem; any non-classical treatment of vagueness (and that is most of them) 
is in the same boat. Moreover, the reason for this is that non-classical approaches 
are ruled out from the start. This does nothing to shake our confidence in these 
approaches though, unless the assumptions in question—(iv) and (vi)—can be 
defended. The point is that anyone wishing to argue against fuzzy methods, for 
instance, must not simply beg the question against those methods. To use a 
theorem such as Cox’s theorem that is based on assumptions that fuzzy logic rejects 
is, thus, inappropriate, unless the assumptions in question can be independently 
defended. But then, the appeal to Cox’s theorem is redundant. This is not to say that 
Cox’s theorem is of no interest, or that in all contexts, the assumptions of Cox’s 
theorem are controversial. Indeed, if one is using the theorem to justify a Bayesian 
interpretation of the probability calculus, the assumptions (i)–(vi) may well be entirely 
reasonable, and the isomorphism between belief measures and probability 
measures is extremely interesting. (It is, perhaps, worth noting that assumption (iii) 
rules out two-dimensional approaches to belief, such as Dempster-Shafer belief 
functions

(41) 
and imprecise probabilities

(42)
. Thus, Cox’s theorem cannot be wielded 

against these methods either.) The case with second-order probability is less clear 
perhaps, but I take it that (iii) also rules out second-order probability, where belief is 
represented by a real-valued function whose value is uncertain.  
 
Although Cox did not provide any justification for the two assumptions I have been 
discussing here ((iv) and (vi)), this does not mean that no such justification can be 
provided. So, let us now consider how the problematic assumptions might be 
defended. How might double-negation elimination (or, more generally, classical 
logic) be defended? One way is to argue that, despite appearances, there is a fact of 
the matter about the applicability of vague terms. So, for example, there is a fact of 
the matter about whether a 178-cm man is tall. On this view, uncertainty due to 
vagueness is seen to be nothing more than a particularly resilient kind of epistemic 
uncertainty. According to this view, there are facts of the matter about the 
applicability of vague predicates (so it is appropriate to employ classical logic), but 
competent language users do not (and, in fact, cannot) know what these facts are. A 
178cm man is, thus, either tall or not, but it is unknowable which he is. I will not 
discuss this position further here (see Reference 4 for a defense of the view). I 
simply note that this rather counterintuitive view is one way that the use of classical 
logic might be justified. It is clear, however, that the use of classical logic in this 
setting is no trivial assumption. 
 
The defense of assumption (vi) is problematic as well. The main difficulty is that Cox 
saw himself as deriving the theorem from plausible, intuitive, and fairly 
uncontroversial assumptions. Assumption (vi) is none of these. Indeed, this seems 
to be widely recognized, for there has been considerable interest in deriving Cox-
style results without appeal to (vi) (or, more precisely, by replacing (vi) with other 
weaker assumptions). While versions of Cox’s theorem have been derived without 
appeal to assumption (vi) (e.g., Reference 45), these results still rely on the same 



Evaluation and development of formal consensus methods 
   
 

implicit logical assumptions (see, for example, References 21, 39, 43–45). In each 
case, it is the implicit assumption that the underlying logic is classical that rules 
against most non-classical approaches to uncertainty.

5 
What is not generally realized 

is that the assumption of classical logic requires justification if the theorems in 
question are to be wielded as weapons against non-classical methods of dealing 
with uncertainty. As they stand, arguments employing these theorems against non-
classical approaches to uncertainty are simply circular.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 For instance, Paris
(45) 

drops assumption (vi), but fuzzy approaches are still ruled out by the (implicit) assumption that 
excluded middle holds. 
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DISCUSSION  
While it is well known that fuzzy methods such as possibility theory are not 
isomorphic to probability theory, and that this seems to fly in the face of Cox’s 
theorem, it has not been generally recognized why this is so. My goal in this article 
has been to correct this situation. I have, thus, drawn attention to some of the logical 
assumptions of Cox’s theorem and pointed out that these assumptions are prima 
facie implausible, at least in the context of arguments to the conclusion that all 
uncertainty is probabilistic. I conclude by urging the defenders of such arguments 
against non-probabilistic methods to provide some justification for the appeal to 
classical logic in the face of vagueness. In particular, a justification for the appeal to 
the classical principles of double-negation elimination and excluded middle are 
required.  
 
I wish to make it perfectly clear that I have said nothing about the application of Cox’s 
theorem as a justification for the use of probability for epistemic uncertainty. My focus 
has been on the claim that Cox’s theorem shows that probability theory and only 
probability theory can do it all—across all domains. In particular, since Cox himself 
made no such radical claims, my target is not Cox. It is quite clear that Cox intended 
his argument to apply only to classical domains. The target of this article is those who 
would use Cox’s result to dismiss non-probabilistic approaches to uncertainty in non-
classical domains.  
 
Although my goal is modest, it should also be clear that I have considerable 
sympathy with a somewhat stronger thesis: no adequate defense of classical logic in 
domains employing vague predicates is possible. If I am right about this, then not 
only are non-probabilistic methods legitimate methods for quantifying at least some 
types of uncertainty, but are also required for the adequate treatment of uncertainty 
in any domain where vague predicates are used.  
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