
           
 
 

Report Cover Page 

ACERA Project 

06/04 

Title 

Optimal allocation of resources to emergency response actions for invasive species 

Author(s) / Address (es)  

Cindy Hauser, Department of Botany, University of Melbourne 

Tracy Rout, Department of Botany, University of Melbourne 

Peter Baxter, The Ecology Centre, University of Queensland 

Michael McCarthy, Department of Botany, University of Melbourne 

Hugh Possingham, The Ecology Centre, University of Queensland 

Material Type and Status (Internal draft, Final Technical or Project report, Manuscript, Manual, 
Software) 

Interim report 

Summary 
 This project aims to develop new methods to assess and guide the development of monitoring and 
surveillance systems for invasive pests, pathogens and diseases. The project will use Red Imported 
Fire Ants and fruit fly surveillance systems as case studies. The researchers are working in close 
collaboration with state agencies to develop methods that will improve the efficiency and effectiveness 
of their efforts.  

This project documents the outputs from the first year’s work by one of the post-doctoral researchers 
(Cindy Hauser), and the outlines of proposed work by another post-doc (Peter Baxter) and PhD student 
(Tracy Rout). They will work jointly to develop and test methods for efficient surveillance. The report 
also include appendices that outline the development of mathematical tools to support the methods. 

Received By: Date: 

ACERA / AMSI SAC Approval:  Date:  ACERA  Use only 

ACERA / AMSI SAC Approval: Date: 



 
 

   
 
 
 
 

 
 
 

Optimal allocation of resources to emergency response actions 
for invasive species; 06/04 

 
Dr Cindy Hauser1, Ms Tracy Rout1, Dr Peter Baxter2, Dr Michael 

McCarthy1, Prof Hugh Possingham2  
 

1Department of Botany, University of Melbourne 
2The Ecology Centre, University of Queensland 

 
 

Report #2; July 2007 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 

Australian Centre of Excellence for Risk Analysis Page 1 of 35 



Optimal allocation of resources to emergency response actions for invasive species 
  

Acknowledgements 
This report is a product of the Australian Centre of Excellence for Risk Analysis (ACERA).  In 
preparing this report, the authors acknowledge the financial and other support provided by the 
Department of Agriculture, Fisheries and Forestry (DAFF), the University of Melbourne, 
Australian Mathematical Sciences Institute (AMSI) and Australian Research Centre for Urban 
Ecology (ARCUE).   
 
 
 
 
 
 
 
 
 
 
 

 
 

Australian Centre of Excellence for Risk Analysis Page 2 of 35 

 



Optimal allocation of resources to emergency response actions for invasive species 
  

Disclaimer 
This report has been prepared by consultants for the Australian Centre of Excellence for Risk 
Analysis (ACERA) and the views expressed do not necessarily reflect those of ACERA. ACERA 
cannot guarantee the accuracy of the report, and does not accept liability for any loss or 
damage incurred as a result of relying on its accuracy. 
 

  
 

Australian Centre of Excellence for Risk Analysis Page 3 of 35 



Optimal allocation of resources to emergency response actions for invasive species 
  

Table of contents 
 
Acknowledgements................................................................... 2 

Disclaimer .................................................................................. 3 

Table of contents....................................................................... 4 

1. Executive Summary .......................................................... 5 

2. Introduction ....................................................................... 6 

3. Project 1: Optimal choice and timing of monitoring 
strategies ................................................................................. 16 

3.1. Introduction.............................................................................................................................16 
3.2. Case study: red imported fire ants ..........................................................................................16 
3.3. References...............................................................................................................................17 

4. Project 2: Allocation of monitoring resources for pest 
management over space .......................................................... 7 

4.1. Minimising expected costs of monitoring and control..............................................................8 
4.2. Minimising expected cost of control subject to a monitoring budget.....................................10 

Example 4.2.1. Equal detection and area but differing probability of pest presence ......10 
Example 4.2.2. Differing areas and probabilities of pest presence ...................................11 

4.3. Further extensions...................................................................................................................12 
4.4. Summary.................................................................................................................................13 

5. Project 3: Optimal robust monitoring of invasive 
species ..................................................................................... 14 

5.1. When should we declare eradication of an invasive species?.................................................14 
5.2. Declaring eradication for multiple infestations.......................................................................15 
5.3. Robust decision-making .........................................................................................................15 
5.4. References...............................................................................................................................15 

6. Appendix.......................................................................... 16 

6.1. Equations used in §4.1-4.2......................................................................................................18 
6.2. Using sighting records to determine when to declare eradication of an invasive species ......23 

 

  
 

Australian Centre of Excellence for Risk Analysis Page 4 of 35 



Optimal allocation of resources to emergency response actions for invasive species 
  

1. Executive Summary  
 
With weeds, pests and diseases causing billions of dollars worth of damage to the Australian 
landscape, it is vital that resources spent to manage these pests are expended efficiently.  
This project aims to provide decision support tools to managers of monitoring and control 
programs, to assist in the allocation of resources amongst activities.   
 
We model the processes of detection, control, containment and/or eradication of a single 
pest species and use the economic outcomes of each possible management scenario to find 
the most efficient strategies.  Research questions include: 
 

• How much monitoring effort should be applied to detect a pest before it outweighs the 
economic impact of an undetected pest? 

• How should limited surveillance resources be targeted across a landscape when the 
probability of pest presence varies according to environmental conditions?  What if 
the accuracy of the surveillance method also varies across environments? 

• For how long should absence data be collected before a pest can be declared 
eradicated with confidence? 

 
We have already found mathematical expressions of the optimal strategies that correspond 
to the above questions.  These strategies will be demonstrated in case studies of red 
imported fire ants, fruit flies, hawkweed and bitterweed. 
 
Future research will adapt these strategies to account for limited data and ecological 
knowledge, ensuring that management is robust to a range of plausible scenarios. 
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2. Introduction  
 
Incursions of weeds, pest and diseases cause great economic and environmental damage to 
the Australian landscape.  There is a clear need for rational and rapid response procedures 
for incursions, and for decisions to be made in the face of uncertainty.  In this project, we 
develop tools that support decision-making for the monitoring and control of pest species.  
We use a decision-theoretic framework to evaluate the costs and likely outcomes of various 
management regimes.  This allows us to determine where in space and time a manager’s 
resources should be targeted to most effectively detect, contain and/or eradicate a pest with 
confidence. 
 
This research has been split into three sub-projects, each with a full-time post-doctoral 
researcher or PhD student attached.  The first sub-project focuses on the successful 
detection and control of a pest species over space.  The optimal monitoring effort to be 
expended in any area is a trade-off between the cost of monitoring and the savings made by 
detecting the pest early.  However, when limited monitoring resources are to be distributed 
across space, the relative likelihood of pest presence in each different environment is used to 
target monitoring and minimise the probability of failing to detect the pest in any area.  
 
Declaring eradication is the focus of the second sub-project, with a case study on the 
eradication of bitterweed in Queensland.  Data on pest absence must be collected over time 
for eradication to be declared with confidence, but this surveillance incurs a cost.  Here the 
crucial economic trade-off is between the cost of surveillance and the cost of the pest 
spreading after eradication is prematurely declared.  An initial manuscript will be expanded to 
consider issues of spatial arrangement and robustness. 
 
The third sub-project will offer direct support for the detection, management and eradication 
of red imported fire ants in south-east Queensland.  Here there is a focus on the last rare 
colonies after successful widespread control.  How should surveillance resources be directed 
to ensure that the pest is completely eradicated?  Will new surveillance technologies and 
probability maps make improvements that reach beyond the cost of their development? 
 
The following three chapters of this document report on the progress of each sub-project 
separately but the common themes are clear.  We model the monitoring and control of pest 
species and use the economic outcomes of each plausible scenario to support decision-
making and allocation of resources.  These decision-making tools will not be specific to the 
case studies used, and will instead have utility for a wide range of pest management 
problems.  Further links and collaborations amongst the sub-projects will form as the 
research progresses. 
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3. Project 1: Allocation of monitoring resources for pest 
management over space 

Cindy Hauser and Michael McCarthy 

 

In this project we focus on the targeted management of a pest or disease (hereon referred to 
as a ‘pest’).  Monitoring over space to detect and control the pest could be distributed 
uniformly or concentrated in specific areas.  Monitoring might be concentrated if there is 
reason to believe that the pest is more likely to be present in a particular area, due to the 
habitat type, previous incursions or other factors.  However, there will still be some (albeit 
smaller) probability that the pest occurs at other locations in the landscape.  How should 
monitoring effort be distributed amongst different patches of space, given the differential 
probabilities of pest presence in those patches?  (Patches could represent different types of 
vegetation, crops or catchment areas.)  We have answered this question by examining the 
economic consequences of the various possible allocations of monitoring effort. 
 
We model a system of n patches, where each patch has a specified probability of pest 
presence.  We leave it to the manager to decide how to delineate patches in the landscape, 
such that the probability of pest presence and effectiveness of monitoring can be reasonably 
assumed to be constant within each patch.  The effectiveness of investing one unit of 
monitoring effort in a patch can vary between patches as a function of the area of the patch, 
the ease of pest detection given the terrain, and other factors.  If an existing pest is 
successfully detected by the monitoring program then it is controlled, incurring a cost cD.  If 
the monitoring program fails to detect an existing pest then a much larger cost cU is incurred 
as the pest spreads, causing more damage and becoming more difficult to eradicate.  These 
costs incurred are the same at each patch, since we assume that incursions occur on a 
smaller spatial scale than the scale at which patches are defined.  As more monitoring effort 
is invested in a patch, the probability that an existing pest will persist undetected declines 
(Figure 3.1). 
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Figure 3.1.  The probability that a pest is present and detected as a function of monitoring 
effort. 
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Figure 3.2  The probability that a pest is present and undetected, as a function of monitoring 
effort, for four example patches. 

 

In different patches, the differing probabilities of pest presence and effectiveness of 
monitoring interact to produce differing probabilities of failing to detect an existing pest as a 
function of monitoring effort expended. 

 

In Figure 3.2, the patches have: 
1. a high probability of pest presence and low effectiveness of monitoring; 
2. a high probability of pest presence and high effectiveness of monitoring; 
3. a low probability of pest presence and low effectiveness of monitoring; 
4. a low probability of pest presence and high effectiveness of monitoring. 

 
All equations used to derive the results for this project (1) are included in Appendix 6.1. 
 

3.1. Minimising expected costs of monitoring and control 
 
We first aim to minimise the total expected costs of monitoring and control, where: 
 

monitoring costs = number of monitoring units × cost per monitoring unit 
 
and for each patch,  
 

expected control cost = probability pest is present × cost of control, 
 

cost of control = probability pest is detected × cD + probability pest is not detected × cU, 
 
where cD and cU have been defined as the costs incurred for damage and pest control when 
the pest is and is not detected, respectively. 
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The optimal monitoring allocation to each patch i that minimises the expected costs of 
monitoring and management is 
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where 
 λi is the “effectiveness” of monitoring in patch i, 
 pi is the probability that the pest is present in patch i, 
 cM is the unit cost of monitoring. 
 
The monitoring effectiveness λi is the mean Poisson rate of pest detection using a single 
monitoring unit per unit area (such that the probability of failing to detect an existing pest is 
exp(-λi)).  Monitoring can encompass active, targeted surveillance methods that can be 
altered in intensity and potentially also passive methods, with the use of public awareness 
programs allowing some control over monitoring intensity.  (ACERA project 06/05 will model 
passive and ‘syndromic’ surveillance more explicitly.)  In the passive case, the effectiveness 
parameter λi might take into account proximity to towns, roads and other measures of human 
access. 
 
The probability that the pest is present, pi, can incorporate any information that is considered 
useful, such as historical evidence of pest presence or absence, vegetation mapping and 
pest dispersal patterns.  We leave it to practitioners to decide, in any given pest management 
scenario, what the relevant factors are in estimating the probability of pest presence.   
 
It may be optimal to allocate zero monitoring effort to a patch, subject to the condition on the 
right of the equation.  This may occur because the probability of pest presence is low (pi 
small), the monitoring method is ineffective (λi is small) or the cost of monitoring is large 
relative to savings that early pest detection brings to control (cM/(cU - cD) is large).  In these 
cases the likelihood and benefits of pest detection are overwhelmed by the costs of 
monitoring. 
 
In other cases, there is a positive optimal allocation of monitoring resources to the patch.  
The optimal monitoring effort increases with cU – cD, the improvement in control costs made 
by detecting the pest early, and decreases as the unit cost of monitoring cM increases.  The 
higher the probability that the pest is present (pi), the larger the optimal monitoring effort for 
the patch.  The influence of the monitoring effectiveness λi, on the optimal allocation of 
monitoring effort to patch i is more complicated.  When monitoring is very ineffective, there is 
no benefit to monitoring and the optimal allocation is zero.   The optimal allocation increases 
to a maximum value over intermediate values of effectiveness, then declines asymptotically 
to zero as effectiveness continues to increase.  That is, for highly effective monitoring, only a 
nominal amount of effort is required to successfully detect an existing pest. 
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3.2. Minimising expected cost of control subject to a 
monitoring budget 

 
If the resources available for monitoring are less than those required for the optimal solution 
in §3.1, then we are faced with distributing monitoring resources amongst the patches.  In 
this case we seek to minimise the expected cost of control subject to a monitoring budget.  A 
rearrangement of this objective function shows that this is equivalent to minimising the sum 
over all patches of the probability that the pest is present and undetected in each patch (as 
displayed in Figure 3.2).  This is a reasonable result, since the most costly scenario in control 
is that the pest is present but undetected.  Thus, we seek to allocate monitoring effort to 
minimise the incidence of this scenario. 
 
The optimal allocation of monitoring effort lies in the gradient of the curve for each patch in 
Figure 3.2.  The steeper the gradient, the more effective monitoring is at reducing the 
probability of leaving a pest undetected.  As monitoring is allocated to a patch, the gradient of 
the line becomes less steep and the value of adding an extra unit of monitoring diminishes.  
There may now be a second patch which offers equivalent improvements for each unit of 
monitoring invested, and the budget will then be allocated to the two patches.  This 
procedure continues, with further patches receiving monitoring funds, until the budget is 
exhausted.  Thus, the optimal monitoring allocation to a budget does not depend on the cost 
of control: it depends only on the total monitoring budget, the probability of pest presence in 
each patch, and the effectiveness of monitoring in each patch. 
 

Example 3.2.1. Equal detection and area but differing probability of 
pest presence 

Assume we have two patches, each of the same area.  Investment in monitoring is equally 
effective in each patch, with λ1 = λ2 = 0.01.  However there is a 1% probability of pest 
presence in the first patch and 3% probability of pest presence in the second patch.  We 
have a budget of 200 monitoring units to distribute between the two patches. 
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Figure 3.3.  Probability that the pest is present and undetected as a function of monitoring 
effort for the two patches in Example 3.2.1 
 
When we begin with zero monitoring effort in each patch, the probability curve for patch 2 is 
steeper and so we make it the first priority (point a, Figure 3.3).  It remains the most cost-
effective patch until 110 monitoring units have been allocated, and the gradient of the curve 
here is equal to that for patch 1 (b, c).  The remainder of the monitoring budget is allocated to 
both patches, in accordance with their gradients, until the budget of 200 units is exhausted.  
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The final optimal allocation is 45 units to patch 1 and 155 units to patch 2 (d, e).  Patch 1 is 
allocated greater monitoring resources because the pest is more likely to exist there, but 
some effort should still be expended on patch 1 to determine its status. Note that if it is 
optimal to allocate monitoring units to both patches, the difference in the number of 
monitoring units between the two patches remains 110 (in this example), regardless of the 
budget. 
 

Example 3.2.2. Differing areas and probabilities of pest presence 
In this example we consider four patches, with different combinations of area and probability 
of pest presence (Figure 3.4).  Patches 1 and 4 have an area of 1 unit, while patches 2 and 3 
have an area of 2.  Patches 1 and 2 have a high probability of pest presence, 0.04, 
compared to patches 3 and 4 which have probability 0.005 of pest presence.  The 
effectiveness of monitoring per unit area is constant over all patches at 0.01.   
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Figure 3.4.  Diagram of patches for Example 3.2.2, with relative areas and risks of pest 
presence labelled. 
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Figure 3.5.  Probability that the pest is present and undetected as a function of monitoring 
effort for each of the four patches in Example 3.2.2. 
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Then the monitoring effectiveness in each patch is: 
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atch 1 is the most cost effective (point a, Figure 3.5), so monitoring effort is first allocated to 

tches 

tely 

stead we might allocate the budget uniformly over the each unit area.  Then patches 1 to 4 

tion 
 

3.3. Further extensions 
 

alue of habitat mapping   
ined the expected saving to be made by targeting monitoring as 

 
r 

patial autocorrelation 
, pest presence or absence in each patch is independent of 

For 
 

obustness of the optimal monitoring allocation 
and effectiveness of monitoring will be 

as in 

m 

P
it.  When 69 monitoring units have been allocated to patch 1, patch 2 is equally cost-effective 
(b, c), and further monitoring effort is allocated to both of these patches.  The third most cost-
effective patch, patch 4, matches these two for cost effectiveness when 208 units have been 
allocated to patch 1 and 277 units have been allocated to patch 2 (d, e, f).  This would 
exceed the budget of 400 monitoring units and so no monitoring effort is allocated to pa
3 and 4.  Instead the budget is allocated only to patches 1 and 2, with 180 and 220 units 
respectively (g, h).  Note that even though patch 1 was prioritised first, patch 2 was ultima
subject to more monitoring effort.  This is because patch 2 had a greater area, necessitating 
more monitoring units to achieve the same reduction in undetected pests. 
 
In
would be allocated 67, 133, 133 and 67 monitoring units each, respectively.  If we know the 
costs of control, cU and cD, then we can calculate the difference in expected total costs 
between monitoring uniformly over space and using a habitat map or other prior informa
to target monitoring optimally over space.  If in this example cU = 100000 and cD = 1000, then
a saving of about 1600 units can be made in pest control by concentrating monitoring effort 
in patches 1 and 2 as above. 
 

V
In Example 3.2.2, we determ
a function of the probability of pest presence and effectiveness of monitoring over space.  
When little is known about the differential risks across space, a similar framework could be
used to determine the expected improvement that building a habitat map would provide, ove
simply monitoring uniformly over space.  Then a manager could decide whether to invest in 
the construction of such a habitat model, or to monitor for the pest without any extra 
knowledge of its likely location. 
 
S
In the current framework
presence or absence in any other patch.  Correlation in patch status (due to spatial 
configuration or other factors) could alter the optimal allocation of monitoring effort.  
example, allocation of high monitoring intensity to two highly correlated patches may be a
suboptimal use of resources. 
 
R
It is unlikely that the probability of pest presence 
known for each patch in space.  If a patch is incorrectly classified as having a very low 
probability of pest presence then zero monitoring effort might be allocated to the patch (
Example 3.2.2).  If the actual probability of pest presence is medium or high, then there is a 
substantial risk that the pest will be present and undetected in that patch.  A more robust 
solution would be to allocate monitoring effort uniformly over space, but setting the proble
in a formal decision theory framework is necessary to find an allocation of monitoring effort 
that will yield acceptably low costs over a range of plausible scenarios. 
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Application to case studies 
 to one or more case studies in plant biosecurity to demonstrate 

se 

3.4. Summary 
 

his project sets the monitoring and control of a single pest species in an economic 
 to 

bility 

hen monitoring resources are unlimited, there is still an optimal finite level of monitoring 
f 

. 

hen monitoring resources are restricted to a budget, the optimal resource allocation 
 each 

We will apply these methods
their potential use for planning pest management and monitoring.  Possible case studies 
include the monitoring and management of fruit flies in the Fruit Fly Exclusion Zone in 
northern Victoria and of hawkweed in the alpine region of Victoria.  Results from the ca
studies may indicate the relative importance of robust decision-making, spatial 
autocorrelation and the value of habitat mapping and direct further research. 
 

T
framework.  We determine the optimal allocation of monitoring resources over space
detect new incursions and eradicate them.  This optimal allocation depends on the proba
of pest presence and the effectiveness per unit monitoring effort in each patch. 
 
W
effort which trades the economic consequences of failing to detect a pest against the cost o
monitoring.  If the monitoring method is ineffective and/or expensive, then its cost may 
overwhelm the potential benefits and zero monitoring in the patch is optimal.  As the 
probability of pest presence increases, so does the optimal expenditure on monitoring
 
W
depends crucially on the probability of pest presence and effectiveness of monitoring in
patch, not on the costs of controlling the pest.  Patches that offer the greatest reduction per 
unit monitoring effort in the probability of failing to detect an existing pest are prioritised. 
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4. Project 2: Optimal robust monitoring of invasive species 
Tracy Rout and Michael McCarthy 
 

4.1. When should we declare eradication of an invasive 
species? 

The question of when to stop monitoring and declare eradication of an invasive species is 
usually answered by using arbitrary confidence thresholds or ideas about seed bank 
longevity (Regan et al. 2006). Regan et al. (2006) take an economic approach to this 
question, framing it in a decision theoretic way. They find the stopping time (based on the 
number of previous consecutive absent surveys) that will minimise the net economic cost, as 
defined by: 
 

NECn = (n – 1)Cs + Ce[p(1 – q)]n , 
 

where NECn is the net economic cost of stopping after n consecutive absent surveys, Cs is 
the cost of each survey, Ce is the expected cost if eradication is declared prematurely and 
the species expands its range, p is the annual probability that the species will remain 
present, and q is the probability of detecting the species given that it is present. They 
minimise this equation to find the optimal stopping time, i.e. the optimal number of 
consecutive absent surveys n* after which monitoring should stop and eradication should be 
declared. They then use stochastic dynamic programming to take into account the possibility 
that the weed may be detected in future surveys, incurring further costs of surveying and 
possible escape and damage. 
 
Although this work represents a new way of thinking about how we approach setting 
guidelines for invasive species eradication, its practicality is reduced by the data 
requirements of the model. The parameters p (the annual probability of persistence) and q 
(detectability), are difficult to estimate for many invasive species. We can eliminate the need 
to estimate these parameters by instead using the presence-absence sighting record of the 
species. This is done by incorporating the equation from Solow (1993a) into the decision-
making framework of Regan et al. (2006), which is described in detail in Appendix 8.2.  
 
We first examine the analytical solution of the new equation, and attempt to find a rule of 
thumb for when to declare eradication. We then use stochastic dynamic programming to find 
an exact optimal solution that incorporates the possibility that the weed may be seen in future 
surveys. We apply these methods to the example of Helenium amarum, which enables a 
direct comparison with the results in Regan et al. (2006). Some preliminary findings are 
described in Appendix 6.2. 
 
This basic framework can be modified and extended in a number of ways. It could be useful 
to modify Solow’s equation for use in declining populations where the pre-extinction sighting 
rate declines, as in Solow (1993b). As the Helenium amarum sighting data has a variable 
number of surveys per year, it would be useful to modify Solow’s equation for use with 
frequency data, as in Burgman et al. (1995). Another extension would be to apply the entire 
framework to the problem of monitoring a species of conservation concern. 
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4.2. Declaring eradication for multiple infestations 
The first part of this project examines the eradication of an invasive species at a single site, 
given data on the presence or absence of the species at that site. The second part will 
expand upon this to look at the eradication of an invasive species from a number of sites. 
Instead of a presence/absence sighting record, we will instead work with a record of the 
number of occupied sites over time. For a given monitoring strategy—where a certain 
proportion of the sites are surveyed in each time step—we can find the optimal time to stop 
monitoring and declare eradication. Expanding this problem across multiple sites will make it 
more general, and applicable to a wider range of case studies. 
 

4.3. Robust decision-making 
The methods mentioned so far have focused on finding optimal management decisions given 
a specified model of the system. These optimal decisions are not universal—if we alter the 
system model the optimal decision will most likely be different. If the model we use does not 
sufficiently approximate reality, the prescribed decision will not have the outcome we intend, 
and may even be detrimental. Instead of finding management decisions that are optimal for a 
specific set of circumstances, it may be more practical to find robust decisions that perform 
well under a large range of circumstances. To examine this perspective, the project will also 
examine robust solutions to the previous two problems.  This may lead to results that are 
analogous to an earlier contribution to this ACERA project (Thompson and McCarthy, in 
prep., see previous progress report and Appendix 6.3 in this document). 
 

4.4. References 
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5. Project 3: Optimal choice and timing of monitoring 
strategies 
Peter Baxter and Hugh Possingham 
 

5.1. Introduction 
When considering the ongoing surveillance of an invasion, we can expect the following 
relationships: 
1) The more resources (effort or money) we invest in surveillance, the more likely we are 
to detect an incidence of invasion, and the sooner we should detect it; 
2) The sooner we detect an incidence, the less future costs we face (we catch it earlier, 
therefore it is easier to eradicate and less likely to have spread); 
3) The more effort we expend (in time or intensity) without detecting an occurrence, the 
more likely that eradication has occurred. 
 
There are thus multiple possible trade-offs involving surveillance method, effort and 
timing.  If we set a deadline (i.e., a management “time horizon”) we can seek general 
guidelines to make appropriate tradeoffs which will meet management objectives within 
that timeframe.  These objectives could be for example: 
- maximise our confidence in having achieved eradication; 
- minimise the probability of missing an occurrence; or 
- minimise the overall expected costs (sum of expected survey and escape costs). 
 
We will tackle these questions in a decision theory framework by defining curves that 
describe the above relationships (1-3); and using these curves to find optimal strategies 
analytically.  We will also consider uncertainty in the exact form of each curve and how 
the nature and extent of uncertainty might change our recommendations.  We will then 
examine the applicability of the approach using a case study.   
 

5.2. Case study: red imported fire ants 
 
Red imported fire ants Solenopsis invicta were first recorded in south-east Queensland in 
February 2001.  Native to South America, fire ants are capable of widespread 
establishment once introduced elsewhere (Calcott and Collins 1996), and have had 
serious environmental and societal impacts, notably in the southern USA.  The potential 
reduction in Australian biodiversity due to S. invicta is listed as a Key Threatening 
Process under the 1999 Commonwealth Environment Protection and Biodiversity 
Conservation Act.  Their detection in Australia therefore prompted the establishment of 
an eradication program.  As this eradication program progresses and colonies become 
rarer, it is likely that the ability to detect colonies will also decline. Therefore there is a 
need to inform managers’ choices regarding future surveillance.  
 
In Queensland, there are two main fire-ant surveillance strategies: active (targeted 
surveys of likely areas of occurrence) and passive (relying on public reporting).  These 
can in turn be further sub-categorised, with each sub-category having its own costs and 
efficiencies.  For example, active surveillance could consist of searching by foot, all-
terrain vehicle or helicopter; whereas passive surveillance could reflect different 
intensities of communication and advertising.  Management decisions regarding how best 
to allocate surveillance resources can be addressed effectively using the above decision-
theory framework.  The approach can be extended further, to incorporate the possible 
emergence of better surveillance techniques in the future, such as sniffer-dogs or 
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unmanned aerial vehicles; or to allow further resolution of the relationships (1-3) above, 
reflecting different habitats (probability of occurrence), land use and human population 
densities (probability of detection). 
 
Two computer models produced for the eradication program assisted in understanding 
and addressing the invasion process.  Scanlan and Vanderwoude (2004) developed a 
model of spatial spread which examines patterns of local and long-distance fire-ant 
invasion across a regular grid of cells (“cellular automata”).  A predictive habitat model 
(Fire Ant Habitat Information System; Robert George, unpublished report) has facilitated 
more targeted surveillance, for example by selectively targeting 50% of an area, 98% of 
the occurrences within the total area could be detected.  In order to assess more 
quantitatively whether the eradication program is indeed on track, the Fire Ant Control 
Centre is now considering revising and combining the two previous modelling 
approaches in a single model, which would incorporate spread dynamics with occurrence 
probability and also have the capacity to integrate new data to revise predictions using a 
Bayesian framework. 
 
The production of such a model requires considerable effort, so again there arises a 
trade-off between the resources required in its development and the resultant 
improvement in predictability. This trade-off has obvious similarities with investing in 
development of new methods to increase detection success as discussed above. The 
time-lag involved in their development may or may not be worth the diversion of 
management funds from other activities – this will depend on their future success 
(relative to the performance of current methods), which is itself uncertain.  Again, the 
decision-theoretical framework proposed above will address how to allocate management 
resources optimally among these alternative approaches, in order to attain eradication 
with maximum certainty and efficiency; and furthermore how these optimal decisions may 
change as eradication is approached. 
 

5.3. References 
 

Callcott AMA & HL Collins. 1996. Invasion and range expansion of imported fire ants 
(Hymenoptera: Formicidae) in North America from 1918–1995. Florida Entomologist 
79:240–251. 
 
Scanlan JC & C Vanderwoude. 2006. Modelling the potential spread of Solenopsis invicta 
Buren (Hymenoptera: Formicidae) (red imported fire ant) in Australia.  Australian Journal 
of Entomology 45:1–9. 

  
 

Australian Centre of Excellence for Risk Analysis Page 17 of 35 



Optimal allocation of resources to emergency response actions for invasive species 
  

6. Appendix 

6.1. Equations used in §3.1-3.2 
We define 
 
n the total number of patches in the landscape. 
pi the probability that the pest is present somewhere in patch i.  This could be an 

increasing function of the area of the patch. 
λi the “effectiveness” of monitoring in patch i.  This may be a decreasing function of the 

area of the patch.  e-λ is the probability of failing to detect an existing pest using one 
unit of monitoring effort. 

mi the monitoring effort invested in patch i. 
M the total monitoring budget 
cM the cost of one unit of monitoring effort 
cD the cost of pest management if the pest is detected and controlled. 
cU the cost of pest management if the pest is not detected and consequently spreads to 

a larger area, cU > cD. 
 
3.1 Minimising expected costs of monitoring and control 
 
The expected cost of controlling the pest over n patches is the cost of control in each patch, 
summed over all patches i: 
 

( )1
1

( ) 1 i i i i

n
m m

i D U
i

T p c e c eλ λ− −

=

⎡ ⎤= − +⎣ ⎦∑m . 

 
The expected cost of control in each patch i is the probability of pest presence multiplied by 
the cost of pest management.  The cost of pest management is cD if the pest is detected 
(with probability 1 ) and ci ime λ−− U if monitoring efforts fail to detect the pest (with probability 

).  We can rearrange this cost function to become i ime λ−

 

(1)  ( )1
1 1

( ) .i i

n n
m

D i U D i
i i

T c p c c p e λ−

= =

= + −∑ ∑m

 
The first term indicates the minimum expected cost of control that must be incurred if all 
pests are detected and controlled, while the second term gives the additional costs incurred 
in patches where the pest is present but not detected. 
 
The cost of monitoring over all patches is 

1

n
M ii

c m
=∑ , so the total cost of monitoring and 

control is: 
 

( )2
1 1 1

( ) .i i

n n n
m

M i D i U D i
i i i
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= = =
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The minimum expected cost can be determined by setting the partial derivative of the cost 
function (with respect to each allocation mi) to zero: 
 

*2

*

( ) exp( )M U D i i i i
i

T c c c p m
m

λ λ
=

∂
= − − − =

∂ m m

0 . 
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This equation can be rearranged to give the optimal allocation of monitoring effort mi in each 
patch: 
 

(2) * ( )1 ln U D i i
i

i M

c c pm
c

λ
λ

⎡ ⎤−
= ⎢ ⎥

⎣ ⎦
. 

 
This solution is only meaningful if , i.e. * 0im ≥
 

(3) .M
i i

U D

cp
c c

λ ≥
−

 

  
If this condition does not hold, then the costs of monitoring overwhelm the expected benefits 
of early detection and control, so that the optimal monitoring allocation to patch i is * 0im = .  
The total expected cost of monitoring and control in a single patch i is demonstrated in Figure 
6.1 for two scenarios: in the first, condition (3) is violated and the monitoring effort that 
minimises costs is ; in the second scenario condition (3) holds and there exists an 

intermediate monitoring effort  that minimises total expected costs (given in equation 2). 

* 0im =
*
im

 
 
 

 

 

Monitoring effort mi

condn (3) 
violated 

1

condn (3) 
holds 

2

*
1 0m =  

*
2m  

Expected cost 
of monitoring 
and control 

 
Figure 6.1.  The expected costs of monitoring and control as a function of monitoring effort 
for two example patches. 
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3.2 Minimising expected cost of control subject to a monitoring budget 
 
In this case we seek to minimise the expected cost of control, T1(m), subject to a monitoring 
budget M, such that  
 

1

n

M i
i

c m M
=

≤∑   or  
1

'.
n

i
i M

Mm M
c=

≤ =∑  

 
Given that our decision variables are the monitoring allocations mi, i = 1, 2, …, n, an 
equivalent problem to minimising T1(m) in eqn 1 is to minimise 
 

( )3
1

( ) exp
n

i i
i

T p λ
=

= −∑m im  

 
The ith term is the probability that the pest is present but undetected in patch i, given that 
monitoring effort mi was invested in this patch.  However the sum over all i can not be directly 
interpreted as a probability, and may be greater than one.  We set 
 
Pr(undetected pest in patch i) = fi(mi) = pi exp(-λimi). 
 
As monitoring effort in a patch increases, the probability that an existing pest will be left 
undetected decreases as a function of monitoring effectiveness λ ( Figures 3.1 & 3.2) .  The 
gradient of this function indicates how efficiently we can reduce the probability of failing to 
detect a pest for each unit of effort expended: 
 

( )expi
i i i i

i

f p m
m

λ λ∂
= − −

∂
. 

 
Note that this cost-effectiveness of monitoring is a function of both the effectiveness of 
monitoring λ and the probability of pest presence p.  The optimal allocation of monitoring 
effort is found by prioritising patches with the steepest gradient until the budget is spent. 
 
Example 3.2.1 
We have two patches, each of the same area.  Investment in monitoring is equally effective 
in each patch, with λ1 = λ2 = 0.01.  However the probability of pest presence differs in each 
patch, with p1 = 0.01 and p2 = 0.03.  The budget is M’ = 200.  Then 
 

( )1
1 1 1 1 1

1

2
2

2

exp 0.0001exp( 0.01 ),
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Initially, allocation to patch 2 is most effective, since 
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2 10 0

0.0003 0.0001 .
m m

f f
m m

= =

∂ ∂
= − < − =

∂ ∂
 

 
 

  
 

Australian Centre of Excellence for Risk Analysis Page 20 of 35 



Optimal allocation of resources to emergency response actions for invasive species 
  

Funds should be allocated to patch 2 until cost-effectiveness diminishes to the level of patch 
1: 
 

1

2 1
2

2 1 0

2

0.0003exp( 0.01 ) 0.0001

100ln3 110.
m

f fm
m m

m
=

∂ ∂
= − − = − =

∂ ∂

⇒ = ≈

 

 
Therefore the first 110 units of monitoring effort should be allocated to patch 1.  The 
remaining 90 units are allocated between patches 1 and 2 so that the cost-effectiveness of 
monitoring at each patch is equal: 
 

1 2

1 2( 11
f f
m m
∂ ∂

=
∂ ∂ + 0)

 subject to m1 + m2 = 90. 

 
The solution to this set of equations is m1 = m2 = 100 – 50 ln3 ≈ 45.  Thus, the optimal 
allocation of effort between the patches is  * *

1 245, 110 45 155.m m= = + =
 
Example 3.2.2 
We have four patches, with different combinations of area and probability of pest presence.  
Patches 1 and 4 have area 1, while patches 2 and 3 have area 2.  Patches 1 and 2 have a 
high probability of pest presence, 0.04, compared to patches 3 and 4 which have probability 
0.005 of pest presence.  The effectiveness of monitoring per unit area is constant over all 
patches at 0.01.  Then the monitoring effectiveness in each patch is: 
 

1 2 3 4
0.01 0.010.01, 0.005, 0.005, 0.01.

1 2
λ λ λ λ= = = = = =  

 
The cost effectiveness of monitoring in each patch is 
 

1

2

3

4

0.01

0.005

0.005

0.01

0.0004 , 1
0.0002 , 2
0.000025 , 3
0.00005 , 4

m

m
i

m
i

m

e i
e if

m e i
e i

−

−

−

−

⎧− =
⎪

− =∂ ⎪= ⎨∂ − =⎪
⎪− =⎩

 

 
It is most cost effective to first allocate resources to patch 1.  Patch 2 is the second most 
cost-effective patch to target, and it matches the first patch when 
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If we have a budget of 400 monitoring units, then we should allocate the first 69 units to 
patch 1, then allocate further units to patches 1 and 2 until patch 4 becomes equally cost 
effective: 
 

4

1 2 4

1 2 4 0

1 2

0.00005
( 69)

200ln2 139, 400ln2 277.
m

f f f
m m m

m m
=

∂ ∂ ∂
= = − =

∂ + ∂ ∂

⇒ = ≈ = ≈

 

 
If we add these allocations to the 69 monitoring units already allocated then we exceed the 
budget of 400.  Thus, no monitoring effort should be allocated to patches 3 and 4, and the 
331 monitoring units are distributed between patches 1 and 2 so that  
 

1

1 2( 69)
f f

m m
∂ ∂

=
∂ + ∂

2

*
4m

)
)

 and m1 + m2 = 331. 

 
The solution to this equation is m1 = (400 – 100 ln2)/3 ≈ 110, m2 = (800 – 200 ln2)/3 ≈ 220.  
Combined with the 69 monitoring units already allocated to patch 1, there is one monitoring 
unit remaining and we add it to patch 1 (since monitoring effectiveness in higher there it will 
have the greatest impact).  Thus, the optimal monitoring allocation to the four patches is 
 

* * *
1 2 369 110 1 180, 220, 0, 0.m m m= + + = = = =  

 
That is, only the two patches with a high probability of pest presence are monitored.  Even 
though patch 1 is prioritised initially, ultimately more monitoring effort is allocated to patch 2.  
This is because patch 2 has a larger area and so more monitoring units are required to 
adequately span the area. 
 
Next we consider uniform distribution of monitoring effort over space.  We would have  
400/(1 + 2 + 2 + 1) = 66.67 monitoring units per unit area and  
 

1 2 3 467, 133, 133, 67.U U U Um m m m= = = =  
 
If cU = 100000 and cD = 1000 then the total expecting saving made by allocating monitoring 
resources optimally is 
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That is, a manager saves roughly 1600 monetary units by targeting monitoring effort to 
patches 1 and 2 rather than applying it uniformly across space. 
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6.2. Using sighting records to determine when to declare 
eradication of an invasive species 

Manuscript in preparation by Tracy Rout and Michael McCarthy 
 

Methods 
The probability that a species is extant given its sighting record can be calculated using the equation 
described in Solow (1993a). If the species is seen n times during a period of observation 0 to t, and 
then not seen during a further period of observation t0, the probability that the species is extant is: 
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where π is the prior probability the species is extant, independent of sighting data (modified from 
Solow (1993a)). 
 
Rule of thumb 
The net economic cost of stopping after an absent survey is the cost of surveying, plus the expected 
cost of escape and damage if the species was present but went undetected (Regan et al. 2006). In 
Regan et al. (2006), the net expected cost (NEC) of stopping after t0 absent surveys is defined as: 
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where Cs is the cost of one survey, Ce is the expected cost of escape and damage, p is the probability 
that the species remains present, and q is the probability of detecting the species given that it is 
present. The expression [  is the probability that the species was present but not detected for 
t

] 0)1( tqp −
0 years, which can be substituted with Solow’s equation to give: 
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We can find the minimum NEC by setting the derivative of this equation to 0. There is no closed form 
expression for t0, so we cannot derive a rule of thumb for the optimal value of t0 that minimises the 
NEC. We can however identify a critical value of R, the ratio between the cost of surveying and the 
cost of escape (R = Cs/Ce). This critical value is the value of R at which it becomes optimal to stop 
surveying, i.e. for R < Rcrit we should keep surveying, while for R > Rcrit we should stop. We can 
express Rcrit as: 
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where y = (t+t0)/t. Rcrit can be approximated by a power function of y (Rcrit = ayb), which could give us 
a simpler rule of thumb. 
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Stochastic dynamic programming 
Equation 2 does not include the possibility that the species may be seen in a future survey, incurring 
further costs of surveying and possible escape and damage. To incorporate these future expected costs, 
we can use stochastic dynamic programming, or SDP. SDP is an optimisation algorithm that can be 
applied to any system with a finite number of states, where sequential decisions must be made 
(Bellman 1957, Mangel and Clark 1988, Lubow 1996). SDP works backward over time, finding 
optimal decisions for each possible management scenario that take into account future expected costs 
(Bellman 1957, Mangel and Clark 1988, Lubow 1996).  
 
The formulation of our SDP is similar to that in Regan et al. (2006). In each time step m (1 to M) there 
are two possible management decisions: to survey or to stop. The optimal decision is the one with the 
lowest expected cost. As outlined previously, the species has a sighting record in which it is seen n 
times over period t, and then not seen for period t0. The optimal stopping time for particular values of 
n and t is the smallest t0 where the expected cost of stopping is less than the expected cost of 
surveying. The expected cost of stopping is the probability that the species is extant given its sighting 
record, multiplied by the expected cost of escape and damage: 
 
Estop(m, t0, n, t) = p(species extant| n, t, t0)Ce

 , 
 
which, substituting Solow’s equation (eqn. 1), becomes: 
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The expected cost of surveying must encompass two possibilities: the species is detected or not 
detected. The sighting record can be updated for each case. If the species is detected, the number of 
sightings n becomes n + 1, while the length of sighting period t becomes t + t0. The period of absent 
surveys t0 becomes 0. If the species is not detected, t0 becomes t0 + 1, while n and t remain constant. 
The expected cost of surveying is thus: 
 
Esurvey (m, t0, n, t)    =   Cs + p(extant)p(detected)Eopt(m + 1, 0, n + 1, t + t0) +  

      (1 – p(extant)p(detected))Eopt(m + 1, t0 + 1, n, t) (m < M) 
          = Cs       (m = M). 
 
The probability that the species is extant is given by Solow’s equation (1), while the probability that 
the species is detected can be estimated as n/t. Eopt is the expected cost of future optimal decisions, 
where the optimal decision gives the lowest expected cost: 
 
Eopt(m, t0, n, t) = min[Estop(m, t0, n, t), Esurvey(m, t0, n, t)]. 
 
 
Case study 
We apply the method to the example used in Regan et al.(2006): Helenium amarum in Queensland, 
Australia. H. amarum or bitterweed is toxic to stock, and if ingested causes vomiting, diarrhoea, and 
production of bitter undrinkable milk. It was first found in Queensland in 1953, and an eradication 
program began in the same year. After three years of herbicide and manual removal, only isolated 
patches of plants remained. Plants were not detected in several surveys between 1959 and 1987, but 
were detected in subsequent surveys. Between 1988 and 1992 no plants were detected, and the weed 
was declared eradicated (Tomley & Panetta 2002, as cited in Regan et al. 2006). We used the best 
estimate parameters in Regan et al. (2006), and the raw sighting data of H. amarum to parameterise the 
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models. The period of observation t is the period 1953 – 1987 (t = 34), and H. amarum was seen in 
thirty-two of those years (n = 32). We set the probability π to 0.5, and in the SDP we optimise the 
decisions over a time period of twenty years (M = 20). 
 
Results 
Rule of thumb 
Using equation 2, the optimal stopping time for H. amarum is 11 years (Figure 1).  
 
Stochastic dynamic programming 
The SDP solution also finds an optimal stopping time of 11 years for H. amarum (Figure 2). The SDP 
produces optimal decisions for every possible sighting record (every combination of n, t and t0). The 
results for t0 = 11 are the first that find it optimal to stop surveying for any combination of n and t. The 
proportion of possible combinations of n and t for which it is optimal to stop increases as t0 increases. 
By t0 = 20 (Figure 3), the proportion for which it is optimal to stop is around 2/3 of the total number of 
combinations. 
 
Discussion 
The optimal stopping time of 11 years for H. amarum, from both our rule of thumb and SDP solution, 
is much more conservative than the optimal stopping time found by Regan et al. (2006). Regan et al. 
(2006) found an optimal stopping time of 3 years with the rule of thumb, and although they do not 
explicitly state the result from the SDP, they found the rule of thumb to be a good approximation of 
the SDP solution. The only element of our framework that differs from Regan et al. (2006) is the way 
the probability that the weed is extant is calculated. Solow’s equation produces much higher values for 
this probability than either the SDP or the rule of thumb methods described in Regan et al. (2006) 
(Figure 4a). This is made more visible when viewed on a logarithmic scale (Figure 4b). These higher 
probabilities translate into a more conservative stopping time. 
 
Future Work 

- Find an expression to approximate Rcrit, which can be used as a rule of thumb. 
- Compare the performance of the rule of thumb with the exact optimal results from the SDP. 
- Develop and implement a more accurate method of estimating detectability from sighting 

data. The current equation used (= n/t) does not take into account the possibility that the 
species may still be extant during the period t0, and so may overestimate detectability. 

- Modify Solow’s equation for use with frequency data, as in Burgman et al. (1995). This could 
be more accurately applied to the Helenium amarum sighting data, which has several surveys 
per year in some years. 

- Modify Solow’s equation for a declining population, as in Solow (1993b).  
- Substitute Solow’s equation with other methods that are sensitive to the pattern of absences in 

the sighting data, as in Burgman et al. (1995) and McCarthy (1998). 
- Apply the framework to monitoring a species of conservation concern. 
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Figure 1: The net expected cost (NEC) as a function of the number of absent surveys using equation 
2. The lowest NEC occurs after 11 years of absent surveys (marked with dotted line), making this the 
optimal stopping time. 
 

0

10

20

30

40

50

0 10 20 30 40 50

Length of observation period t

N
um

be
r o

f t
im

es
 w

ee
d 

si
gh

te
d 

in
 p

er
io

d 
t (

n)

Optimal decision is to monitor

Optimal decision is to stop

Optimal decision for Helenium
amarum (stop)

 
Figure 2: Optimal decisions after 11 years of absent surveys (t0 = 11) 
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Figure 3: Optimal decisions after 20 years of absent surveys (t0 = 20) 
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Figure 4a: The probability that the weed is extant as a function of the number of consecutive absent 
surveys, calculated with data for H. amarum using three different methods. ‘Regan – SDP’ and ‘Regan 
– rule of thumb’ were calculated using the methods described in Regan et al. (2006), and the best 
estimate parameters for H. amarum listed in Regan et al. (2006). 
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Figure 4b: As for Figure 4a, but shown on a logarithmic scale. 
 
 

  
 

Australian Centre of Excellence for Risk Analysis Page 28 of 35 



Optimal allocation of resources to emergency response actions for invasive species 
  

 

6.3. Draft manuscript presented in the previous ACERA report 
 

 
Robust decisions about eradication of invasive species 

Colin J. Thompsona, Michael A. McCarthyb

 
a Department of Mathematics and Statistics, University of Melbourne, Parkville VIC 3010, Australia. 

Phone: +61 3 9580 1125. Fax: +61 3 9580 5047. Email: N/A 
 

b Australian Research Centre for Urban Ecology, Royal Botanic Gardens Melbourne and School of 
Botany, University of Melbourne, Parkville VIC 3010, Australia. Phone: +61 3 8344 6856. Fax: +61 

3 9347 9123. Email: mamcca@unimelb.edu.au 
 
Corresponding author: Michael McCarthy 
Running title: Robust eradication of invasive species 
 
Abstract 
Eradication of invasive species is uncertain because detecting them at low densities is often difficult. 
Decisions about when to declare that an invasive species has been eradicated need to balance the cost 
of additional surveys, the cost of the species escaping if eradication is declared when the species is still 
in fact present, and the probability that the species is still present. Costs may be estimated with some 
reliability, but it is difficult to estimate the probability that the species is present when it has not been 
observed for a particular period of time. In such circumstances, managers may wish to make decisions 
that are as robust as possible to errors in the estimate of this probability. We use info-gap decision 
theory to determine robust decision rules about the eradication of an invasive species, showing that a 
previously-derived result is not robust to uncertainty, but provides a lower limit on the number of 
surveys that should be conducted before declaring that an invasive species has been eradicated. 
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1. Introduction 
Invasive species are one of the main threats to the world's biodiversity (Primack, 2006). In numerous 
parts of the world exotic predators have contributed to declines of native species, and weed invasion 
threatens native plant species and communities (Hunter, 2002; Primack, 2006). Because control and 
eradication of exotic species is often difficult once they have established, eradication of newly invaded 
species is desirable when possible. 
 
It can be difficult to be sure that a species has been eradicated, because their detection is uncertain, 
especially when population sizes are small (Usher, 1989; Reed, 1996; Regan et al., 2006). How much 
effort should be spent on surveying for an invasive species if eradication is uncertain? If we declare 
that a species has been eradicated when it is present and stop conducting surveys for it, then we run the 
risk of it escaping and incurring a potentially large economic and environmental cost. However, if we 
continue surveying when it is already eradicated then we are spending money on surveys 
unnecessarily. Regan et al. (2006) balance these opposing risks by stopping to look for the invasive 
species when the total expected cost is minimised.  
 
However, management decisions that maximise an expected outcome may not be robust to uncertainty 
(Ben-Haim, 2006). Importantly, such decisions can depend critically on the manager using an accurate 
model of the system being managed, but such models are often very uncertain. The model used by 
Regan et al. (2006) has two important parameters that are likely to be at least somewhat uncertain; the 
probability that the species remains present at a site from one year to the next and the probability of 
detecting the species when it is present. Sometimes these parameters can be estimated probabilistically 
(e.g., Wintle et al., 2004), but often bounds on their values are the best that can be achieved (Regan et 
al., 2006). These two parameters combine to provide r, the probability that a species remains at the site 
from one year to the next but is undetected in a survey (Regan et al., 2006).  
 
Info-gap decision theory is designed to assist decision making in cases where there is considerable 
uncertainty about the model of the system (Ben-Haim, 2006). Rather than trying to optimize an 
expected outcome, info-gap methods find the management decision that is most robust to uncertainty 
while at the same time achieving a satisfactory outcome (e.g., Halpern et al., 2006). In this paper we 
determine management decisions about the eradication of an invasive species that are robust to 
uncertainty, basing the analysis on that of Regan et al. (2006). 
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2. The info-gap solution 
Regan et al. (2006) found the number of absence surveys (n) that minimized the total expected cost  
 

E(n) = nCs + p(n)Ce, (1) 

 
where Cs is the cost of surveying a site once, Ce is the expected cost of the invasive species escaping, 
and p(n) is the probability that the species is still present if it has not been seen for the previous n 
surveys.  
 
However, p(n) is subject to considerable uncertainty, and ignoring this uncertainty may lead to 
suboptimal solutions. Instead of minimizing E(n), the info-gap approach imposes the requirement that 
the expected cost should be no more than some acceptable upper bound (Ec), and aims to find the 
value of n that permits us to be as wrong as possible about p(n) but still satisfy our constraint E(n) ≤ 
Ec.  
 
The info-gap solution begins with Regan et al.'s (2006) rule of thumb form for the probability that the 
invasive species is eradicated as our best guess for p(n) 
 

nrnp =)(~  (2) 

 
For this model the robust optimal solution is to stop surveying if the invasive species has not been seen 
after n* consecutive surveys, which is given by (see the appendix for details of the solution) 
 

n* = Ec/Cs + 1/lnr. (3) 

 
Superficially, this bears no resemblance to the rule obtained by Regan et al. (2006). Most notably, Eq. 
(3) does not depend on the expected cost of escape Ce, which was a critical parameter in the result of 
Regan et al. (2006). 
 
However, a close correspondence can be seen between the result of Regan et al. (2006) and Eq. (3) by 
noting that the latter is predicated on the assumption that the robustness is non-negative, which leads 
to the constraint 
 

r
rC

C
n

e

ln/)
ln

ln(* s−≥ . (4) 

 
The right hand side of the inequality (4) is the solution obtained by Regan et al. (2006), so their 
solution provides a lower bound on the robust optimal solution Eq. (3). It can also be noted that the 
solution of Regan et al. (2006) has zero robustness to uncertainty, a general result of info-gap 
methods. 
 
For the example used by Regan et al. (2006), r = 0.136 and Cs/Ce = 1/350. This imposes a lower bound 
on n* of 3.28, and a lower limit of 3.78 on the ratio Ec/Cs. In this example r is sufficiently small such 
that Eq. (4) gives n* ≈ Ec/Cs (1/ln(r) ≈ –0.5 is sufficiently small that it can be ignored), making the 
optimal expected total cost of monitoring after the last observation of the invasive species (Csn*) 
approximately equal to the total cost that is deemed to be satisfactory (Ec). This is an intuitive result; 
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when an invasive species is not observed we should keep surveying up until the total cost of the 
surveys becomes unsatisfactorily large. 
 
If managers are sure that the model analyzed by Regan et al. (2006) accurately predicts the probability 
of detecting an invasive species, then they should use the solution of Regan et al. to minimize the total 
expected cost. However, if they are uncertain about its reliability and wish to minimize the chance of 
unacceptably large costs, then they should conduct at least as many surveys as the number suggested 
by the solution of Regan et al. (2006), with the robust-optimal number given by Eq. (3). 
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Appendix 
 
The info-gap approach to determining optimal monitoring of eradication of invasive species 
 
We begin by defining: 
p(n) = probability that an invasive species is present after n surveys have been conducted during which 
the invasive species has remained undetected, 
Ce = the expected cost of the invasive species escaping if surveys are stopped, 
Cs = the cost of monitoring a site. 
The total expected cost of monitoring n sites is then 

E(n) = nCs + Cep(n). (A1) 
Since p(n) is subject to significant uncertainty minimizing E(n) for some assumed form for p(n) may 
lead to suboptimal solutions. Instead we impose the performance requirement 

E(n) ≤ Ec, (A2) 
and aim to satisfice (A2) for all p(n) in some uncertainty model such as the error bound model 

U(p, α) = { )(~|)(~)(| npnpnpp α≤−     1)(0 ≤≤ np }, 0≥α , (A3) 

with the largest horizon of uncertainty (the robustness) 

α̂ (n) = max{α | ( E(n)) ≤ E
Up∈

max c}. (A4) 

From (A1) and (A3) 

Up∈
max E(n) = nCs + Ce(1+α) , (A5) )(~ np

(assuming (1+α) ≤ 1) and hence from (A4) (equating the rhs of (A5) to E)(~ np c) 

α̂ (n) = [(Ec – nCs) / Ce )(~ np ] – 1   when ≥ 0 (A6) 

   0  else. 
Following Regan et al. (2006) we take the "rule of thumb" form 

)(~ np  = [p(1 – q)]n, (A7) 

where 
p = probability that the invasive species persists from one year to the next 
q = probability that the species is detected given that it is present 
r = p(1 – q). 
In an info-gap setting the robust-optimal value for the decision variable n is obtained by maximizing 
the robustness (A6). Assuming α (n) > 0, this is equivalent to maximizing ˆ

f(n) = (Ec – nCs) / . (A8) )(~ np

Differentiating (A8) with respect to n we obtain 

dn
pd

np
nCE

np
C

dn
df ~

)](~[)(~ 2
scs −

−−=  

  = })](~[ln)({
)(~

1
sm Cnp

dn
dnCE

np c −−− , (A9) 

which holds for general . For the case (A7) )(~ np
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rnp
dn
d ln)](~[ln = , (A10) 

so that on setting df/dn = 0 we obtain from (A9) and (A10) the robust optimal solution 

n* = 
rC

E
ln
1

s

c + , (A11) 

which seemingly bears no relation to the rule of thumb found by Regan et al. (2006). The above, 
however, is predicated on the assumption that α̂ (n) ≥ 0. Substituting (A11) into (A6) we thus see that 
n* is the robust optimal solution provided 

α̂ (n) = –
rnpC

C
ln)(~

e

s  – 1 ≥ 0  n*. (A12) 

For the particular case (A7), (A11) implies that 

r
rC

C
n ln/]

ln
ln[*

e

s−≥ . (A13) 

That is, the rule-of-thumb solution (the rhs of (A13)) is a lower bound on the robust optimal solution 
(A11). It is also seen from the above that the rule-of-thumb solution has zero robustness to uncertainty. 
The above results can be used in a number of ways. For example (A11) and (A13) imply 

)]
ln

ln(1[
ln
1

e

s

s

c

rC
C

rC
E

−−−≥ , (A14) 

which places a lower bound on cost aspirations (Ec) relative to monitoring costs. 

For example, from Regan et al. (2006) if we take p = 0.8, q = 0.83 (i.e., r = 0.136) and Cs/Ce = 
1/350, (A14) implies that  

78.3
s

c ≥
C
E

, (A15) 

which places a lower bound, from (A11), of 3.28 on the robust optimal solution n*. 

Also, instead of maximizing α (n) one could use (A6) to determine trade-off values for n 
depending on desired levels of robustness and/or aspirations (E

ˆ
c). 
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