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Summary 
 

This project will develop methods that simplify complex spatial dynamic models of 
weed and pest spread. The motivation for the project is to provide a way of simplifying 
predictions of spatial population dynamics, to enable them to be linked in an efficient 
manner to the on-going work on statistical spatial predictions. 
The project started less than two months ago, three months behind the originally 
envisaged schedule, slowed by contract formalities and acquiring the right expertise 
for the postdoctoral fellowship. Nevertheless, the first deliverable was achieved on 
time. This involved the submission of a publication to MODSIM07. In this publication a 
method for the sensitivity analysis of functions in a model was tested on a simple 
systems model. 
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Background 
 
This project was initially scheduled to begin on 28-Feb-07. Due to a number of delays, 
including ACERA’s legal agents, it was not possible to begin the project until 4 June, 
2007. On this date the postdoctoral fellow associated with the project commenced work. 
Thus the project started three months behind schedule. 
 
Despite the delay, the main priority has been to honour the original deliverable deadline of 
31 July, 2007. This deliverable required the submission of a paper on: ‘A technique for the 
sensitivity analysis of functions in relation to decision-making objectives’. This has been 
achieved. The manuscript is attached here. 
 
Method 
 
The methods outlined in the proposal indicated that an optimal control approach would be 
tried first to solve the problem of simplifying complex dynamic models. It was also stated 
that a reformulation of the problem as an optimisation problem with parameterised 
functions should work. After some initial investigation with the first method we concluded 
that there was not enough time to meet the deadline with this approach. The second 
approach was then taken. A method of changing the shape of a function was proposed and 
tested on a simple model that involved a decision criterion.  
 
The approach is promising and needs to be tested now on a large complex model. Initial 
discussions with Dr Darren Kriticos have been held with a view to using his model. Now 
that the first deliverable has been achieved, work will commence on this very soon. 
 
Problems 
 
There was some difficulty finding a postdoctoral fellow with the appropriate experience for 
this project. The position was advertised widely. The first choice applicant later withdrew 
his application. The eventual appointee has strong skills in Applied Mathematics but has 
had some trouble adjusting to ecosystem models at the interface between science and 
management. This has been a real concern when trying to meet the extremely tight 
deadline imposed by the schedule for the first deliverable.  
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EXTENDED ABSTRACT 

Sensitivity analysis is usually focussed on 
parameters and is a relatively well-developed 
field compared with function sensitivity. But how 
sensitive are model conclusions to the choice of 
functions used in the right hand side of 
differential equation models? Most work in this 
area has been scenario-based where alternative 
functions are tested. In this paper, we examine the 
sensitivity of a model to changes in the shape of 
the functions. We do this in an automated way 
without the need to specify alternative functional 
forms.  
 
The question then is how much can we change a 
function that defines the dynamics of the system 
without producing a significant change in some 
performance measure?  If the changes in 
functions need to be large in some sense, to cause 
significant changes in a performance measure, 
then there is less need to focus attention on 
getting the model functions correct. A method of 
approach to this type of analysis is presented and 
illustrated on an ecosystem model.  Testing the 
proposed method on a simple model demonstrates 
that quite large changes can be made to functions 
before reaching a critical value in the decision 
criterion. This insight is as useful as the 
corresponding knowledge of the effect of 
uncertainty in parameter values. 

1. INTRODUCTION 

It has long been recognised that, “the simple 
obtaining of solutions for the equations of the 
mathematical model of a dynamic system – or 
even a set of solutions – is no longer sufficient” 
(Tomovic 1963). Further, in 1968, Quade 
expressed the view that: “A good system study 
will include sensitivity tests on the assumptions in 
order to find out which ones really affect the 
outcome and to what extent. This enables the 
analyst to determine where further investigation 
of assumptions is needed”.  Along these lines 
Forrester (1969) demonstrated that the question of 
sensitivity is important from a policy viewpoint 

only when parameter changes would render a 
proposed policy ineffective. At that time and 
subsequently most sensitivity analyses were only 
performed on parameters and initial values.  This 
approach can be found, for example, in Barnes 
and Yeaple (1968), Thornton and Lessem (1976), 
and Vermeulen and De Jongh (1976 and 1977).  
 
A notable early exception to straight parameter 
sensitivity analysis was the practical approach 
adopted by Ford and Gardiner (1979). They 
convened a workshop of public and private 
leaders where the group was presented with 
model forecasts and asked to decide on a policy. 
Changes were then made to the model and the 
group was presented with the new forecasts. 
Based on these forecasts, the group was again 
asked to vote on the policy. If the policy decision 
was unchanged the model could be regarded as 
insensitive to the changes. So it might well be that 
some change in a parameter value or function  
causes a very large change in a state variable but 
if this does not alter the decision of the policy-
making body then in practical terms the model is 
insensitive. 
 
The main purpose of a sensitivity analysis of a 
model used in decision support should be to 
determine the extent to which the decisions or 
policies based on model results are robust with 
respect to the uncertainty in the model.  Walker et 
al (2003) recently noted the increasing 
requirement to articulate uncertainty, when 
working at the interface of science and 
management, in model-based decision support. 
They recognise two extremes as a feature of the 
nature of uncertainty: These are ‘epistemic 
uncertainty’, which is due to the imperfection of 
our knowledge and may be reduced by more 
research or data, and ‘variability uncertainty, 
which is due to the inherent variability in a 
system.  
 
Epistemic uncertainty includes uncertainty in 
parameter values, model inputs, and the functions 
in a model. As noted, most analyses of models do 
include a sensitivity analysis (SA) of the 
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parameters and a scenario analysis of the inputs. 
Alternate functions within a model, however, are 
only sometimes tested and in an ad hoc manner. 
Little has been done to perform a SA of functions 
in the automated way that is done with 
parameters.  This paper takes some tentative steps 
towards addressing this problem. 

2. METHOD 

Consider the following system of difference 
equations: 

nitxfttxttx ,,2,1),,()()( K=Δ+=Δ+ iii α
 (1)     

where x  is the state vector and  α  a vector  of 
parameters. 
 
A basic parameter sensitivity analysis involves 
changing the values of the parameters in the 
functions ),,( αtxfi  by a small amount, one at a 
time, and observing the change it produces in the 
output. Although changing the parameters in the 
function ),,( αtxfi  does change the shape of the 
function it does so in very restrictive ways.   
Clearly other changes to the shape of the function 
are possible.  This is an important consideration if 
there is uncertainty about the appropriateness of 
the functional form chosen for the model.  The 
functions contain the information about the 
dynamics of the model, with different functional 
forms corresponding to different choices of 
dynamics for the system.  Changes in the 
functions then correspond to changes in the 
dynamics of the model. 
 
A possible pragmatic approach for this more 
general form of function SA is to multiply each 
function or rate by a parameter with a nominal 
value of one. These parameters can then be 
perturbed as is done in parameter SA. This should 
yield some indication as to which rates are the 
most sensitive. This method was tried with some 
success by Lawrie and Hearne (2007).  
One of the shortcomings of this approach, 
however, is that no information is obtained on the 
sensitivity of the output to changes in the shape of 
the functions.  The simplest approach towards this 
end, going beyond the method mentioned above, 
is to multiply each function by the following 
function which comprises a product of triangular-
shaped functions: 
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Note that by choosing to be negative we can 

invert the triangular shaped function . 

Reasonable choices of and  are the 
respective minimum and maximum values of the 
corresponding state variable over the solution 
interval. 
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Figure 1. An example of the function  
),,( mpxh

m
 in two dimensions, where both 

 and m  are negative.  1x 2x

The function ),,( mpxh  deviates from the 
constant function 1, where the greatest change 
occurs at px = , with magnitude determined 

by m .    

The sensitivity analysis now proceeds by 
investigating changes in each of the functions 



),,( αtxfi  obtained by multiplying each in turn 

by a function ),,( mpx

 and ,, xxx

h . The sensitivity analysis 
tests the sensitivity of some objective measure 
chosen by the user.  In this project we are 
interested in a decision-making objective. In this 
context further development of our idea is best 
achieved with an illustrative example. 

3. ILLUSTRATIVE EXAMPLE 

An agricultural product X will be ready for 
harvesting in T (=12) months time. A pest species 
Y consumes X at a certain rate dependent on the 
density of X.  The damage caused by Y is 
unacceptable and two means of controlling the 
pest have been proposed: (1) biological control 
through the introduction of a parasitoid Z and (2) 
chemical control.  The first method is much 
cheaper and also more desirable from 
environmental considerations but there is more 
confidence in the efficacy of chemical control.  
To facilitate making a decision, a model of the 
system with Z has been formulated. The aim of 
the model is to answer the following question: 

Will the introduction of population Z ensure that 
the biomass of X achieves a minimum level at 
harvest time T? In particular will the 10th 
percentile of X be above a threshold value V 
(=60)? 

Let   denote the population levels 
of X, Y, and Z, respectively. The model is given 
by the system of equations (1) with the following 
RHS functions: 
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Initial and parameter values are 
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where N(0,10) is a normally distributed random 
number with mean 0 and standard deviation 10. 

Figure 2. Deterministic solution: The 
system behaviour without bio-control 
shows population X decreasing below the 
acceptable threshold.  The introduction of 
population Z reduces Y enabling X to 
maintain a level well above the threshold 
at harvest. 

That the introduction of Z is effective can be seen 
by comparing the two graphs with and without 
population Z in Figure 2.  These are solutions of 
the deterministic model with k held constant at 
100. Further analysis was undertaken by 
performing 500 simulations of the stochastic 
model. These solutions indicated that at the final 
time T, X will have a mean of approximately 78 
and a 10th percentile of 66 (>V). This suggests 
that the decision can be made tentatively to go for 
option (1), biological control.  
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Normally at this point sensitivity analysis of 
parameters and initial values would be undertaken 
and possibly some experimenting with alternative 
model formulations.  As the purpose of this 
project is to go beyond that, we assume that all 
parameter and initial values are perfectly known. 
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The question then remains whether the functions 
),,( αtxfi  of the model are correct. In 

particular, we are interested in the following: 

By how much can the functions be distorted while 
still ensuring that the decision criterion is 
satisfied? The decision criterion being that the 
10th percentile of population X lies above the 
threshold V at the final time and hence that the 
first option for control will be the  preferred one?  

 Table 1: Results applying the proposed 
method to the illustrative model. The third 
column, Relative Insensitivity, is 
indicative of the relative magnitude of 
change that can be made to a function 
before the critical value of the decision 
criterion is reached. The last three rows 
contain the point where the function is 
most sensitive to function changes. 
 

If the criterion is satisfied, despite large changes 
to the functions, then one might conclude that the 
decision is insensitive to the choice of model 
functions. We now formulate the mathematical 
problem to answer this question. 
 
Formulation of the function sensitivity problem 
 
Problem P1 
 
Consider a change to one function ),,( αtxfi at 

a time, given by ),,(),,( αtxfmpxh i .  For the 
i th equation this means: 
 

Find ),( ** mp , the solution to the constrained 
minimization problem: 

2

,
min m

mp
 

constrained by the condition that 10th percentile 
.)(1 VTx ≤   

 
This is the smallest change of ),,( αtxfi  which 
no longer ensures that the harvest has minimum 
biomass greater than 60 units. 
 
Effectively P1 means that we find the position in 
state space where the model is most sensitive to 
changes in the function ),,( αtxfi .   Moreover 
we can determine if increasing the function or 
decreasing the function at that point produces the 
greatest change in the output measure – through 
the sign of m . This means that regardless of 
position or direction (increase or decrease) any 
smaller change in the function will ensure that the 
final level of population X is acceptable, and 
hence robust to the decision.  

4. RESULTS 

Problem P1 was solved for the three cases 
corresponding to each of the three RHS functions. 
The results are shown in Table 1. Note that the f2 
function is the most sensitive while f3 can endure 
much larger changes before the decision criterion 
is violated.  
 
The position of the peak changes the shape of the 
function. This in turn generally will influence the 
results.   The original function ),,(1 αtxf  is 
shown in Figure 3.  The Modified function  

),,(),,( 1
** αtxfmpxh , where the  ),( ** mp  

values for function 1 are given in table 1, is 
shown in Figure 4. 
 

Function m  Relative 
Insensitivity 

   
f1 0.97 6.01 
f2 0.16 1.00 
f3 2.30 14.35 

 
Function Peak Vector 

 mx1 mx2 mx3

f1 -0.35 -0.9  
f2 0.11 0.11 0.04 
f3  -1.5 -1.75 

 
Function Critical Point 

 px1 px2 px3

f1 58 18 any z 
f2 56 28 8 
f3 any x 18 10 



 
 
Figure 3. This figure is the original function 

),,(1 αtxf given in Equation 4 above.  
 
 

 
 
 
Figure 4. This figure shows the modified 
function ),,(),,( 1

** αtxfmpxh .  
 
To further demonstrate this we change the 
function f1 in the same way as recorded in Table 
1. This time we locate the peak change at (65, 30, 
any z) and repeat the simulations. This produced a 
10th percentile for population X greater than 68 
compared with 60 in the previous solution.  
 
For comparison purposes with previous work 
each RHS functions was multiplied by a constant 
parameter of nominal value one. These were then 
perturbed by 1% one at a time and the change in 
the 10th percentile of X at the final time noted.  
This yields changes of 2.36%, 1.89%, and 1.5%. 

These results suggest that f1 is the most sensitive 
followed by f2 while Table 1 indicates the reverse. 
The difference is that the results in Table 1 tell us 
something about the relative importance of the 
shape of the functions. 

5. CONCLUSION 

Decision and policy making is determined or 
influenced by model output. In this context the 
techniques needed to explore the relationship 
between model output and uncertainties in 
parameter and initial values is well-developed. 
Uncertainty in the functions used in a model is 
less so.  This is often dealt with on a trail and 
error basis or as a scenario analysis. This is 
difficult or too time-consuming to do with large 
complex models. In this paper we have attempted 
to investigate the effects of uncertainty in 
functions through an automated process.  
 
Testing the proposed method on a simple model 
has demonstrated that quite large changes can be 
made to functions before reaching a critical value 
in the decision criterion. This insight is as useful 
as the corresponding knowledge of the effect of 
uncertainty in parameter values.   
 
We plan to investigate the procedure further by 
following a similar process for each term (ie each 
rate) in the RHS function. This should in turn 
yield useful information about all the 
relationships within a model.  The intention is 
then to test the whole procedure on a large 
complex model.  
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