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Executive summary
This report reviews uncertainty and uncertainty analysis methods in risk assessment, with a
specific focus on issues related to import risk assessment. The report is motivated by the avail-
ability of qualitative and quantitative methods for import risk assessment. It examines how the
challenges posed by uncertainty influence choices between these two approaches. The project’s
terms of reference are to summarise and categorise the different sources of uncertainty in risk
assessment problems, and review the practicality and applicability of a range of treatment meth-
ods. The report is intended for scientists and managers involved in, or contemplating the use
of, qualitative or quantitative risk assessment. Whilst the report focusses on import risk as-
sessment, readers from other application domains will find that much of the information and
analysis presented here is relevant to them.

Uncertainty is a term used to encompass many concepts. It has been described, defined and
categorised in many different ways, using different names for the same things and occasion-
ally the same name for different things. This report identifies four basic sources of uncertainty:
uncertainty that arises through the vagarious nature of language (linguistic uncertainty), the un-
certainty created by our limited understanding of natural systems (epistemic uncertainty), the
uncertainty created by the irreducible variation in these systems (variability), and finally the un-
certainty associated with our value systems and management decisions (decision uncertainty).

The report examines in detail the various sources of linguistic uncertainty, epistemic uncertainty
and variability in scientific endeavors and risk-related problems. It summarises probabilistic,
non-probabilistic and graphical methods for treating and propagating these sources of uncer-
tainty through risk assessment under the headings of five basic strategies: ignore it, eliminate it,
envelope it, average over it or factorise it. It also examines the related problem of dependency
that occurs when arithmetic operations are performed with random variables.

The principal impediment to uncertainty analysis within qualitative risk assessment is that vari-
ability and epistemic uncertainty are confounded with each other and with linguistic uncertainty.
Separating the three sources of uncertainty requires, as a minimum, that linguistic uncertainty
is eliminated from the problem as far as possible. Fuzzy sets and possibility theory provide
a mechanism that was specifically designed to eliminate two important sources of linguistic
uncertainty (vagueness and ambiguity). These sources of uncertainty, however, can also be
eliminated with probability theory via carefully implemented elicitation methods and probabil-
ity bounds analysis. This approach has the additional advantages of: a) being able to minimise
other well known heuristics and biases in human perception and judgements of uncertain events;
and, b) couching its analysis within the realms of probability theory which is likely to be more
familiar to decision makers than evidence or possibility theory.

Furthermore, there are a range of issues with qualitative approaches to risk assessment that relate
to the science-quality criteria of transparency, repeatability and falsifiability, and the decision-
utility criteria of precision and accuracy, namely:

• qualitative risk assessment predictions cannot be (in)validated with observations, and un-
certainty cannot be coherently propagated through risk functions without translating qual-
itative metrics of likelihood or consequence into numerical metrics;

• arithmetic operations, such as product, performed with linguistic descriptions of like-
lihood and/or consequence can be biased and non-commutative. These problems only
become apparent when vagueness is eliminated from the analysis using numerical defi-
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nitions of terms such as “high”, “medium” or “low”. This report uses interval analysis
to show that the qualitative risk operations performed by the AGDAFF for import risk
assessment lead to biased and non-commutative results; and,

• the effects of dependency between risk-generating events cannot be coherently explored
with qualitative descriptions of uncertain events, leading to different interpretations of ob-
served outcomes and potentially paradoxical assumptions about the relatively likelihood
of events.

The problem of epistemic uncertainty and variability in quantitative risk assessment starts with
the availability of data. This report distinguishes data - observations of a process - understanding
and beliefs about a process. The key to uncertainty analysis in the absence of data is elicitation.
Elicitation converts beliefs into outcomes, models or parameters that enable regression and
forward propagative uncertainty analysis. Again, structured elicitation techniques also provide
an opportunity to avoid or minimise heuristic bias and dysfunctional group effects, and are
therefore “good practice” in quantitative risk assessment.

Import risk assessment is often performed in the absence of empirical observations. Uncertainty
analysis in this context can be performed using elicitation and forward uncertainty propagation
methods. The key challenges associated with epistemic uncertainty and variability can be ad-
dressed or eliminated by making assumptions about the structure of the risk-generating process
(the model), the shape, scale and/or location of the probability distribution(s) that represent
variability and/or epistemic uncertainty in model parameters, and the nature of the dependency
between the parameters of the model. These types of assumptions have an important bearing on
the results of the risk assessment. The principal objectives of propagative uncertainty analysis
are to report, and where practical, test the effect of these assumptions on the overall risk esti-
mate, and in doing so achieve an honest assessment. In approaching this problem the analyst
can adopt one or more of the strategies identified above, namely:

• simply ignore: this is sometimes defensible for parametric uncertainty and model struc-
ture uncertainty, but only in limited circumstances. For example, model structure un-
certainty can be ignored where the model or risk function is dictated by legislation or
guidelines. In this context the risk assessment results are only defensible as a guide to the
relative magnitude of risk but this can be useful as a risk-screening decision aid;

• eliminate: this is possible for variability (and to a limited degree dependence) by either
building a more complex risk model that models variability or via choosing a simpler
assessment endpoint that enables a simpler risk model with a lower parameter dimension.
The first approach may not be attractive in data-limited circumstances because it can
increase model structure uncertainty. The latter approach is only tenable if meaningful
decision criteria can be stipulated by a decision maker for the simpler endpoint;

• compare and envelope: comparative strategies are akin to sensitivity analysis and seek
to highlight the effect of assumptions on risk estimates. Enveloping methodologies place
bounds on the best and worst estimates and seek to guarantee that the true result will lie
within these bounds. Interval analysis, probability boxes and probability bounds analy-
sis can satisfy this guarantee for variability and dependence with minimal conditions, for
example, that the true value of an uncertain quantity lies within an elicited interval. Over-
confident expert opinion is clearly a challenge in this regard. Info-gap theory attempts
to place an upper bound on the effects of uncertainty on decisions but its recommenda-
tions may be sensitive to initial conditions. Moreover, comparison and enveloping cannot
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guarantee that the effects of model structure uncertainty have been completely addressed
because the set of possible models is infinite. In the absence of data and statistical in-
ference this problem is unconstrained but is best approached by consulting widely and
comparing as many plausible models as is possible within the resources available to the
study. Techniques such as influence diagrams, loop analysis and fuzzy cognitive maps
can be helpful in this context;

• average over: an analyst can average over variability and several sources of epistemic
uncertainty, including model structure uncertainty, using techniques such as second-order
Monte Carlo Simulation and Bayesian model averaging. Again, however, in the absence
of data this problem is unconstrained and computationally more demanding than the com-
pare and envelope strategy. The range of plausible model structures, or alternative prob-
ability density functions, that can be addressed within the resources of a single study
are therefore likely to be smaller with this strategy, and in the case of model structure
uncertainty it can lead to risk estimates that are incompatible with accepted theories; and.

• model and factorise: this strategy is applicable to variability and dependence and in the
presence of data also provides a means to identify parsimonious descriptions of cause
and effect and thereby treat model structure uncertainty. Copulas and Bayesian networks
can be used to treat dependence and partition different sources of variability in a risk
assessment problem. These methods can be used in data-poor situations but the lack
of data-based constraints can still undermine attempts to provide a systematic analysis.
Moreover, the full benefits of Bayesian networks, and statistical graph theory and hierar-
chical modeling in general, cannot be realised in the absence of data.

Virtually all risk assessment frameworks emphasise the importance of monitoring and review,
and this report emphasises that scientifically credible risk assessments should ultimately become
a statistical exercise by making predictions about the risk-generating process that are testable
and eventually tested against observations. Any historical distinction between uncertainty anal-
ysis and statistics is not constructive in a risk assessment context. A more useful distinction is
to consider forward uncertainty propagation methods as the initial tools of uncertainty analysis
that enable honest assessments to proceed before observations are made and data are collected.
Thereafter, uncertainty analysis should increasingly move to an inferential mode that relies on
statistics and uncertainty analysis methods to characterise and quantify variability and epistemic
uncertainty in data sets relevant to the problem in hand.

A synthesis of these discussions, together with an examination of the pros and cons of different
uncertainty analysis methods, suggests the following overall strategy for uncertainty analysis in
import risk assessment:

1. use formal elicitation techniques to canvass the opinions, construct conceptual models
and parameterize the beliefs of stakeholders and experts. Use either predictive or struc-
tural elicitation methods to convert conceptual models into statistical, qualitative and/or
mechanistic models and convert beliefs about stochastic variables into numerical intervals
with assigned levels of confidence;

2. ensure feedback is embedded within the elicitation procedure (to minimise the potential
for misunderstanding) and apply an advocacy-like procedure to ensure that all aspects of
the risk assessment are rigorously reviewed;

3. state risk-decision criteria (risk acceptability levels) in a numeric, measurable fashion for

6



as many of the steps in the risk-generating process as is possible, including steps leading
up to the overall assessment endpoint;

4. maintain plausible diverse opinions and in the first instance envelope this diversity using
techniques such as loop analysis, comparisons of alternative risk functions, interval anal-
ysis, probability boxes and probability bounds analysis. If the upper bound on the sub-
sequent risk estimate is lower than the decision criteria associated with the assessment
endpoint, report the result and consider the need for monitoring strategies that enable
(in)validation of as many of the steps in the risk-generating process as possible within
the resources available to the assessment. If possible, collect data and use statistical in-
ference methods to check that the risk-generating process is operating within the bounds
predicted for each step of the process by the risk assessment;

5. if the lower bound on the enveloped risk estimate is higher than the decision criteria
associated with the assessment endpoint consider prohibiting, stopping or otherwise mit-
igating the risk-generating process and if necessary repeat the risk assessment with risk
management steps in place, and include within the assessment the impact of management,
and the effects of decision uncertainty upon this; and,

6. if the upper and lower bounds of the enveloped risk estimate straddle the decision criteria
associated with the assessment endpoint consider first the effects of dependence and the
mitigating effects of positive or negative dependence. For example, a potential application
of positive quadrant dependence arises in import risk assessment because the probability
of detecting organisms at the border should be positively dependent on the number of
organisms that arrive at the border - i.e. as the number of infected units rises so should
the probability of their detection. Treating these events as independent denies the reality
of inspection regimes, inflates uncertainty bounds and can lead to paradoxical simulations
where large numbers of infected units are multiplied by a small probability of detection
(and vice-versa) in naive simulations.

The strategy outlined above is designed to enable uncertainty analysis with the minimum amount
of assumptions. The objective here is for the assessment to be roughly right rather than precisely
wrong. If the enveloped predictions continue to cross the assessment endpoint then two avenues
are available to the assessor and manager:

• consider prohibiting or otherwise deferring the risk-generating process and the risk as-
sessment, and collect data that enables statistical inference and a more precise empirical
estimate of the risk function (statistical or mechanistic model) and/or the variables (risk
factors) associated with this model; or,

• use the most plausible assumptions about the model structure and its variables to provide
a more precise risk prediction by modeling and/or factorising the uncertainty associated
with the problem using techniques such as Bayesian Networks and second-order Monte
Carlo Simulation supported by linear or non-linear estimates of dependence.

It is very important with the second option that the assumptions associated with the analy-
sis are clearly communicated together with the effects of alternative plausible assumptions on
the risk estimate where possible. It is also important that monitoring strategies are designed
and implemented in order to (in)validate as many of the steps in the risk-generating process
as possible and thereby enable a gradual departure from data-poor circumstances to data-rich
circumstances, and a move towards the inference opportunities of modern statistical methods.
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1 Introduction

1.1 Project background
In October 2007 the Australian Center of Excellence for Risk Assessment (ACERA) entered
into a two year collaborative research agreement with the CSIRO Division of Mathematics, In-
formatics and Statistics (CMIS), together with the Australian Bureau of Rural Sciences (BRS),
the Australian National University (ANU) and Applied Biomathematics. The research project
(ACERA reference 0705) funded by this agreement is divided into three parts. Part I explores
some of the practical issues that arise when Monte Carlo Simulation is applied to quantitative,
pathway-based, import risk assessment. Part II investigates a range of approaches to uncertainty
analysis in qualitative and quantitative risk assessment, with particular emphasis on their appli-
cability to import risk assessment. Part III explores others issues that are relevant to decisions
regarding the choice qualitative or quantitative risk assessment approaches, such as quantitative
modeling in the absence of data and the use of historical data in import risk assessment. This is
the final report of the second part of the project.

The objectives of Part II of the project are to:

• provide a thorough description of the different types of uncertainty in qualitative and
quantitative risk assessment, including a synopsis of the taxonomy and lexicon of uncer-
tainty across disciplines such as the physical and biological sciences;

• review and compare different uncertainty analysis methods, and where possible identify
patterns of use within or across disciplines and risk assessment endpoints;

• assess the practicality, assumptions, data requirements, ease of use and software avail-
ability of different uncertainty analysis methods, and (where possible) illustrate this as-
sessment with reference to qualitative and quantitative case studies; and,

• identify paradoxes that may arise when using qualitative and quantitative models in the
presence of uncertainty. In particular, illustrate the paradoxes that may occur when dif-
ferent uncertainty analysis methods (and their assumptions) are applied to pathway-based
import risk assessment

This report is the primary output of Part II of the project. Other outputs from this part of the
project include contributions to journal articles (Hosack et al., 2008), two peer reviewed confer-
ence papers (Kuhnert and Hayes, 2009; Kuhnert et al., 2009), a workshop on uncertainty anal-
ysis techniques presented at the 2009 conference of the Australian and New Zealand Chapter
of the Society for Risk Analysis (http://www.acera.unimelb.edu.au/sra/2009/index.
html), together with analysis and other material contributions to the ACERA “demonstration
project” (ACERA project 09/01) (Burgman et al., 2009). Some of the material in these research
outputs is collated and further contextualised in this report.

1.2 Report structure and outline
Section 1 of the report outlines the project background and summarises the project’s research
outputs. It concludes with a discussion of some fundamental issues associated with four dif-
ferent ”schools” of uncertainty analysis that measure uncertainty in different ways. It sets the
scope for the remainder of the report by introducing the concept of imprecise probability, iden-
tifying an important equivalency between two of the four schools, and highlighting how the
report addresses the other two schools of thought.
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Section 2 discusses risk and uncertainty, and identifies four broad categories of uncertainty: de-
cision uncertainty, linguistic uncertainty, epistemic uncertainty and variability. It identifies the
various sources of uncertainty within each of these categories and the often confusing nomen-
clature associated with each category. This section also highlights the potential for bias and
non-commutative results that can occur in qualitative risk assessment but which only become
evident when linguistic uncertainty is treated mathematically.

Section 3 examines uncertainty analysis and treatments for uncertainty. It places uncertainty
analysis within the broader objectives of prediction, inference and understanding, and clarifies
the different approaches to uncertainty analysis adopted by modelers, statisticians and risk an-
alysts. This section identifies two basic modes of uncertainty analysis: a forward propagation
mode and an inferential mode. The forward propagation mode is appropriate when there are no,
or very few, observations of the process of interest. The inferential mode is appropriate when
there are observations of the process. Pathway-based import risk assessments typically lack ob-
servations of the assessment endpoint hence uncertainty analysis in this context is usually con-
strained to the forward propagation mode. Section 3, however, emphasises that observations of
the risk-generating process can (and should) be made, enabling this mode of uncertainty anal-
ysis to be augmented by a range of powerful inference techniques. Section 3 also outlines a
number of basic strategies for treating uncertainty and dependency in quantitative risk assess-
ment, such as factorise it, envelope it or average over it, and introduces methods for treating
model structure uncertainty and parametric uncertainty within each of these strategies.

Section 4 addresses uncertainty analysis techniques that are appropriate when the objective
is risk prediction in the absence of observations (data) of the risk-generating process. These
techniques can be used in the initial stages of a risk management programme - i.e. as part
of the risk assessment but before observations of the risk-generating process are made to test
its predictions - and they can be applied to pathway-based import risk assessment. Section
4 examines in detail many of the methods introduced in Section 3 but does not address the
inferential mode of uncertainty analysis (statistics). Statistics is an enormous discipline and
Section 3 highlights a number of excellent textbooks on various aspects of statistical science.
Interested readers should seek further guidance in these texts. Section 4 categorises uncertainty
propagation techniques into one of four types - analytical, probabilistic, non-probabilistic and
graphical - and examines how these can be used to address parametric uncertainty and model
structure uncertainty.

Section 5 examines the use of forward uncertainty propagation techniques within the broader
risk assessment community. It presents the results of a literature search on the use of these
techniques by the risk assessment community, and then evaluates these techniques against a
number of criteria that are designed to assess their practicality and utility in a model-based
decision-making process.

Section 6 of the report concludes with a discussion of, and recommendations for, uncertainty
analysis within qualitative and quantitative import risk assessment. It re-emphasises the role
of uncertainty analysis and statistics within risk management programmes and examines para-
doxes that can occur in risk assessment if critical issues such as dependency are handled in
a naive fashion. The section concludes with a general framework for handling uncertainty in
quantitative risk assessment.

Scattered through out the report are text boxes that refer to a hypothetical case study that was
completed during the course of the project (Burgman et al., 2009). The objective of these text
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boxes is to highlight particular issues associated with qualitative and quantitative approaches
to import risk assessment that were addressed during the case study, including inter alia the
potential bias that can occur with qualitative matrix-based risk assessment methods, and the
application of quantitative methods such as Monte Carlo simulation and probability bounds
analysis. A complete description of the case study can be found in Burgman et al. (2009).

1.3 Fundamental issues
This report is concerned with possibility and probability, and how these concepts are used in
risk assessments to characterise, analyse and propagate epistemic uncertainty and variability.
O’Hagan and Oakley (2004) claim that probability is an appropriate representation for all forms
of uncertainty. Using probability to represent epistemic uncertainty, however, is a slightly con-
troversial issue (Aven, 2010). It is clearly tenable under a Bayesian interpretation of probability,
but some of the common practise in Bayesian methods, such as the use of the Uniform distri-
bution to represent epistemic uncertainty, impart more information than is typically warranted
by the available evidence (Tucker and Ferson, 2003; Zio, 2008). This facet of precise prob-
ability distributions, together with a variety of "puzzles" (Halpern, 2005) has led scholars to
consider alternative theories of uncertainty, particularly for that part of uncertainty associated
with incomplete knowledge (epistemic uncertainty).

There are at least three other schools or theories, other than probability theory, to represent and
propagate uncertainty: evidence theory, possibility theory and plausibility theory (Helton et al.,
2004; Halpern, 2005; Dubois, 2010). This report places most of its emphasis on probability
theory for three reasons:

• probability theory is by far the most widely used theory of uncertainty, it is well un-
derstood, and an enormous amount of predictive and inferential methodology has been
designed around it;

• our attention is not restricted to precise probability. The report describes an imprecise
probability model (upper and lower probabilities) (Walley, 1991) that mixes interval anal-
ysis techniques and probability theory to simultaneously represent epistemic uncertainty
and variability; and,

• the belief and plausibility functions of evidence theory, are equivalent to the upper and
lower probability measures of imprecise probability (Ferson et al., 2003; Regan et al.,
2004; Baudrit et al., 2007a,b) and in certain circumstances (nested random sets) are also
equivalent to the necessity and possibility measures of possibility theory. Upper and lower
probabilities retain the main advantages of evidence theory and possibility but are easier
to interpret and use in practical contexts.

Whilst the focus here is probability theory, the report does address methods that are often em-
ployed in risk assessment and were developed or associated with other schools of uncertainty
analysis. For example, it briefly examines the use of fuzzy sets and info-gap theory. The for-
mer aligns with possibility theory, whilst the later is a form of (or at least similar to) Wald’s
maximin principle, neither of which involve probability. It is not possible within the resources
of this project to provide a comprehensive account of the other schools of uncertainty analysis,
and good textbooks exist that already do this (Halpern, 2005). In deciding which methods to
cover, and which to exclude, I have been guided by the practise of risk assessment, as evidenced
by method citations in the literature, and my own experience.
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The report touches upon qualitative descriptions of uncertainty but does not examine non-
numeric approaches to uncertainty in any detail. Terms such as “low likelihood” or “medium
certainty” confound linguistic uncertainty with variability and epistemic uncertainty. When
these terms are undefined they convey a vague, ordinal sense of confidence, but offer no further
insight into the sources of uncertainty and how it might affect the outcome of a decision. Lin-
guistic uncertainty can only be separated from epistemic uncertainty and variability when terms
such as “low”, “medium” and “high” are quantitatively defined in a manner that is appropriate
to the context in hand. Once quantitatively defined, qualitative descriptions of uncertainty may
be useful for the purposes of communicating uncertainty, but they are superfluous to its analysis.
It is important to note that upper and lower probabilities allow the analyst to address uncertainty
about variability in a coherent fashion, removing the necessity of precise distribution functions,
and avoiding the need to resort to qualitative descriptions such as ”low confidence in a high like-
lihood”. The distinction between precise and imprecise probability is missed by some authors
(see for example Hansson (2004)).

Finally the report restricts its attention to uncertainty in the language, input data, models and
parameters of a risk assessment exercise. It does not discuss other “locations” of uncertainty,
such as the context of the problem, and only briefly touches on the selection of output variables
(Walker et al., 2003). It notes but does not address in detail “decision uncertainty”, that is the
uncertainty associated with the values, intentions and behaviour of human beings (Ascough
et al., 2009). These are legitimate sources of uncertainty but they are not within the scope of
this project. Furthermore, in import risk assessment some of these sources of uncertainty are
minimised by international and national regulation and guidelines.

1.4 Notation
Inconsistent notation, both within and between references, is a potential source of confusion. I
have tried to maintain a consistent notation in this report but this often requires departing from
the notation used in the literature that it is cited here. Random variables are denoted with capital
Roman letters, such as X or Y . Lower case letters such as x, y denote realisations of random
variables. Bold face is used to denote vectors, and non-bold face denotes scalars. Functions are
generically denoted as f (·), h(·) or g(·). The use of p(·) is reserved for the probability density
function, and F(·) denotes the cumulative distribution function. E[X] denotes the expectation of
a random variable and E

[
h(X)

]
the expectation of a function of random variable. Roman capital

P denotes the probability of an event.
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BOX 1: HYPOTHETICAL CASE-STUDY

The hypothetical case-study mirrors a real pathway-based, import risk assessment. The risk assess-
ment calculates the probability that a pest insect will be introduced, establish and spread in Western
Australia following a single year of fruit imports from orchards in a foreign country. In this case
study, the risk assessment model details nine steps starting with prevalence of the pest insect in
the exporting nation’s orchards, and culminating with their establishment and spread in Australia
(Figure B1.1). The model is consistent with international and Australian standards for import risk
assessment.

The case study’s assessment endpoint is the establishment and spread of a non-native insect in
Australia but it does not address the consequences of this event. The insect, however, is a known
to be pest species that would reduce the value of Australian fruit production if it were to become
established in Australian orchards. The probability of the assessment endpoint following trade with
the exporting nation (Ptrade) is a function of the nine steps in the model (Figure 1.1). Typically the
probability of each step is assumed to be independent of the others, leading to a simple function that
multiplies the probabilities at each step. This report examines the implications of this assumption,
and the effects of alternative, often more plausible, assumptions. It is important to note that this
report does not address the issue of unit mixing that occurs in real commodity distribution networks,
but is not captured in this risk assessment model. This issue is addressed in separate dedicated study
completed under Part I of the project.

The case study also examines issues that may arise with Biosecurity Australia’s risk-assessment
framework and the language-based descriptions of probability used in this framework (Table B1).
The case study provides a platform to compare the consistency of risk estimates based on a range
of different predictive uncertainty analysis methods and model assumptions.

Likelihood Frequency Probability

High The event would be very likely to occur 0.7 < P ≤ 1

Moderate The event would occur with an even probability 0.3 < P ≤ 0.7

Low The event would be unlikely to occur 0.05 < P ≤ 0.3

Very Low The event would be very unlikely to occur 0.001 < P ≤ 0.05

Extremely low The event would be extremely unlikely to occur 0.000001 < P ≤ 0.001

Negligible The event would almost certainly not occur 0 < P ≤ 0.000001

Table B1: Language based descriptions and numerical definitions of probabilities used in the
hypothetical case-study

Intervals for each of the probabilities P1 to P8, and volume of trade N, in the hypothetical risk-model
were elicited from seven experts using a structured four-step elicitation procedure (Spiers-Bridge
et al., 2010). Beta and Normal distributions were fitted to these intervals, depending on whether
the quantity in questions was a proportion or a real-valued variate, and then pooled using a linear
pooling method with equal weights assigned to each expert (Stone, 1961; Clemen and Winkler,
1999; O’Hagan et al., 2006). The elicited intervals, fitted distributions and pooled distributions for
all nine steps in the risk assessment model, together with a complete description of the analysis
methods, are fully described in Appendix A and Burgman et al. (2009).

12



IMPORTATION

Q1: What proportion of 1000 
randomly selected orchards in 
nation X are infested with the 

insect?

Q2: What proportion of 1000 
fruit, randomly selected from 

an infested orchard, are 
affected by the insect?

Q3: Fruit are graded and 
packed into boxes of 20. 
What proportion of 1000 

randomly selected boxes are 
infested with the insect?

Q4: Boxed fruit are inspected, 
stored and shipped to 

Australia. On arrival, what 
proportion of 1000 randomly 
selected boxes are infested 

with the insect?

Q5: What proportion of 1000 
randomly selected boxes, 
infested with the insect on 
arrival in Australia, will be 

detected by AQIS inspectors?

Q6: In 2004-05, exports of 
fruit from nation X were 

50,000 tonnes. What volume 
of trade in fruit do you expect 

to arrive from nation X to 
Australia in 2009?

Q7: What proportion of 1000 
randomly selected fruit, 

imported to Australia, will be 
distributed in areas that 

support susceptible hosts?

Q9: What proportion of 1000 
insects established in 

Australian fruit trees, in an 
area with suitable hosts, will 

reproduce and spread to 
adjoining trees?

Q8: Given that 1000 infected 
fruit are delivered to an area 

with suitable hosts, how many 
insect will successfully 

disperse to a local fruit trees?

DISTRIBUTION

ESTABLISHMENT

SPREAD

Probability of importation, 
dispersal, establishment and 

spread per fruit: 
Ptrade= f(P1, P2, P3, P4, P5, P6, 

P7, P8)

P1

P2

P3

P4

P5 = (1- Pdetect )

P6

P7

P8

Probability of importation, 
dispersal, establishment and 

spread in 2009: 
P2009 = 1- (1 - Ptrade)

N

N

Figure 1.1: The risk assessment model for the hypothetical case-study, highlighting the nine step
model, the questions for each of the steps that were presented to an expert group, and
the four steps (importation, distribution, establishment and spread) in Biosecurity Aus-
tralia’s import risk assessment procedure that each question addresses
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2 Risk and uncertainty

2.1 What is risk?
The concepts of risk and uncertainty are intimately linked. Risk occurs because the past, present
and future are uncertain. Willett (1901) defined risk as the “objectified uncertainty regarding the
occurrence of an undesirable event”. Knight (1921) defined risk as “measurable uncertainty”,
reserving the term uncertainty for those things that could not be measured. More recent defi-
nitions emphasise that risk is concerned with the chance of undesired events, usually within a
specified time frame, and almost universally identify probability as the key metric in this context
(Table 1).

Mathematical definitions of risk vary across disciplines (Table 2). The definition most relevant
to import risk assessment describes risk as a function of n variables or “risk factors” (xi)

Risk = h (x1, x2, · · · , xn) . (2.1)

Haimes (2009) suggests that the risk factors in Equation 2.1 can include time, the probability
of an undesired event, the probability of consequences given the event, the magnitude of these
consequences and the state of the system in question, such as its performance capability, “vul-
nerability” and “resilience” to undesired events. In other words the factors that contribute to risk
can be diverse and complex. Uncertainty enters this equation because the risk factors and/or the
risk function vary in time or space, or because they are not completely known (or both). If the
risk factors are treated as random variables to reflect uncertainty, and this uncertainty is mea-
sured with probability, then risk is a function of the joint distribution of the risk factors (Cox
et al., 2005). This approach to risk and uncertainty is advantageous because it enables math-
ematically coherent strategies that can represent and propagate uncertainty and deal with the
important question of dependency between risk factors (Section 3.3).

Import risk assessment assigns probabilities to the chances of pests and diseases successfully
negotiating the hurdles between introduction, establishment and spread. Quantitative import
risk assessment functions therefore resemble the general risk Equation 2.1 wherein risk is a
function of n variables - the probability of successfully negotiating the hurdles to establishment
and spread. In qualitative import risk assessment the calculation of risk is internalised by those
conducting the assessment. In quantitative import risk assessment the calculation is performed
via an explicit model and formula (such as Figure 1.1).

The chief advantages of quantitative risk assessment are: a) it helps minimise one source of
uncertainty (language); and, b) it enables two other sources (epistemic uncertainty and variabil-
ity) to be analysed in a manner that exposes conclusions that are not consistent with the rules
of conditional probability. Burgman (2005) discusses the results of experiments that show how
the agreement between experts’ estimates of risk increases if they are able to compare their
interpretation of terms such as “high”, “medium” and “low” and the context in which they are
used. Moreover, Moskowitz and Sarin (1983) demonstrate that assessors routinely violate the
basic rules of probability calculus when assessing the likelihood of interdependent events, un-
less their conditional beliefs are elicited and presented in the form of a conditional probability
table. The effects of linguistic uncertainty and the presence of calculus errors are very diffi-
cult to expose with qualitative descriptions of probability and internalised risk calculations. By
exposing these issues, quantitative risk assessment encourages two important science-quality
criteria: transparency in the assessment and repeatability between assessments and assessors.
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Definition Reference

The objectified uncertainty regarding the occurrence of an
undesirable event

Willett (1901)

Measurable uncertainty Knight (1921)

A measure of the probability and severity of adverse effects Lowrance (1976)

The probability that a consequence will occur Rasmussen (1981)

The probability that a particular adverse event occurs during
a stated period of time, or results from a particular challenge

The Royal Society (1983)

The probability of harm Wachbroit (1991)

The likelihood of an undesired event occurring as result of
some behaviour or action (including no action)

Hayes (1997)

The magnitude of an adverse event multiplied by the likeli-
hood of its occurrence

Mullin and Bertrand (1998)

The combination of the magnitude of an adverse event and
the probability of its occurrence

Environmental Risk Manage-
ment Authority (1999)

The probability of future loss Byrd and Cothern (2000)

The combination of the probability of an event and its con-
sequences

ISO/IEC (2002)

The chance that something bad will happen Brillinger (2002)

The probability of occurrence of an undesired event van Straalen (2002)

The chance, within a time frame, of an adverse event with
specific consequences

Burgman (2005)

The chance, within a prescribed time frame, of an adverse
event with specific (usually negative) consequences

Fox and Burgman (2008)

The probability of an unwanted outcome or consequence
occurring

Wooldridge (2008)

The effect of uncertainty on objectives ISO (2009)

Table 2.1: Examples of different definitions of risk in the literature
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Function Arguments Discipline Reference

R = h (Pc,C(v)) Risk (R), probability of consequence (Pc),
value of the consequence to the risk taker
(C(v))

Engineering Rowe
(1977)

Y = h(X) An unknown observable quantity (Y), a
vector of unknown observable quantities
on a more detailed level (X)

Engineering Apeland
et al. (2002)

R = h(x1, x2, · · · , xn) Risk (R), risk factors (xi) Ecology Nayak and
Kundu
(2001)

R = [si, li, xi]c Risk (R), scenarios (si), likelihood (l), con-
sequences (xi), complete (c)

Engineering Kaplan
(1997)

R = ((L1,O1) · · · (Ln,On)) Risk (R), likelihood (l), outcome(O), num-
ber of possible outcomes (n)

Engineering Kumamoto
and Henley
(1996)

HQ = C·I
EM·R f D Hazard quotient (HQ), concentration (C),

intake rate (I), body mass (BM), unit-less
reference dose (R f D)

Toxicology Hammonds
et al. (1994)

HQ = PEC
PNEC Hazard quotient (HQ), predicted environ-

mental concentration (PEC), predicted no
effect concentration (PNEC)

Toxicology Calow and
Forbes
(2003)

h(R, EEC) =

p (R|EEC) p(EEC)
Risk (number of genera affected) (R),
expected environmental concentration
(EEC)

Toxicology Warren-
Hicks et al.
(2002)

R = −E
[
µ(X − X̄)

]
Risk (R), expected utility (E[u(·)]), random
variable (lottery) (X), the mean of the lot-
tery (X̄)

Decision theory Jia et al.
(1999)

dP
dt = h(r, P) −C Amount of a valued property (P), time (t),

growth rate of the property (r), removal
due to anthropogenic factors(C)

Fisheries Smith et al.
(2007)

R = h(V,U) Risk (R), uncertainty (U), variability (V) Biosecurity Murray
(2002)

P(I) = 1 − (1 −C1 ·C2)N Probability of agent entry (P(I)), country
factor (C1), commodity factor (C2), num-
ber of animal import units (N)

Biosecurity OIE (1996)

P(I) = 1 − (1 − p)v Probability of incursion (P(I)), probabil-
ity of incursion when importing one unit
of volume of product (p), total volume of
imported products (v)

Biosecurity AGDAFF
(2001)

Table 2.2: Examples of different risk definitions functions associated with different disciplines
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2.2 Why and how is risk assessed?
We perform risk assessment to help protect human values, as reflected in the assessment end-
points, from the processes and events that threaten them. The primary aim of the assessment is
to separate the wheat from the chaff - i.e. separate the (high) risk events that we should worry
about from the (low) risk events that we should not. Hence, risk assessment is a decision aid that
aims to rank or quantify risks to human values in order to prioritise management actions and
the allocation of resources. Science-quality criteria require the assessment to be transparent,
repeatable and systematic, and its predictions to be theoretically falsifiable. Decision makers
would also prefer risk predictions to be precise and accurate. The extent to which a risk assess-
ment can reliably, transparently and accurately separate high risk events from low risk events is
an important test of its utility in a decision-making framework. The extent to which the assess-
ment makes predictions that can be measured and falsified is an important test of its scientific
credibility. It may be difficult to falsify a stochastic prediction1, but it must, in principle, be
possible for the prediction-making process to be considered scientific.

Science measures things on four different scales: nominal, ordinal, interval or ratio2. A nomi-
nal scale classifies or identifies variables without implying any order. For example, categorising
insect pests according to those that have wings and those that do not. Nominal variables are
qualitative, categories that differ in quality not quantity, and cannot therefore be summed, sub-
tracted, multiplied or divided. Nominal scales express equality and have a restricted set of per-
missible statistics (Stevens, 1946): categories can be counted and the category with the greatest
number of items (the mode) can be identified. The variability of nominal variables can also
be measured with a range of simple indices (Wilcox, 1967). Nominal scales, however, do not
play an important role in risk assessment because they lack a sense of order - i.e. they cannot
separate high risk events from low risk events.

An ordinal scale, such as high, medium or low, measures the rank order of variables but pro-
vides no information on the distance between variables. Permissible statistics include those of
nominal variables together with percentiles and the median (Stevens, 1946). The position of
ordinal variables in the quantitative-qualitative classification is fuzzy (Agresti, 2002). They can
express equality (“high” = “high”), they also indicate whether one variable is greater or less
than another (“high” > “medium” > “low”) but they cannot be summed, subtracted, multiplied,
etc. in a meaningful manner. Ordinal scales are very important in qualitative risk assessment
because they produce ordinal risk metrics.

Ordinal scales give the sense of an underlying continuous variable, and it is common practice in
qualitative risk assessment to add, multiply or otherwise combine ordinal variables to produce
intervening variables or overall risk estimates. The result of these operations, however, can
be arbitrary and difficult to interpret. Wooldridge (2008), for example, suggests that “high”
× “high” should result in something smaller than “high” if the underlying continuous variable
is a probability. Cox et al. (2005), however, point to examples where a “high” probability
of contaminated food, and a “high” probability of not cooking it properly, results in a “high”
probability of exposure to an adverse health outcome. Neither of these propositions, however,
can be falsifiable until the terms “high”, “medium” and “low” are numerically defined in a
manner that is appropriate to the context of the problem. Hence, undefined qualitative risk

1Ferson (1996a) notes that validating a probabilistic prediction can be difficult, particularly for rare events, and
offers a range of additional quality assurance techniques.

2But see Velleman and Wilkinson (1993) for a critique of this classification
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terms do not meet one of the criteria that define good-quality science, namely the ability to
measure and falsify (at least theoretically) the predictions of the risk assessment. Furthermore,
the potential bias and non-commutative conclusions of qualitative risk assessment schemes that
convolve3 ordinal variables cannot be exposed unless these terms are defined (Box 2). Again,
quantitative definitions of qualitative risk terms help maintain another important requirement of
good-quality science: transparency in the risk assessment process.

Interval and ratio scales are quantitative scales. Interval scales measure the distance between
two values in a way that is invariant to their location on the scale. For example the difference
between “9” and “10” is the same as that between “1” and “2”. Zero on the interval scale is
a matter of convention or convenience and does not mean the absence of the quantity being
measured. Ratio scales are the same as interval scales except “0” on a ratio does mean the
absence of the quantity being measured, hence ratios are meaningful. For example “4” on a
ratio scale means twice as much of the quantity being measured as “2”, but on an interval
scale it does not because the “0” of an interval scale is arbitrary. Stevens (1946) argues that
permissible statistics of interval scale data include all those of nominal and ordinal data, and the
mean, standard deviation, rank order correlation and product moment correlation, but not the
coefficient of variation, whereas all types of statistics are permissible with ratio scale data.

Ratio-scale data are very important to quantitative risk assessment because it produces ratio-
scale estimates where “0” means the absence of risk. Cox (2008) suggests one way to check the
quality of a qualitative risk assessment is to ensure that the rank order of its estimates do not
changes when its operations are converted to a ratio scale. These checks require that the ordinal
metrics of qualitative risk assessment, such as “low likelihood” are converted to a ratio scale.
Converting ordinal risk metrics in this fashion helps to improve the quality of qualitative risk
assessment by exposing potential bias (Box 2). Accurate rank-order risk estimates, however, are
not the same as accurate absolute risk estimates. Converting qualitative risk metrics to check
for a consistent rank-order does not guarantee accurate risk estimates because the arithmetic
operations in a qualitative risk assessment almost always include unsupported assumptions,
most commonly that the variables in a risk assessment model are independent. Violations of
this assumption can easily lead to inaccurate assessments, particularly for tail risks (Section
3.3).

Burgman (2005) argues that good quality risk assessments are “complete” and “honest”. Com-
plete risk assessments are defined as those that undertake all stages of the risk assessment cy-
cle including monitoring and validation of predictions. Honest risk assessments are those that
are faithful to the assumptions about the kinds of uncertainty embedded in the assessment,
carry these uncertainties through the analysis, and represent and communicate them reliably
and transparently. Two of the three science-quality criteria identified above - transparency and
falsifiability - feature prominently in Burgman’s definition of a complete and honest risk assess-
ment. These criteria, together with a full account of the sources of uncertainty in the assessment,
and its effects on risk-based decisions, are the primary scientific motivation for quantitative risk
assessment. The minimum requirements for qualitative risk assessment to meet these criteria
are: a) the assumptions and calculation steps are clearly documented; b) all sources of uncer-
tainty are highlighted and their potential effect on the analysis identified; and c), ordinal risk
estimates are defined on a ratio scale.

3Convolution is the mathematical operation which finds the distribution of the sum of independent random
variables from the distribution of its addends. The term is generalised here to include operations such as difference,
product and quotients, as well operands other than distributions (e.g. intervals, probability boxes).
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BOX 2: BIAS AND NON-ASSOCIATIVITY IN QUALITATIVE RISK ASSESSMENT

Australia’s qualitative import risk assessment schema calculates the probability of import, estab-
lishment and spread using qualitative convolution rules illustrated in the matrix on the left hand
side of Figure 2.1. The matrix determines the outcome of the product of (for example) a “moder-
ate” probability of entry, with a “low” probability of distribution, resulting in a “low” probability of
entry. The matrix on the right hand side of Figure 2.1 shows the same combination rules but with
ratio-scale definitions of the terms “high”, “moderate” and “low” etc. (Table B1) substituted. This
matrix is shown on a log-scale for the purposes of clarity only.

Substituting qualitative terms with their numerical definitions allows the analyst to test for bias
and non-commutative results that can arise because the construction of the convolution matrix is
arbitrary. McCarthy et al. (2007) highlighted the potential for non-associative results with language
based convolutions, noting that in the Australian schema (“low” x “low”) x “very low” gives an
“extremely low” result. Whereas “low” x (“low” x “very low”) gives a “very low” result. Hence the
result of the convolution is sensitive to the way in which the product operation is bracketed.

The matrices in Figure 2.2 illustrate an effect similar to that identified by McCarthy et al. (2007).
Here the matrices show the result of the product of the four steps (importation, distribution, estab-
lishment and spread) in Australia’s import risk assessment procedure. The colour of the square box
within the matrix shows the result of the convolution identified in the title of each matrix. The top
left matrix shows the “extremely low” result that occurs when the qualitative convolution matrix is
used to calculate the product “low” × “low” × “very low” × “moderate”. The top right matrix shows
the (non-commutative) result “very low” when the order of this product is changed. The matrices
in the bottom of Figure 2.2 show the same effect for a different set of probabilities.

It is important to recognise that qualitative convolutions schemes can also lead to bias. The quan-
titative definitions of the terms “high”, “moderate” and “low” adopted in this context permit the
application of interval analysis (Moore, 1966). The location of the coloured boxes in Figure 2.2
show the interval that results from the convolution in the title of each of the matrices. The colour of
the box corresponds to the result of the qualitative convolution. The difference between the colour
of the box and the colours in the matrix that it spans illustrates the bias. The greater the colour dif-
ference the greater the bias. For example, the boxes plotted on the matrices in the bottom row show
that the product “high” × “low” × “moderate” × “moderate” results in the interval [0.0032, 0.147]
irrespective of the order or bracketing of the operation. This interval spans the categories “extremely
low” and “low” because its lower bound is > 0.001 and its upper bound is < 0.3. The qualitative
convolution, however, returns the result “low” or “very low” (depending on the order of the oper-
ation) suggesting that the interval spans [0.05, 0.3] or [0.001, 0.05]. The difference between these
intervals is bias.

The bias, non-associative and non-commutative effects demonstrated here are peculiar, but not lim-
ited, to Biosecurity Australia’s qualitative matrix combination rules - a similar effect can occur in
any qualitative risk matrix. The severity of the effect is determined by inter alia the number of
operations (four in this case) and the particular structure of the matrix. These considerations are
arbitrary and at the analyst’s discretion. Current guidelines for constructing qualitative risk matrices
(Cox, 2008) do not address this issue, and it is probably best avoided by simply replacing qualitative
combination rules with interval arithmetic (Section 4.4.2).
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2.3 What is uncertainty?
Uncertainty is a term used to encompass many concepts (Morgan and Henrion, 1990). It has
been defined as a degree of ignorance (Beven, 2009), a state of incomplete knowledge (Cullen
and Frey, 1999), insufficient information (Murray, 2002), or a departure from the unattainable
state of complete determinism (Walker et al., 2003). In truth, the scientific literature contains
many definitions, descriptions and typologies of uncertainty. This picture is complicated further
by different lexicons that use different names for the same thing, and occasionally the same
name for different things.

Regan et al. (2002a, 2003) identify two main sources of uncertainty: epistemic uncertainty and
linguistic uncertainty. Epistemic uncertainty is the uncertainty associated with knowledge. It is
the uncertainty created by imperfect knowledge about something that is in principle knowable,
and therefore in principle reducible with additional research and observation. It is synonymous
with terms such as incertitude (Carey and Burgman, 2008) and epistemological uncertainty
(Gillund et al., 2008), and is sometimes simply referred to as "uncertainty" (Frey and Burmas-
ter, 1999; McCann et al., 2006). Statisticians and modelers often refer to it as model uncertainty
or model error. Other authors, however, emphasise that model uncertainty represents only one
of many sub-categories of epistemic uncertainty (Regan et al., 2002a, 2003; Ryan, 2008) (Fig-
ure 2.3).

Many authors, including myself, separate variability from epistemic uncertainty, and identify
it as a third main source of uncertainty (O’Hagan et al., 2006; Hayes et al., 2007a; Carey and
Burgman, 2008; Ascough et al., 2009). Variability is the uncertainty associated with diversity
or heterogeneity. It is the natural or anthropogenically induced variation in a population over
space and time (Anderson and Hattis, 1999; McCann et al., 2006). Its key distinguishing feature
is that is cannot be eliminated with additional research or observation. In some circumstances it
can be reduced (in the sense of a lower variance) but it cannot be eliminated - it is an inescapable
reality of the real world. It is described in the literature as irreducible uncertainty (Tucker and
Ferson, 2003), random variability (Bolker, 2008), ontological uncertainty (Gillund et al., 2008),
or more cryptically still as “Type A” uncertainty (Hammonds et al., 1994).

Finkel (1990) identifies a fourth source of uncertainty - decision uncertainty - that enters policy
analysis after risks have been estimated. Finkel defines decision uncertainty as the uncertainty
that arises where there is ambiguity or controversy about how to quantify or compare social
objectives. It is synonymous with Morgan and Henrion’s (1990) “value” uncertainty. Finkel
goes on to identify various examples of decision-making uncertainty including measures used to
describe and summarise risk, defining acceptance criteria, choosing utility functions and ways
to aggregate individual utilities, and the (discounting) problem that occurs when comparing
immediate consequences with delayed ones.

Another source of decision uncertainty that arises in managed systems, after the risk estimation
process, is implementation error, defined by Harwood and Stokes (2002) as the uncertainty as-
sociated with incorrect, irrational or illegal behaviour of human beings that leads to imperfect
policy implementation. The uncertainty surrounding preferences, values and behaviour is not
reducible, and not solely, or even most appropriately, in the domain of scientific inquiry. Deci-
sion uncertainty is therefore outside the scope of this report. It is, however, important and can
influence how risk assessment results are interpreted and communicated (Ascough et al., 2009),
and should be recognised as a separate source of uncertainty.
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Figure 2.3: Venn diagram illustrating four broad categories of uncertainty, (epistemic uncertainty,
variability linguistic uncertainty and decision uncertainty), together with more specific
types of uncertainty identified by various authors within these broad categories (black
font), and the different, and sometimes confusing, nomenclature used to describe these
different types of uncertainty (grey italic font)
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References: 1. Rowe (1977); 2. Regan et al. (2002); 3. Harwood and Stokes (2002); 4. Carey and Burgman
(2008); 5. Ryan (2008); 6. Regan et al. (2003); 7. Gillund et al. (2008); 8. Hammonds et al. (1994); 9. Frey and
Burmaster (1999); 10. Bolker (2008); 11. McCann et al. (2006); 12. Vesely and Rasmuson (1984); 13. O’Hagan et
al. (2006); 14. Pate-Cornell (1996); 15. Tucker and Ferson (2003); 16. Morgan and Henrion (1990); 17. Karanki
et al. (2009); 18. Draper et al. (2000); 19. Hayes et al. (2008); 20. Baybutt (1989); 21. Clark (2007); 22. Charles
(1998); 23. OGTR (2005); 24. Cressie et al., (2007); 25. Morris and Doak (2002); 26. Ferson et al., (2003); 27.
Helton (1997); 28. Finkel (1990); 29. Frey and Rhodes (1998)
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On the whole, the various sources and categories of uncertainty identified in the literature can
be classified into one of these four categories: epistemic uncertainty, variability, linguistic un-
certainty and decision uncertainty. It is important to note, however, that the distinction between
these different categories is not always clear. The term process error for example is often used
to mean all sources of variability in a data set that cannot be explained by the variables of a
statistical or process-based model (Clark, 2007). Process error is therefore a mixture of the
uncertainty generated by the simplified reality of the model, that is potentially reducible (via a
better model), and the irreducible variability of the response variable.

Bolker (2008) categorises process error as variability that affects the future dynamics of the
ecological system, as distinguished from measurement error that does not affect the system
dynamics. This distinction is important because error in process model creates prediction errors
that can increase with time, whereas measurement error does not unless the measurements are
subject to systematic bias such as drift4. Modern (hierarchical) statistical methods can separate
these two sources of variation and provide estimates of process error that are not confounded
with measurement (observation) error (Section 3.3).

Ryan (2008) suggests that measurement error could fall under the category of random sampling
error. Other authors, however, consider measurement error as reducible and therefore a type
of epistemic uncertainty (Harwood and Stokes, 2002; Tucker and Ferson, 2003; Ferson et al.,
2003). Measurement error is also synonymous with Rowe’s (1977) definition of measurement
uncertainty (inability to assign values to variables in a system). Hence the terms process error
and measurement error are difficult to neatly categorise. The term parameter uncertainty is also
difficult to categories because it is used by some authors to describe inter alia measurement
error and random error (Finkel, 1990).

In short there is no single classification that neatly captures the different categorisations given
to the various sources of uncertainty that one encounters in the literature. Existing classifi-
cations and their sometimes confusing nomenclature, reflect differences between disciplines
driven by different domains, different objectives and the availability of data. The nomenclature
and classification summarised in Figure 1 captures many, but not all, of the idiosyncrasies in
the literature. In any particular application, however, the best that one can hope for are care-
fully defined terms, and context specific descriptions, of the types and sources of uncertainty
associated with the problem in hand.

2.3.1 Linguistic uncertainty

Linguistic uncertainty is an important but often overlooked source of uncertainty in risk assess-
ment. Linguistic uncertainty is important because it is pervasive in the workshops, committees
and other face-to-face, language-based, methods that qualitative risk assessment relies on to
assess and communicate risk (Carey and Burgman, 2008). It is overlooked because in many
taxonomies of uncertainty (Beck, 1987; Smith and Shugart, 1994; Pate-Cornell, 1996; Charles,
1998; Walker et al., 2003), risk assessment standards (Food and Agriculture Organisation, 1996;
Australia, 2004) and other risk-guidance publications (Barnthouse et al., 1986; USEPA, 1992;
Murray, 2002) there is no mention of this source of uncertainty.

4Drift is the continuous degradation in the accuracy of measurements with time
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Linguistic uncertainty arises because language, and our use of it, is not precise. Regan et al.
(2002a) identify five types of linguistic uncertainty:

• vagueness occurs because words allow border-line cases. The term “endangered” for
example is vague because some species are neither endangered nor not endangered - there
are borderline cases (Regan et al., 2002a). The terms used to distinguish likelihood and
consequences categories in qualitative risk assessment are typically vague - words such
as low, negligible, moderate, or frequent, large, etc. all permit borderline cases;

• context dependence is the uncertainty created by failing to fully specify the context in
which a proposition is to be understood. For example describing an oil spill as “small”
creates uncertainty - small for what? An oil container, a dinghy, a port, an ocean?
(Burgman, 2005). It is important to note that the term small is also vague and that this
source of uncertainty will remain even if the context is fully specified;

• ambiguity is uncertainty associated with the meaning of words. Words can have more
than one meaning and it is often not clear what the meaning is. A good example from
the bio-invasion literature is the term “invasive”. This word is variously used by different
authors to refer to species that are considered to be weeds, species that are spreading,
species that are harmful, and so forth. Inconsistent use of the same word can confound
attempts to compare the results of apparently similar studies (Hayes and Barry, 2008);

• indeterminacy is a subtle and insidious form of linguistic uncertainty. It arises because
the future use of a term may not be completely fixed by its current use. Pertinent ex-
amples (for import risk assessment) of this type of linguistic uncertainty occur through
taxonomic revisions, or the discovery of ecomorphs, strains or other practically impor-
tant differences between groups of organisms within the same species (see for example
Hayes et al. (2009)). Prior to a taxonomic revision or the discovery of sub-species groups,
analysts are unaware of the ambiguity associated with the species name;

• under-specificity creates uncertainty through unwanted generality. Unwanted generality
can occur in many ways, leading to many ways to interpret (for example) the statement,
“there is a 70% chance of rain” - will it rain for 70% of the day, will it rain over 70% of an
area, or do you mean a 70% chance of at least some rain, at a particular point? (Burgman,
2005). Unwanted generality can also occur through imprecise descriptions of locations
(e.g. inland Australia), processes (e.g. fishing), stressors (e.g. debris), etc. (Carey and
Burgman, 2008; Regan et al., 2002a).

Linguistic uncertainty may be deliberate or inadvertent. People may use vague terms deliber-
ately to avoid giving an impression of precision, or they may use them because they are poor
communicators. In either case vagueness and the other sources of linguistic uncertainty cre-
ate problems for risk assessment, particularly when analysts attempt to quantify certainty with
terms such as “highly certain” or “medium confidence”. O’Hagan et al. (2006) and Morgan and
Henrion (1990) emphasise that verbal expressions of uncertainty mean different things to differ-
ent people, and sometimes mean different things to the same person in different contexts. Verbal
expressions of certainty do not therefore provide a consistent (e.g. between assessments or even
between assessors) basis for uncertainty analysis. It is interesting to note that qualitative de-
scriptions of uncertainty figure prominently in the reports produced by Working Group III (WG
III) of the Intergovernmental Panel on Climate Change (IPCC) when describing climate-change
impacts. WG III describe these terms as self explanatory, which is a testament to how often the
importance of linguistic uncertainty is underestimated in scientific endeavors.
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2.3.2 Variability

Variability is caused by fluctuations or differences in a quantity or process. It is manifest as a
multiplicity of “true values” (Finkel, 1990), or as the diversity among members of a popula-
tion (Frey and Rhodes, 1998). The categorisation developed here (Figure 2.3) recognises the
following sources of variability:

• natural variation is the variability that occurs naturally in populations across time and
space. Some authors distinguish two sub-categories of temporal variability: environ-
mental stochasticity and demographic stochasticity. Environmental stochasticity is the
temporal variation in the mean vital rates (birth, death, growth, etc.) of organisms, caused
by the abiotic and biotic forces that effect a population. Demographic stochasticity is
temporal variation in population growth rates driven by chance variation in the actual fate
of different individuals. Morris and Doak (2002) suggests that this is essentially the same
as the inherent randomness that causes variation in the number of heads and tails when
repeatedly flipping a coin (see below);

• inherent randomness describes repeated processes that have no discernible deterministic
pattern and are unpredictable in detail. Regan et al. (2002a) argue that genuine examples
of inherently random processes are difficult to find, and that classic random processes
(such as tossing a coin) are only unpredictable because we do not have enough infor-
mation about the dynamics of the process and its initial conditions to reliably predict its
outcome. Even with this information, however, the outcomes of a coin toss would still be
patternless and therefore inherently random (Franklin, 2009). The extent to which com-
plex natural systems, such as ecosystems and weather systems, are inherently random is
a mute point. For practical purposes the variation associated with these systems cannot
be reduced or described by deterministic cause and effect relationships because we are
unlikely to ever hold enough information to completely characterise their dynamics, and
very slight differences in their initial conditions can quickly propagate to large differences
in later conditions.

As noted earlier, variability cannot be treated in the same sense as epistemic uncertainty or
linguistic uncertainty - i.e. it cannot be minimised. It can, however, be characterised and propa-
gated through a risk assessment using a variety of techniques that are discussed here. An impor-
tant practical consideration in this context, however, is the concept of a population. Variability is
the irreducible diversity or heterogeneity of a population. A clear definition and understanding
of variability therefore requires an unambiguous description of the relevant population (Ander-
son and Hattis, 1999). In practise this may not be a simple task, particularly where the risk
bearing units are separated or aggregated in, for example, a distribution network.

Furthermore, data used to capture and represent variability in a risk assessment may reflect only
a sub-set of the population of interest, or conversely may reflect a much larger group that are
exposed or otherwise predisposed to hazards to different degrees. Care must therefore be taken
when characterising the variability of a population to ensure that the population is appropriate
to the issue in hand. Thompson (1999) provides general guidance in this regard. Nauta (2000)
provides an example within the context of propagating variability and uncertainty through a
quantitative microbial risk assessment. Modern statistical techniques, such as random effects
models (McCulloch and Searle, 2001), provide a means to test for the presence of sub-groups
within a data set that may indicate important sub-population level processes.
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2.3.3 Epistemic uncertainty

Epistemic uncertainty stems from a lack of data, understanding and knowledge about the world.
In a risk assessment there are many ways in which our knowledge may be incomplete. The
categorisation developed here (Figure 2.3) recognises the following:

• model uncertainty is the uncertainty in our conception or description of a system. Hence,
Rowe’s (1977) classification of “descriptive uncertainty”. All risk assessments are pred-
icated on a conceptual model of the system in question. The extent to which this model
is transparent varies between assessments. Quantitative assessments are usually explicit,
whereas qualitative assessment often leave the assessor(s) conceptual model unspecified.
Transparent risk assessment models can range in quality from simple cartoons (Port of
Melbourne Corporation, 2006) to mathematical descriptions of ecosystem processes us-
ing difference or differential equations (Kot, 2001). They can be idealised representations
of a statistical process that generated a data set (e.g. a Poisson process for counts), or
more complex hierarchical representations of both the ecological process and observa-
tional process that generates data (Clark and Bjornstad, 2004). Uncertainty occurs in
the choice of variables that are included or excluded from the model, the relationships
between these variables in the model and the scale of the representation (Vesely and Ras-
muson, 1984; Emlen, 1989; Regan et al., 2002a; Melbourne and Chesson, 2005). A very
problematic outcome of model uncertainty is being faced with a choice of two or more
models that describe a data set equally well but give very different predictions (Chatfield,
1995; Pascual et al., 1997);

• completeness meaning have all relevant risk factors and phenomena been considered
(Ryan, 2008). More generally, completeness refers to uncertainty when enumerating all
possible states of the world or elementary outcomes (Halpern, 2005). Completeness un-
certainty is similar to model uncertainty but it is distinguished here because in risk assess-
ment this uncertainty occurs very early in the initial hazard identification stages (Vesely
and Rasmuson, 1984). An example in the context of import risk assessment is whether
or not all potential pests and pathways associated with a new commodity have been iden-
tified and included within the risk assessment, prior to the development of a model of
introduction, establishment and spread. The importance of completeness in risk assess-
ment is sometimes identified in risk-defining functions. Kaplan (1997) and Kumamoto
and Henley (1996), for example, define risk with functions that emphasise the need to
completely enumerate the number of ways things can go wrong (Table 2.1);

• scenario uncertainty is the epistemic uncertainty associated with predictions of future sit-
uations. Draper et al. (2000) define it as different sets of conditions in locations and time
(the future), resulting from both anthropogenic and natural processes. Ryan (2008) de-
scribes it as the uncertainty generated if a model is applied to situations outside the one
under study, particularly where the model is used to make predictions about future events.
Hayes et al. (2007a) identify “pressure scenarios” as combinations of uncertain ecosys-
tem models and uncertain future perturbations to these systems. Similarly Dambacher
et al. (2009) identify “perturbation scenarios” as possible future influences on fisheries
and harvest practises. Scenario uncertainty is similar to completeness but it is distin-
guished here because it specifically addresses the uncertainty associated with the future.
An example in an import risk assessment context may be changing trade patterns, or the
effect of climate change on the distribution of pests in an exporting nation;
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• subjective judgement occurs as a result of interpretation of data, for example where there
is insufficient data to make a reliable judgement about parameter values (Regan et al.,
2002a). It often manifests as differences in opinion between credible experts and is usu-
ally reducible by obtaining more data. Vesely and Rasmuson (1984) refer to this source of
uncertainty as parameter uncertainty, noting that it occurs when experts make judgements
about constants for which there is little or no data. Subjective judgement, however, is
not exclusively restricted to parameter values (it is also important in model construction)
and parameter uncertainty does not neatly fall into either of the categories of epistemic
uncertainty or variability (Figure 2.3). Vesely and Rasmuson (1984) identify two other
sources of parameter uncertainty: inapplicability and vagueness created by extrapolating
general values from a population of interest (e.g. all water-cooled nuclear power plants
in the USA) to a particular case (e.g. a particular water-cooled nuclear power plant). In
statistics this source of uncertainty is often categorised and treated as a random effect,
falling in the category of variability because it represents irreducible variation within a
population across space or time (McCulloch and Searle, 2001; Cressie et al., 2007);

• systematic error is bias. Regan et al. (2002a) define it as the difference between the true
value of the quantity of interest and the value to which the mean of the measurements con-
verges as sample size increase. Systematic error can arise through accidental or deliberate
exclusion of certain data (censoring), poorly calibrated measuring devices, non-random or
poorly stratified field surveys, extrapolating between laboratory settings or surrogate or-
ganisms to other sites, subjects and species, or indeed any form of consistently incorrect
process. The mechanisms that can generate consistently incorrect records are unfortu-
nately numerous and often subtle. Burgman (2005) provides examples that highlight the
diverse mechanisms that can generate bias;

• measurement uncertainty occurs because measuring devices and observers are imperfect.
Measurement uncertainty, also known as measurement error, observation error or random
error, manifests as (apparently) random variation in the measured value of a quantity (Re-
gan et al., 2002a). The magnitude of measurement uncertainty depends on the number of
measurements taken, the variation between measurements, the accuracy of the measur-
ing device and the skill and training of the observer. The sources and characteristics of
measurement uncertainty appear to be straightforward and well understood. Various au-
thors, however, do not unanimously categorise it (Figure 2.3), probably because the term
subsumes irreducible sources of uncertainty (finite measurement accuracy) with other
sources of error that are clearly reducible, such as the skill of the observer;

• sampling uncertainty is related to measurement uncertainty. It is defined by Ferson et al.
(2003) to be the epistemic uncertainty about the density function of a variable (i.e. its
variability) that arises because only a portion of the individuals in a population have
actually been measured. Frey and Rhodes (1998) refer to this source of uncertainty as the
“random sampling error” that is introduced by estimating a statistic, such as the sample
mean or standard deviation, from a limited number of samples5. In a risk assessment
sampling uncertainty is reflected as uncertainty in the variability of the input parameters
(risk factors) of a risk function. It is therefore useful to consider it as a type of parametric
uncertainty.

5This definition should not be confused with Morgan and Henrion’s (1990) definition of random error caused
by imperfect measuring devices (i.e. measurement uncertainty).
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3 Uncertainty analysis
Cox and Baybutt (1981) define uncertainty analysis as a process that quantifies the uncertainty in
a risk estimate, and partitions this uncertainty among the variables or risk factors that contribute
to the risk estimate. Helton and Davis (2002) define it similarly as the answer to the question:
what is the uncertainty in f (X) given the uncertainty in X? This report takes a slightly more
general view. Here we define uncertainty analysis as a three-step process that:

1. recognises, identifies and minimises linguistic uncertainty;

2. recognises, identifies, and where ever possible characterises, variability and epistemic
uncertainty in the risk factors X and risk function f (X); and,

3. estimates the effect of epistemic uncertainty and variability on the outcomes of a risk
assessment and reports this effect in an open and clear fashion.

This definition emphasises the different types and sources of uncertainty in risk assessment, and
the importance of propagating epistemic uncertainty and variability through the assessment in
an honest fashion.

3.1 Linguistic uncertainty
Regan et al. (2002a) list a variety of treatments for linguistic uncertainty including providing
precise numerical definitions for vague terms, and carefully specifying the context of terms
and their meaning when these terms are potentially ambiguous. Providing precise numerical
definitions for terms such as low, medium and high is a popular treatment for vagueness when
assessing and communicating uncertainty. This approach, however, may impose a level of
precision that analysts find difficult to work with (particularly in data-poor situations), does not
guarantee that language-based operations will be commutative and unbiased (Box 2), and it
can create a conundrum known as “Sorites Paradox”. The practical importance of the Sorites
paradox occurs where small changes close to the boundary of a term, result in large changes
in risk estimates. Consider, for example, a qualitative assessment that defines “low” likelihood
as an event with an annual frequency of ≤ 0.3, and “medium” likelihood as an event with an
annual frequency ≤ 0.7. An event with an annual frequency of 0.31 is therefore classified as
“medium”. Analysts and stakeholders will probably be uncomfortable with this classification
and it may dramatically change a subsequent risk estimate.

It is difficult to systematically minimise or eliminate all the various sources of linguistic un-
certainty in a risk assessment. Evidence for this, together with further guidance on treatments,
can be found in a variety of studies that have recently examined the use and interpretation of
language-based descriptions of uncertainty in IPCC reports. Patt and Dessai (2005) and Bude-
scu et al. (2009), for example, independently demonstrate that scientists and policy makers
interpret terms such as “likely” or “very unlikely” in very different ways, and continue to do so
even when they have read a set of numerical definitions for these terms. These studies demon-
strate that the heuristics people use when judging uncertain events (Section 3.2.5) are not easily
replaced with more consistent and mathematically coherent methodologies.

The study conducted by Patt and Dessai (2005) demonstrates that people’s interpretation of
language-based descriptions of uncertainty is influenced by the context of the statement, par-
ticularly the perceived severity of the uncertain event that is being assessed. Budescu et al.
(2009) also point to the (potentially complex) interplay of different sources of linguistic un-
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certainty, wherein people assign different quantitative interpretations to a term such as “very
unlikely” because they also assign different meaning to under-specified or context dependent
terms such as “frequent”, “large” or “abrupt” that accompany the description of the uncertain
event in question.

One suspects that in risk assessment problems the effects of linguistic uncertainty will persist
unless people’s beliefs in uncertain events are carefully elicited with techniques that are specif-
ically designed to expose misunderstandings, reduce heuristic biases, and ultimately replace
language-based expressions of uncertainty with numerical expressions. For example, the treat-
ments for linguistic uncertainty offered by the two studies cited above include identifying the
source and type of uncertainty being described and the requirement that every probability term
be accompanied by a numerical interval, but this interval need not be consistent for the same
terms but allowed to vary in different contexts.

The methods recommended by O’Hagan et al. (2006) and Spiers-Bridge et al. (2010) are capable
of eliciting a context-specific numerical interval but it is important to recognise that numerical
intervals are only one of many numerical methods for modeling the partial information and
imprecision associated with language (Walley, 1996). Fuzzy sets for example provide a calculus
for vagueness, and hence a way to avoid the practical implications of Sorites paradox (Goguen,
1969; Klir and Folger, 1988), whilst Walley and Cooman (2001) argue that upper (and lower)
probabilities provide a more general way to model simple forms of vagueness such as “the risk
is low”. Fuzzy sets and imprecise probability, however, have not been widely adopted in risk
assessment (Section 4), and Fuzzy sets have also been criticised on the grounds that they are
not good representations of how humans actually process vague terms (Morgan and Henrion,
1990).

3.2 Epistemic uncertainty and variability
3.2.1 Methods overview

There are many methods to characterise, treat and propagate epistemic uncertainty and vari-
ability through an analysis but comparatively little guidance on the use of these methods in
quantitative risk assessment. Beven (2009) is a notable exception in this regard providing com-
prehensive guidance on how to choose an uncertainty analysis method. Beven’s approach dis-
tinguishes “forward uncertainty propagation methods” that can be used in the absence of data,
and methods that are conditioned upon or assimilate data. Here we maintain this distinction
and recognise two different modes of uncertainty analysis: a forward, propagative mode that
is informed by expert knowledge and experience, but lacks data, and a conditioning, inference,
mode supported by knowledge, experience and conditioned by data (Figure 3.1).

Data is the stating point for any consideration of epistemic uncertainty and variability. It is im-
portant at this point to distinguish between data (observations of a process) and understanding
and beliefs about a process. The latter is generated via experience and previous observations
of the process in question (or similar processes), and is often the basis for quantitative and
qualitative risk assessment, particularly where relevant data are absent. The key to uncertainty
analysis in the absence of data is elicitation. Elicitation converts beliefs into outcomes, models
or parameters that enable forward propagative uncertainty analysis. Structured elicitation tech-
niques also provide an opportunity to avoid or minimise linguistic uncertainty, heuristic bias
and dysfunctional group effects (Table 3), and are therefore good practise in quantitative risk
assessment (Burmaster and Anderson, 1994).
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Elicitation can proceed in one of two ways: structural or predictive (Figure 3.1). Structural,
or direct, elicitation specifies the process of interest and elicits from experts and stakeholders,
models or model parameters. The elicitation typically focuses on the probability of an event
within the process or on the probability of a large number of possible values for uncertain events
in the process (Hampton et al., 1973). There are many methods for eliciting point estimates and
distributions. These methods are discussed further in Section 3.2.5.

Data provided by structural elicitation (or actual observation) provides the basis for a large
number of probabilistic and some non-probabilistic methods of forward uncertainty propaga-
tion. Probability-based methods include Bayesian Belief Networks, Monte Carlo simulation
and probability bounds analysis, and are often the methods that risk analysts’ refer to when they
talk about uncertainty analysis techniques (Figure 3.1). Import risk assessment is typically per-
formed in the absence of empirical observations. Hence, uncertainty analysis in this context is
often performed using probabilistic forward propagation methods. Relevant non-probabilistic
techniques include fuzzy sets and interval analysis, and graphical techniques such as fuzzy cog-
nitive maps and qualitative modeling (aka loop analysis). These methods are discussed further
in Section 4.

Predictive elicitation specifies scenarios that describe the process of interest and elicit from
the expert and/or stakeholder the probability or value of the outcome. Embedded within the
scenarios are explanatory variables or “keys”, that condition the expert’s response. In a risk
assessment context these keys are risk factors. The elicited outcome is then treated as the de-
pendent variable in regression-like problem (Kaldane and Wolfson, 1998; Barry and Lin, 2010).
The basic idea behind predictive elicitation can be traced back to Egon Brunswick’s theories of
representative experimental design and the “lens model” that identifies the probabilistic rela-
tionship between cues (information on which a forecast or prediction is based), the event that is
subsequently observed and the prediction (Brunswick, 1955, 1956). The primary advantage of
predictive elicitation is that it enables the powerful machinery of modern regression techniques.
The analysis can include, for example, the effect of experts in the regression model (as a fixed or
random effect) and distinguish process error (attributable to the model, the cues) and judgement
error (attributable to individual experts).

If the assessor has observations of the process then elicitation is no longer strictly necessary,
but it can serve as way to test the predictive accuracy of experts (Stewart, 1990). Observa-
tions enable prediction, explanation and classification using data-mining and/or model-based
statistical methods. In Figure 3.1 these techniques are loosely termed statistics, however, the
distinction between uncertainty analysis and statistics is not constructive in a risk assessment
context. Virtually all risk assessment frameworks emphasise the importance of monitoring and
review, and here we emphasise that scientifically credible risk assessments should ultimately
become a statistical exercise by making predictions about the risk-generating process that are
testable and eventually tested against observations. Hence a more useful distinction is to con-
sider forward uncertainty propagation methods as the initial tools of uncertainty analysis, that
enable honest assessments (sensu Burgman) to proceed before observations are made and data
are collected. Thereafter, uncertainty analysis should increasingly move to an inferential mode
that relies on statistics and uncertainty analysis methods to characterise and quantify variability
and epistemic uncertainty in data sets relevant to the problem in hand.
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3.2.2 Model uncertainty

The structure of a model that describes a risk-generating process is an important determinant
of the risk assessment result. The results of all risk assessments, qualitative or quantitative,
are conditional on a model, at the very least a conceptual model. Hence model uncertainty is as
relevant to qualitative risk assessment as it is to quantitative risk assessment. The only difference
in this context is the transparency of the model and the analysis of uncertainty associated with
it.

Models serve two roles: as heuristic devices they can provide insight into a system’s behaviour
and provide greater understanding of complex processes. As predictive devices they form the
center piece of model-based decision support systems such as risk assessment and management
strategy evaluation (Sainsbury et al., 2000; Walker et al., 2003). It is in the predictive role
that model structure uncertainty is particularly important because ignoring it creates overly pre-
cise predictions. In practise, however, this source of uncertainty is often overlooked (Draper,
1995; Chatfield, 1995; Laskey, 1996; Breiman, 2001; Arhonditsis et al., 2007; Hill et al., 2007).
The models used in pathway-based import risk assessment are predictive and typically highly
abstract, decomposing complex bio-invasion events into a simple series of steps to which prob-
abilities are assigned in order to estimate the overall risk (Figure 1.1).

Levins (1993) lists three desirable properties of a model: it should be precise, generalisable
and realistic. Similar desiderata, such as relevance, flexibility and realism or “physicality” are
listed in the literature (Reichart and Omlin, 1997; Pastorok et al., 2002). It is important to
note, however, that it is impossible to maximise all three properties because the model will
be no less complex than the real world. All models must sacrifice at least one property in
order to maximise the other two, and hence model uncertainty is unavoidable. Model structure
uncertainty can be handled in one of four ways:

• ignore it;

• treat it by comparing the predictions of alternative plausible models;

• treat it by conducting a second order uncertainty analysis that averages over alternative
plausible models; or,

• envelope it by bounding the predictions of alternative models.

Ignore it
Model structure uncertainty is almost always ignored in qualitative risk assessment (because
the conceptual model is internalised) and is often ignored in quantitative risk assessment. In
some circumstances this is a defensible approach. For example, the structure of a risk model is
sometimes dictated by normative industry standards - such as the ecotoxicity hazard quotient -
or is mandated under national or international standards - such as the OIE animal product import
risk assessment guidelines and models (Table 2.2, Morley (1993)). Mandated risk functions or
models provide a comparable basis for risk ranking because differences between assessments
cannot be attributed to different models. If the risk function or model structure is not mandated,
and uncertainty surrounding its structure is ignored, then the analyst is simply assuming that the
model used in the assessment is the best one for the purpose at hand. This assumption should
be clearly stated in the assessment and where-ever possible addressed using the approaches
identified in this report.

If the structure of a model is not mandated then the analyst must make a number of decisions

32



about which variables to include or exclude from the model, which components should be ag-
gregated or disaggregated, the nature of the relationship between disaggregated components
(e.g. linear or non-linear), what stochastic terms (process error, observation error, environ-
mental variability, etc.) are to be included, and if they are included, how they are represented
(normally distributed for example). These decisions can have an important effect on the results
of the model. Investigating the effects of a range of plausible model structures is a recom-
mended alternative to simply ignoring uncertainty about model structure (Hilborn and Mangel,
1997; Pascual et al., 1997). The application of this approach, however, varies between disci-
plines. This variation reflects, at least in part, three different modeling paradigms - statistical,
mechanistic and qualitative - that can be loosely interpreted as maximising different pairs of
Levin’s desirable model properties (Figure 3.2).

Compare alternatives: Statistical models
According to Breiman (2001) and Bolker (2008) the vast majority of statistics is based on a
data-modeling culture that portrays real-world processes as a stochastic function of explanatory
variables (caricature A of Figure 3.2). In statistics, however, the term “model” is ambigu-
ous. It can refer to a single parameter, as in the use of a Poisson distribution as a “model”
of the variability between random events in space or time, where there is no structure per se,
to regression models of the form y = βX + ε where there is clear scope for structural un-
certainty because βX can vary from a simple linear combination of n explanatory variables,
βX = β0 + β1x1 + β2x2+, · · · , βnxn, to much more complicated functions incorporating trans-
formations of, and interactions between, the explanatory variables X (Hastie et al., 2001). The
discussion in this section refers to the latter interpretation.

The more recent machine learning or “algorithmic modeling culture” (Breiman, 2001; Hastie
et al., 2001) (caricature D in Figure 3.2) eschews models in favour of algorithms that accurately
predict patterns in data sets. Machine learning techniques rely on non-parametric techniques
such as regression trees to select variables, and metrics of predictive accuracy to determine
their credentials. They usually divide a data set into training and testing sets, but do not a priori
specify a model for the data, and hence are able, at least in theory, to avoid the problem of
model structure uncertainty. The choice or availability of explanatory variables, however, may
have been based on a conceptual model, and hence these techniques are not completely freed
from the uncertainty in the underlying conceptual model. Moreover, the distinction between
these two cultures is not distinct as modern statistical techniques often mix tenets of parametric
and non-parametric statistics (Ruppert et al., 2003; Freidman and Popescu, 2008).

The statistical data modeling culture typically treats alternative models by testing how well they
fit a data-set using step-wise variable selection methods (Hocking, 1976; Faraway, 2002), to-
gether with metrics such as the Likelihood Ratio or Bayes Factor (Kass and Raftery, 1995),
and/or information metrics such as Aikake’s Information Criteria, the Deviance Information
Criteria or the Bayesian Information Criteria (Burnham and Anderson, 1994; Ellison, 2004;
Link and Barker, 2006). In multiple regression problems, however, the set of possible models
can be very large (2p where p is the number of potential explanatory variables) and parameter
estimates will be biased if a model is formulated from the same data set that the parameter es-
timates are subsequently inferred from (Chatfield, 1995). Modern regression techniques tackle
this problem by applying a penalty term to the loss function (the difference between obser-
vations and predictions) that reduces the magnitude of very large regression coefficients, and
eliminates very small regression coefficients, thereby effectively estimating the model and its
parameters simultaneously (Hastie et al., 2001).
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Average over alternatives: Statistical models
A second order analysis of model structure uncertainty can be completed in an inferential mode
using Bayesian Model Averaging (BMA) (Draper, 1995; Hoeting et al., 1999). Hoeting et al
describe the essential elements of BMA as follows: the posterior probability of the quantity of
interest ∆ is given by:

P(∆|D) =

K∑
k=1

P(∆|Mk,D)P(Mk|D). (3.1)

where the posterior probability of model Mk conditional on the data D is given by

P(Mk|D) =
P(D|Mk)P(Mk)∑K
i=1 P(D|Mi)P(Mi)

, (3.2)

The (marginal) likelihood of the data p(D|Mk) under model k is found by integrating across the
model’s parameters θk

P(D|Mk) =

∫
P(D|θk,Mk)P(θk|Mk)dθk, (3.3)

where P(D|θk,Mk) is the likelihood of the data and P(θk|Mk) is the prior probability of θk for
model Mk.

BMA emphasises that inference on a quantity of interest is conditional on the model and pro-
vides estimates that are weighted averages of the predictive distribution of each model, where
the weights are the posterior probabilities of each model. The approach is very similar to the
treatment of model uncertainty using second-order Monte Carlo Simulation, except that in this
case solutions are conditioned on, and constrained by, observations. Models that are poorly
supported by the data contribute little to the overall posterior estimate of the quantity of interest
so long as they are assigned relatively uninformative prior probability.

The main difficulties with BMA are: a) there is limited guidance on how to specify the prior
probabilities P(Mk) for each model; b) the integrals in Equation 3.3 can be difficult to compute,
although they have been solved for certain classes of statistical model, and they can also be
replaced with a BIC approximation under certain circumstances (Wintle et al., 2003); and c),
the number of plausible models in the summation in Equation 3.1 can be very large.

This last issue can be tackled by using model selection methods to reduce the set of possible
models down to a smaller set of plausible models using a method such as “Occam’s window”.
Occam’s window calculates the ratio of the posterior probability of a small model and a larger
model, and discards the larger model unless it is strongly supported by the data. This process
proceeds in a pair-wise fashion, eliminating models that are not conclusively supported by the
data. The selection criteria, however, is somewhat arbitrary. Hoeting et al. (1999), for example,
suggest strong evidence for the large model as a posterior model probability that is 20 times
greater than that of the smaller model. An alternative solution to the problem of a large number
of candidate models is trans-dimensional Markov methods (Sisson, 2005), the most well known
of which is reversible jump MCMC (Green, 1995). Reversible jump MCMC enables averaging
across a large range of models and avoids any arbitrary distinction between strong and weak
evidence. This approach, however, is technically and computationally demanding. Designing
efficient between-model proposals is a difficult problem, particularly for models of different
dimensions. Solving this problem is still an active area of statistical research (Fan et al., 2009).
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Compare alternatives: Mechanistic models
Mechanistic models emphasise precision and realism over generality, using difference or dif-
ferential equations to portray real world processes (caricature B, Figure 3.2). These models are
not easily generalised because each new context requires new initial conditions and a new set of
parameter values. Hence, analysing the effects of alternative models structures within the mech-
anistic model paradigm can be a time-consuming process because of the overheads associated
with parameterising each alternative structure.

Model uncertainty in this paradigm is again addressed by either considering a range of alterna-
tive structures (Pascual et al., 1997; Fulton et al., 2004) or by treating the model structure as an
uncertain parameter and averaging over this parameter in a second-order uncertainty analysis.
In the former approach, prudent models are typically chosen on the grounds of parsimony and
ideally validated with independent data sets and clear falsification criteria (Fedra et al., 1981;
Reckhow and Chapra, 1983; Oreskes et al., 1994; Rykiel, 1996; Turley and Ford, 2009).

A critical issue in this context is that in absence of data there are no strong constraints on the
number of plausible models that should be examined. Theoretically the number of plausible
models is infinite. Pascual et al. (1997) note this problem but suggest that in practise thoughtful
ecologists should be able to limit their construed scenarios to a (presumably small) set of reason-
able models. Models that exhibit ecologically impossible behaviour are clearly not plausible,
but without observations the analyst may still face an inconveniently large number of plausible
alternative structures. The number of “reasonable” mechanistic models may be constrained dur-
ing uncertainty analysis if observations of the processes of interest are available. Unreasonable
models will find relatively little support - i.e. have a relatively low likelihood - under the data.
Hence, reasonable models can be identified in the mechanistic modeling paradigm by either
specifying reasonable ranges on the predictive behaviour of the model’s parameters, dictated
by observation and/or ecological theory (Fedra et al., 1981) or, where data are available, using
methods such as Generalised Likelihood Uncertainty Estimation (Beven, 1993; Romanowicz
and Beven, 2006), goodness of fit cost functions (Villars et al., 1998), target diagram methods
(Los and Blaas, 2010) or formal Bayesian inference methods (Arhonditsis et al., 2007; Peters
et al., 2010).

Average over alternatives: Mechanistic models
Second order uncertainty analysis for mechanistic models can be achieved in a forward propaga-
tive mode via simulation. The simulation assigns a distribution function to a class of plausible
models and treats this as a "model hyper-parameter" in a second-order Monte Carlo Simulation.
For example, with two competing models the distribution would be a Bernoulli distribution tak-
ing two values with probability determined by the relative likelihood that either model is the
right one (Ferson et al., 2003). This distribution is sampled on each pass of a Monte Carlo
simulation, a model is chosen according to its relative likelihood, and the simulation completed
in the usual manner by sampling from the distributions that represent variability in the model’s
parameters. This technique results in predictions that represent an average of all models in the
plausible class, weighted by the relative probability of each model. In this approach, however,
the analyst is again faced with the unconstrained problem of specifying a number of plausible
or possible models, and their relative likelihood. In the absence of other prior information, an
analyst may simply assign equal likelihood to all plausible models.

Second order MCS and BMA provide a means to avoid statistical and mechanistic predictions
that are overly precise, by averaging predictions across plausible model structures. Second
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order MCS is a relatively simple approach whereas BMA requires considerable expertise and
experience to successfully implement. Ferson et al. (2003), however, suggest that there is a
far greater problem with these approaches: by representing model uncertainty via a mixture
of possible models, these approaches may effectively average incompatible theories. They can
result in posterior predictive distributions that are not supported by any of the theories that
underlie the individual models.

Envelope alternatives: Mechanistic models
In light of potential difficulties with average over alternative models, Ferson et al. (2003) suggest
an alternative strategy for handling model uncertainty is to envelope or bound the results of
alternative plausible models. Large numbers of plausible models represent a practical challenge
to this approach, and may lead to risk results that are too broad to be of practical value, but it is
nonetheless sensible and computationally simpler than averaging.

Perhaps the best known example of the enveloping approach for mechanistic models is the
multi-model global averages of surface warming produced by Working Group I of the Intergov-
ernmental Panel on Climate Change (IPPC) (Figure 3.3 (IPPC, 2007). This example shows the
application of two different uncertainty treatment strategies: model uncertainty treated by en-
veloping the predictions of a range of alternative mechanistic models, and scenario uncertainty
(discussed in Section 3.2.4) treated by considering 6 alternative future emission scenarios.

Compare alternatives: Qualitative models
Qualitative models emphasise generality and realism at the expense of precision (caricature C,
Figure 3.2). Qualitative modeling techniques divert attention to the relationships and general
trends between variables and away from the estimation of precise parameter values. Current
applications range from simple influence diagrams (Cox et al., 2003; Niemeijer and de Groot,
2008; Negus et al., 2009), fuzzy cognitive maps6 (Ozesmi and Ozesmi, 2003; Ramsey and
Veltman, 2005; Ramsey and Norbury, 2009) to loop analysis and the use of signed digraphs
that are mathematically similar representations of the differential equations that underlie most
mechanistic process models (Dambacher et al., 2002, 2003b; Hosack et al., 2008). All of these
methods are discussed further in Section 4.

An important facet of the qualitative modeling paradigm is that it does not strive to accurately
parameterise cause and effect relationships and is therefore less reliant on data. It relies instead
on the experience and beliefs that underlie the conceptual models of cause and effect held by
all scientists and stakeholders. Model structure uncertainty in this paradigm is addressed by
using a technique that enables the opinions of many different stakeholders to be canvassed and
quickly converted into a range of plausible models that reflects the diversity of their opinions.

Qualitative models are constructed graphically, and are therefore well suited to situations that
involve diverse groups of stakeholders or collaborators who may hold different views of a sys-
tem but are unable to describe them mathematically. Simple (less than three or four variables)
signed digraphs can be analysed by hand within a few minutes. More complex graphs and
qualitative models can be analysed just as quickly if the assessor is familiar with certain soft-
ware (refer to Section 4). Qualitative models can therefore treat model structure uncertainty by
quickly exploring the implications of a large range of plausible models, prior to settling on a
subset for subsequent (quantitative or qualitative) analysis. They are therefore a good way to
elicit prior beliefs on model structure.

6Some readers may wonder why I have classified fuzzy cognitive maps as a qualitative modeling technique.
The reasons for this are made apparent in Section 4
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Again an important challenge in this context is the potentially very large number of plausible
models. In the qualitative modeling paradigm it can be difficult to identify reasonable mod-
els from the range of plausible models because their predictions refer only to the direction of
change, not its magnitude. Reasonable models can be identified by comparing the actual direc-
tion (positive, negative, unchanged) of change of a model’s variables with the predicted direc-
tion of change using a simulation derived metric of sign determinacy (Hosack et al., 2008) but
the issue of statistical (in)validation of qualitative model predictions remains an open research
question.

3.2.3 Completeness

Completeness uncertainty is treated in the hazard identification stage of a risk assessment. The
purpose of the hazard identification is to identify what can go wrong and how things go wrong -
i.e. enumerate and characterise all elementary outcomes. Hazard analysis tools range from sim-
ple unstructured brainstorming, to more systematic top-down (e.g. fault tree analysis, failure
modes and effects analysis) or bottom up (event tree analysis, Hazard and Operability analysis,
Hierarchical Holographic Modeling) approaches (Kletz, 1999; Hayes, 2002a,b; Hayes et al.,
2004). Hazard analysis techniques such as fault tree and event tree analysis, can also be used
to help construct “complete” descriptions of exposure pathways, and hence in the context of
pathway-based import risk assessment, they can be viewed as a means to address model struc-
ture uncertainty as well (Burgman, 2005).

3.2.4 Scenario uncertainty

Scenario uncertainty is typically addressed by postulating a range of “what if” scenarios that
are designed to examine the effects of future conditions that are fundamentally different from
current conditions. This can be achieved under any of the three modeling paradigms identified
above, although some authors recommend that analysts shift towards increasingly simple, order
of magnitude, models when making predictions far beyond the original domain of the model
- e.g. when making predictions many decades into the future (Casman et al., 1999). Draper
et al. (2000) use a combination of macro- and micro-scenarios to postulate possible situations
millions of years into the future. Macro-scenarios are defined as high-level statements of future
conditions (such as climate change), whereas micro-scenarios are more detailed descriptions of
these scenarios within the modeling context adopted for the assessment. These authors state that
the best results are obtained when future scenarios are as exhaustive as possible, emphasising
the similarity between scenario uncertainty and completeness.

3.2.5 Subjective judgement

Subjective judgement is an important source of uncertainty in all forms of risk assessment,
but is particularly important in qualitative risk assessment because it relies exclusively on this
form of information. Subjective judgement contributes to both model structure uncertainty and
parameter uncertainty. Treatments for model structure uncertainty are discussed above and in
Section 2.5.1.

Subjective risk estimates are most reliable (predictions and outcomes are well calibrated) when
relevant data is plentiful, feedback on the accuracy of the predictions is immediate and the
experts have strong incentives to improve their performance (Franklin et al., 2008). At least
two of these criteria, however, are not met for import risk assessment (as currently practised in
Australia). Hence, in data-scarce situations, subjective judgement is a necessary but potentially
inaccurate source of information.
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Subjective judgements about uncertain parameters are usually obtained by asking experts for
a (qualitative or quantitative) estimate of the parameter (Hampton et al., 1973; Regan et al.,
2002a). Naive, unstructured approaches to this problem should be avoided because:

• terms such as “low likelihood” confound linguistic uncertainty with other forms of un-
certainty, including subjective judgement. The different sources of uncertainty that are
compounded within these terms cannot be separated without (at least) numerically defin-
ing the meaning of terms such as “low”;

• humans use particular cognitive structures, and well-documented heuristics when making
judgements about uncertain problems (Anderson, 1998; Hubbard, 2009). These cognitive
structures can fail, and the heuristics can lead to outright errors unless information is
elicited and presented to assessors in particular formats (Table 3.1); and,

• unstructured group elicitation is prone to “dysfunctions of interactive group processes”,
such as group pressure for conformity and the influence of dominant personalities, that
may exacerbate individual heuristic effects, particularly overconfidence (Bier, 2004).

Fortunately there are many ways to elicit models and parameter values from experts in a man-
ner that helps to avoid or minimise heuristic bias and dysfunctional group effects. The four-step
elicitation procedure adopted in the case study (Box 1) was specifically designed to address
many of these issues, and the literature contains ample guidance and additional methodology.
Renooij (2001) and O’Hagan et al. (2006) for example, provide very readable introductions to
this topic. Jenkinson (2005) and Burgman (2005) provide comprehensive accounts of methods
for eliciting probabilities, distributions and risk assessment models. Kynn (2008) provides an
excellent summary of expert heuristics and offers ten guidelines for eliciting probability esti-
mates from experts. Kaplan and Burmaster (1999) provide similar guidance.

Franklin et al. (2008) argues that some sources of heuristic bias can be attenuated by account-
ability, and recommends that in data-poor situations subjective judgement and quantitative
methods are mixed in an “advocacy” framework similar to that used by banks and financial
regulators to analyse operational risk. The advocacy framework replaces the immediate feed-
back of data with expert review and potentially hostile stakeholder reaction, mediated by an
independent panel. This situation is not too dissimilar to the current practice of import risk
assessment and may therefore be relatively easy to implement once the necessary quantitative
elements were incorporated into the current practice.

Ferson et al. (2003) summarise five different approaches that can simultaneously capture epis-
temic uncertainty and variability from inter alia expert opinion, and discusses ways to aggregate
multiple estimates. Some of these techniques are used in subsequent sections of this report to
analyse the information elicited for the project case study. It is important to recognise that nu-
merical definitions of terms such as “low”, coupled with structured elicitation techniques, pro-
vides a mechanism to minimise linguistic uncertainty and a means of transition from qualitative
to quantitative risk assessment. Qualitative risk assessment is unnecessary once an expert’s
opinion has been carefully elicited and numerically defined. The main impediments to quan-
titative risk assessment are the overheads associated with formal elicitation techniques (but in
practise these may be no greater than those of unstructured workshops) and the computational
hurdles of performing arithmetic with random variables (Section 2.5).

Subjective judgement is also important in the treatment of systematic error, particularly in de-
cisions to ignore it by assuming, for example, the carcinogenic potency of a large dose of a
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Table 3.1: A summary of some of the key issues and heuristics that can result in bias when parameter
values are naively elicited from assessors7

Issue Description and implications

Overconfidence Assessors tend to overestimate the accuracy of their beliefs or alternatively un-
derestimating the uncertainty in a process. This leads to, for example, difficul-
ties in estimating the tails of a distribution that represents the variability of a
parameter, or equivalently confidence intervals that are consistently too narrow
and do not span the true value of a parameter (where this is known)

Availability Assessors link their probability estimates to the frequency with which they
can recall an event. Unusual, catastrophic, newsworthy and recent events are
more easily remembered than distant or routine events that are not newsworthy.
Hence assessors underestimate the frequency of the latter (e.g. annual number
of deaths by stroke) and overestimate the frequency of the former (e.g. annual
number of deaths caused by tornadoes)

Representativeness Assessors judge the probability that A belongs to B by how representative or
similar A is to B, leading to a range of phenomena such as base rate neglect, the
law of small numbers and insensitivity to sample size. For example the string of
coin tosses HTHTTH is deemed to be more likely than HHHTTT or HTHTHT
(when in fact it is not) because the process of tossing a coin is known to be
random and the first string looks more random than the second or third

Anchoring and ad-
justment

An assessor (or group of assessors) tends to anchor around any initial estimate
and adjust their final estimate from this value irrespective of the accuracy of the
initial estimate. The subsequent adjustment is usually insufficient to correct the
initial inaccuracy due to the effect of overconfidence

Scale format and
translation

An assessor’s response to the same problem tends to vary depending on the
scale and manner in which information is presented. Transforming a variable
to another scale sometimes creates confusion and mathematically incoherent
estimates

Motivational bias
and affect

Assessors can provide inaccurate or unreliable estimates because it is benefi-
cial for them to do so. Proponents of a project may overestimate benefits and
underestimate risks or costs because of enthusiasm for the project and/or ambi-
tion within a company. This can be particularly problematic when assessing the
risks of a new technology because those with substantive technological knowl-
edge often stand to gain from its adoption

Non-adherence to
probability axioms

Assessors fail to provide probability estimates that adhere to the axioms of
probability (e.g. conditional probability axioms) unless the information is pre-
sented in the form of a frequency, frequency tree or with the assistance of a
conditional probability table

Source references: Morgan and Henrion (1990), Kaldane and Wolfson (1998), Burgman (2005), Kynn (2008)
and Kuhnert and Hayes (2009)
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chemical in mice is the same as its low dose potency in humans (Morgan and Henrion, 1990).
Regan et al. (2002a) note that theoretical grounds for systematic error may be identified but in
practise it is very difficult to recognise it when it occurs. Burgman (2005) recommends generic
treatment strategies such as diligent inspection of experimental theory, comparing estimates
with scientific theory, independent studies, replication and careful attention to detail. Other
generic advice stresses caution when extrapolating laboratory studies to real world situations,
or making predictions based on regression analysis of historical data (Morgan and Henrion,
1990).

3.2.6 Measurement error

Measurement error can occur in conjunction with systematic error leading to observations that
are both imprecise and inaccurate. Measurement error is treated by reporting observations
within the limits of the measuring device, and applying standard statistical techniques that mea-
sure variability around the mean, such as the range or variance of a variable, or the standard
error of the mean (Sokal and Rohlf, 1995).

3.2.7 Parametric uncertainty and sampling uncertainty

The various forms of variability encountered in risk assessment problems are usually charac-
terised and propagated by assigning a probability distribution to the factors or variables (pa-
rameters) that are inputs to the risk function. When implementing this approach the analyst
must choose the type of distribution (Normal, Triangular, Gamma, etc.) and the parameters
that define its location, shape and spread. The first problem is the large number of distributions
that might be used to describe the variability in a model parameter. Patil et al. (1984a,b), for
example, describe 136 discrete univariate and multivariate distributions, and 151 continuous
univariate distributions.

The second problem is that the analyst may also be uncertain about the parameters of any par-
ticular distribution due primarily to the effects of measurement error, subjective judgement or
sampling uncertainty. Sampling uncertainty arises because we rarely measure all of a popula-
tion. It is evident in the difference between the empirical distribution functions derived from
two independent samples taken from the same population, or more simply the different sum-
mary statistics associated with these samples. Sampling uncertainty is an important source of
parametric uncertainty in risk assessment because limited observations are often the basis for
characterising the variability of the factors (input parameters) in risk functions.

There are five ways to treat parametric uncertainty in a risk assessment:

• ignore it;

• eliminate one or more of the parameters from the model via a simpler or more complex
risk function;

• treat the variability by conducting a sensitivity analysis that compares the effects on the
risk estimate of a variety of different density functions;

• treat the variability by enveloping it so that the results of the risk assessment are guaran-
teed to lie between upper and lower bounds; or,

• treat it by averaging over the uncertainty in the parameters of a distribution function using
a second-order uncertainty analysis method.
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Ignore it
Ignoring uncertainty about the type of density function can sometimes be justified on theoretical
grounds. Gardner and O’Neill (1983) suggest that a probability distribution should be chosen
on the basis of: a) the probabilistic properties of the process being modelled; b) the empirical
distribution of the data; and, c) any information on the expected distribution of the system’s
behaviour. Thompson (1999), however, argues that the single-most important criterion for se-
lecting the type of distribution is knowledge about the nature of the process that generated the
random variable.

Many parametric distributions have been developed to describe the scientific findings that simi-
lar processes lead to similar patterns of variability (Thompson, 1999). If the mechanistic process
that generates variability is well understood then the analyst might simply choose an appropriate
density function. For example, the choice of a Normal (Gaussian) distribution might be justi-
fied on the grounds that the uncertain input results from a large number of small independent
errors. Equivalent theoretical justifications exist for many distributions commonly employed in
risk assessment (Stephens et al., 1993; Ferson et al., 2003) (Tables 3.2 and 3.3).

An alternative rationale for choosing one probability density function over all others can be
found in the Maximum Entropy principle. The entropy of a discrete random variable X is given
by the differential entropy function

H(X) = −

∫
p(x) ln p(x)dx. (3.4)

The maximum entropy principle argues that a density function should be chosen that maximises
this entropy function, subject to the constraints of the total law of probability - i.e. the density
function must integrate to 1, and other constraints provided by the available information - i.e.
any observations of the process to hand. The rationale for this argument is that the maximum
entropy function subject to these constraints represents the minimum amount of information
that is consistent with these constraints. For example, the density function that maximises the
differential entropy, subject to the constraints that the first and second moments are equal to a
sample mean and variance, is the Normal distribution with these moments.

The mathematics associated with the entropy theory are quite complex. The constrained max-
imisation is performed using Lagrange multipliers and the calculus of variations. It does, how-
ever, provide an arguably objective rationale for selecting a probability density function and
leads to a number of results that support “uninformative” priors used in Bayesian inference
(Vose, 2000). Lee and Wright (1994) and Ferson (1996a) discuss the application of this ap-
proach to risk assessment problems. A more detailed introduction to the genesis and mathemat-
ics of the maximum entropy principle can be found in Bishop (2006).

Ignoring uncertainty about the parameters of a given distribution function might also be justified
on the grounds that a single distribution provides an excellent fit to the available data. Murray
(2002), Thompson (1999) and Cullen and Frey (1999) provide good guidance on the parametric
and non-parametric methods that are can be used to gauge the concordance between a distri-
bution and a data set. Large data sets (hundreds of observations), however, may be required
to accurately distinguish the tails of distributions if the ratio of the standard deviation to the
mean is greater than one (Haas, 1997). In ecological systems, however, data sets of this size are
relatively rare. In more typical situations analysts have very little data to guide the choice of a
distribution, or may find that two or more distributions fit (small) data sets equally well but lead
to very different predictions, particularly in the tails.
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Table 3.2: Common parametric distributions and the generating process used to justify their selec-
tion in quantitative risk assessment (amended from Thompson (1999)

Name Range Mechanistic basis for selection

Beta (a, b) 0 ≤ x ≤ 1 Fractional quantities including the probability of observing an
event given data of n trials and r successes. Conjugate prior
for a Bernoulli likelihood. Uncertainty in the probability of an
event occurring. A modified four parameter version is some-
times used for subjective distributions

Binomial (n, p) 0 ≤ x ≤ n Number of success in n attempts where each attempt has a
probability p of succeeding and probability 1 − p of failing.
A Bernoulli distribution is a special case with n = 1. Used
to model dose-response data (e.g. number of animals with dis-
ease out of the number exposed)

Cauchy (a, b) −∞ < x < +∞ Cauchy (0, 1) arises from the ratio of two independent Normal
variates

Chi-squared (ν) 0 ≤ x < +∞ Sum of the squares of ν Normal variates. Describes the sam-
pling distribution for a small sample size variance of a Normal
distribution. Special case of the Gamma α = ν

2 , β = 2

Error function (h) −∞ < x < ∞ Distribution of normal random errors

Erlang (α, β) 0 ≤ x < +∞ Describes the time between events. Equivalent to a Gamma
distribution with discrete value of α

Exponential (β) 0 ≤ x < +∞ Describes the inter-arrival times between random, successive,
independent events that occur at a constant average rate. β
represents the mean time between events. Special case of the
Weibull with α = 1

Gamma (α, β) 0 ≤ x < +∞ Describes the time required for a specified number of events
(α) to occur, given a random Poisson process with a con-
stant average time interval of β between events. The sum
of independent exponential random variables. Equals expo-
nential when α = 1 and equals chi-squared when Gamma
α = ν

2 , β = 2

Geometric (p) 0 ≤ x < +∞ Results from an exponential decline. Describes the number of
failures that occur between successes given a probability p of
success. Equals the negative binomial with n = 1. Discrete
version of the exponential distribution

Gumbel (a, b) −∞ < x < +∞ One of the Extreme Value distributions. Used to estimate a
maximum observable value. Represents the limit of the max-
imum value of n identically distributed continuous random
variables as n approaches infinity

Hypergeometric
(S , n,N)

0 ≤ x ≤ min(n, S ) Describes the number of items of one type randomly chosen
without replacement in a sample of size n from a population
of size N containing S such items (and N − S other types)
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Table 3.3: Continuation of parametric distributions commonly used in risk assessment and the gen-
erating process used to justify their selection

Name Range Mechanistic basis for selection

Logistic (α, β) −∞ < x < +∞ Approximately describes the middle of the range of a set of
identically distributed variables - e.g. the average of the high-
est and lowest values observed for identical items. Commonly
used to describe population growth

Lognormal (µ, σ) 0 ≤ x < +∞ Arises from multiplicative processes. Describe quantities that
are the product of a large number of other quantities. Used
to describe quantities with occasionally large values (right
skewed quantities) such as the concentration of a substance in
the environment, the number of species in a family of commu-
nity, resistance to chemicals and bacteria on plants (Ott, 1995;
Limpert et al., 2001)

Negative Bino-
mial (n, p)

0 ≤ x < +∞ Describes the number of attempts to succeed n times given a
constant probability of success p on each attempt. Related to
the Geometric distribution

Normal (µ, σ) −∞ < x < +∞ Also known as the Gaussian distribution. Arises from the
addition of a large number of random variables (as long as
none of them dominate the variance). Results from the Cen-
tral Limit Theorem of probability. Used for a large number of
physical and biological processes such as dispersion

Pareto (a, b) a ≤ x < +∞ Also known as the Zeta distribution. Describes variables with
their highest probability at a minimum value a > 0, and for
which probability density declines geometrically above that
value

Poisson (λ) 0 ≤ x < +∞ Describes the number of relatively rare independent events oc-
curring within a fixed time interval or unit of space, such as
counts of microbes and radiation in an interval of time

Raleigh (b) 0 ≤ x < +∞ Describes the time to the occurrence of an event. Maxi-
mum entropy distribution when arithmetic mean and geomet-
ric mean are known. Equivalent to a chi-squared (2) distribu-
tion when b = 1, and a Weibull (2,

√
2b) distribution

Student’s t (ν) −∞ < x < +∞ Describes the sampling distribution of the mean of a Normal
random variable for a small sample size

Triangular
(a, b, c)

a ≤ x ≤ c Often used when the minimum, maximum and mode of a vari-
able assumed to be perfectly known.

Uniform (a, b) a ≤ x ≤ b Assumes all intervals between precisely known upper and
lower limits have constant equal probability. Maximum en-
tropy distribution when only the minimum and maximum val-
ues are known

Weibull (α, β) 0 ≤ x < +∞ Describes the lifetime of an item, and the time between occur-
rence of events (e.g. success or failure) when the probability
of occurrence changes with time
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Model or eliminate it
An alternative treatment for parametric uncertainty is to try and emulate the process that creates
the variability reflected in the parameter via a more complex risk function, or eliminate the
parameter altogether via a simpler risk function. Modeling variability effectively transfers the
problem of parametric uncertainty into one of model structure uncertainty by creating a more
complex model. This will rarely be an attractive option. A much simpler and potentially more
attractive option is to re-state the problem in simpler terms. Hayes (1997) emphasises that
the complexity of risk assessment models are largely driven by the assessment endpoints and
recommends choosing endpoints that are as simple as possible whilst still being relevant for
policy and management purposes. Assessment endpoints at the end of risk event chains, such as
the spread of an established pest, inevitably entail more complex models than endpoints selected
at intermediate points in an event chain, such as the number of organisms that successfully arrive
at a nation’s borders.

Reducing model complexity by choosing endpoints that are as simple as possible whilst still
remaining relevant for management purposes can be an effective treatment for parametric un-
certainty. The trick here is to offer risk managers a range of endpoints within the risk-generating
chain of events and ask them, “What is the simplest assessment endpoint that allows you to
make decisions on the acceptability of this risk?” before embarking on the assessment. This
strategy was successfully applied to the risks associated with ballast water introductions in Aus-
tralia (Hayes, 2003; Hayes et al., 2009). This is clearly not an option, however, where the risk
assessment endpoint is mandated by national or international legislation.

Compare alternatives
If the analyst cannot ignore, simplify or model an uncertain parameter, and has trouble justifying
a distribution on the grounds of theory, and/or relevant data sets are simply too small to accu-
rately distinguish between distributions, then the next alternative is to explore the implications
of parametric uncertainty by comparing the effects that different plausible distributions have on
the results of the risk assessment. This is better than simply choosing one distribution on the
grounds of, for example, mathematical convenience. This approach, however, is incomplete
because the number of plausible distributions may be large and there is no a priori guidance
on how many distributions are “enough” to fully capture the uncertainty in the input parameter.
A complete solution, however, can be achieved by enveloping the uncertainty surrounding the
input parameter using probability boxes.

Envelope alternatives
Ferson et al. (2003) provides an excellent summary of ways to envelope the distribution of an
uncertain model parameter using probability boxes built on the basis of whatever information
is available. Probability boxes are a class of imprecise probabilities that can be used to describe
a distribution whose shape is precisely known (or assumed) but whose parameters are uncer-
tain, a distribution whose parameters are precisely known but whose type is uncertain, and a
distribution of uncertain type and parameters. These methods form the foundation of proba-
bility bounds analysis and are discussed further in Section 4. In this context the strength and
distinguishing hallmark of probability bounds analysis is that it frees the analyst from having
to make any assumptions about the type of the distribution function or its uncertain parame-
ters. Probability boxes can be created that are “best-possible” meaning that they are guaranteed
to envelope the true quantity in the smallest box possible given the available data (Ferson and
Hajagos, 2004).
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Average over alternatives
The final strategy for dealing with parametric uncertainty is to average over it8 using a second-
order uncertainty analysis method. In this context “second-order” refers to methods that prop-
agate uncertainty about the parameters (mean, standard deviation, etc.) of a given distribution
function through the risk assessment. This approach therefore assumes that the analyst is able
to select one or more probability distribution functions to represent the variability in a risk
factor, and then accurately characterise the uncertainty in the parameters of this distributiobn.
This characterisation can be achieved in five different ways, four of which require at least two
observations (samples) of the parameter in question:

• using expert opinion; Hoffman and Hammonds (1994) suggest that expert opinion can
be used to characterise uncertainty in the variability associated with input parameters
in quantitative risk assessment. This is not, however, a compelling approach given the
overheads associated with expert elicitation methods and the large range of more objective
numerical methods;

• via standard parametric results; there are a number of standard statistical results that de-
scribe the reliability (standard error) of statistics derived from random samples, and more
importantly provide intervals (confidence limits) that for the purposes of a risk assess-
ment can be interpreted as bounds on the true value of the unknown population parameter
(Freund, 1992; Sokal and Rohlf, 1995). These approaches, however, require some as-
sumption about the nature of the variability in the underlying population, typically that
the variability in the population is normally distributed;

• numerically via bootstrapping; the bootstrap is a data-based simulation method that can
be used to quantify the sampling uncertainty associated with a statistic that is estimated
from a limited number of samples (Efron and Tibshirani, 1994; Frey and Burmaster,
1999). Bootstraps can be parametric or non-parametric. Non-parametric bootstrap in-
volves resampling a data set with replacement many times, and generating an estimate of
the statistic on each occasion in order to characterise its variability. The main shortcom-
ing of this approach is that the values of each bootstrap sample will always lie between
the maximum and minimum values of the original data set. This can create substantial
bias when characterising the population-level variability in a sample statistic, particularly
with small data sets. Parametric bootstraps avoid this problem but at the cost of having
to make assumptions about the distribution of the underlying population variability. The
application of the parametric bootstrap to risk assessment is discussed extensively in Frey
and Rhodes (1998), Cullen and Frey (1999) and Vose (2000);

• via Maximum Likelihood; the likelihood function actually provides two ways to construct
confidence intervals around sample-based statistics, through the likelihood profile and
via the Fisher Information matrix (Clark, 2007). Both approaches require the analyst to
identify the probability density function that describes the variability in the population
from which sample observations were drawn. The observations are used to determine the
maximum likelihood estimate (MLE) of the parameters of the probability density function
that is known or assumed to describe variability in the population. The likelihood profile
uses a likelihood ratio constructed around the MLE, and a test statistic called the deviance
that has a χ2 distribution, to generate confidence intervals for the sample statistic centered
on the MLE. The Fisher Information method uses the curvature of the log-likelihood

8It is important to recognise that averaging reduces variability and therefore in a sense erases uncertainty.
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function in the neighborhood of the MLE to estimate the variance of the sample statistic
(Burmaster and Thompson, 1998; Frey and Burmaster, 1999). The curvature, however, is
a quadratic approximation - a Taylor series expansion around the MLE up to the second
order terms - and can give poor results with non-Normal likelihood functions and small
data sets (Clark, 2007).

• via Bayesian predictive intervals; the Bayesian equivalent of confidence intervals - cred-
ible intervals - are simply percentiles of the posterior distribution and are therefore a
natural byproduct of Bayesian inference. The Bayesian posterior distribution is propor-
tional to the product of the likelihood of the population parameters given the observations,
and the prior probability of the parameters. This approach therefore requires additional
assumptions regarding the prior distribution of the population parameters. The additional
information these assumptions bring to the problem can be considered advantageous or
simply another source of unwanted subjective input. See Hayes (1998) and ? for fur-
ther discussion, from a risk assessment perspective, on some of the issues associated with
Bayesian inference.

For large sample sizes each of the methods discussed above yield similar results. When sam-
ple sizes are small, however, they can give substantially different results. The choice of one
method over another is dictated by computational considerations (e.g. is the likelihood function
differentiable?) and the contextual information associated with the problem in hand (e.g. are
assumptions about the nature of the population variability tenable?). Clark (2007) provides a
very readable explanation of each of these methods, together with additional guidance on their
use.

3.3 Dependence
Risk assessment entails arithmetic with uncertain and variable quantities. This uncertainty and
variability imposes a number of theoretical and practical challenges, one of which is the effect
of dependence. Dependence between the variables of a risk assessment model implies that the
outcomes of the random variables are somehow related to each other. For example, if X and Y
are two continuous real-valued random variables, then positive linear dependence implies that
when the value of X is large relative to its full range, then so is the value of Y . Likewise when
the value of X is small relative to its full range, then so is the value of Y (Regan et al., 2004). It is
important to recognise that the dependence between random variables can be complex and not
necessarily linear and, despite contrary suggestions in the literature (Smith et al., 1992; Slob,
1994; Bukowski et al., 1995), its effect on risk estimates cannot be accurately characterised
by a sensitivity analysis that varies a correlation coefficient between + 1 and -1. Furthermore,
low or zero correlation between two random variables does not generally mean that they are
independent (Ferson and Hajagos, 2006, 2004; Ferson, 1996a).

The potential sources of dependence are many and varied (Table 3.4). Two sources of depen-
dence, functional dependence and variable repetition, occur via construction of the risk function
or model. They are perhaps trivial sources of dependence but nonetheless have important im-
plications. Functional dependence prevents (except in special cases) analysts from rearranging
equations with uncertain operands in the usual (high school) way to solve for an unknown (Fer-
son, 1996a). Variable repetition inflates probability bounds beyond those that are “best possi-
ble” (Section 4). Statistical dependence occurs in the parameters of some distribution functions
also by virtue of construction. The shape parameters of the Gamma and Beta distributions
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are important cases. Scatter plots of these parameters, constructed by fitting the distributions
to bootstrapped samples, display patterns of non-linear dependency that cannot be adequately
described by a linear correlation coefficient (Frey and Rhodes, 1998).

The other types of dependence identified in Table 3.4 are a facet of the real-world. They are
diverse and include the spatial and temporal dependence commonly observed in time series
and spatially-explicit processes (such as the spread of an invading organism), the dependence
created by biological "laws" such as the body weight and surface area of organisms, and the
dependence between the opinions of experts created by common schooling or exposure to the
same (limited) body of evidence. Many of these sources are directly relevant to import risk
assessment problems.

The types and sources of dependence identified here are not comprehensive. Hickman (1983),
for example, identifies many sources of dependency in complex industrial systems (nuclear
power plants) that are not listed here. Li (2000) identifies “macroeconomic forces” as an im-
portant source of dependence in financial instruments, such as Collaterized Loan Obligations
(CLOs). These forces cause loan defaults to increase during times of recession and decrease
during times of economic growth, creating positive dependence in CLOs. This positive depen-
dence was partially responsible for the Global Financial Crisis of 2009. There are doubtless
other potential sources of dependency in the risk assessment problems. These examples listed
here and in Table 3.4 illustrate the potentially diverse and sometimes subtle sources of depen-
dence that may be encountered in risk assessment.

Dependence between experts is difficult to avoid but it can be minimised by canvassing the opin-
ions of a wide range of experts and stakeholders, and by using the structured elicitation tech-
niques discussed in Section 2.3. Functional dependence cannot be avoided but it only presents
a practical problem in limited circumstances (back calculation with MCS). Variable repetition
can sometimes be avoided by restructuring the risk function or model so that variables are not
repeated (Ferson, 1996a).

The other sources of dependence identified in Table 3.4 can be treated in one of four ways:

• ignore it;

• envelope it such that the results of the risk assessment are guaranteed to lie between upper
and lower bounds irrespective of the dependence;

• model or infer the joint distribution that describes the dependence using copulas; or,

• factorise the joint distribution that describes the dependence into a series of conditionally
independent distributions and then model or infer the parameters of these distributions
using Bayesian statistical methods.

Ignore it
Smith et al. (1992) suggest that dependency between random variables can be safely ignored
when the correlations between the variables are weak, when the variables have only a small in-
fluence on the result of the risk assessment, and when the variables are “relatively well known”
- i.e. have a small9 standard deviation. Ignoring dependence between risk factors and assuming
they are independent considerably simplifies risk assessment arithmetic. The expectations of
binary operations on real random variables are simple function , and the joint distribution of
two or more random variables is simply the product of their marginal distributions (Table 3.5).

9The meaning of “small” here is context dependent, and in this instance under specified.
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Table 3.4: Some sources of dependence that may be encountered in risk assessment

Type Description and examples Reference

Functional In a simple risk function such as R = AB
C the risk (R) is

a function of A and cannot therefore be independent of A.
The dependence is implied by the structure of the model

Ferson (1996a)

Repetition Variables that occur repeatedly in a risk function are (by
definition) perfectly dependent and should not be indepen-
dently sampled

Common cause In abnormal operating environments the operating charac-
teristics of components may all be simultaneously altered.
For example, the failure rates of safety components in in-
dustrial systems may not be independent during a fire or a
flood if the common cause of the fire or flood destroys the
redundancy built into the safety system

Ferson and Haja-
gos (2004)

Temporal Serial autocorrelation between observations (x1, x2, · · · , xn)
of a random variable X. Commonly encountered in finan-
cial and ecological data sets. For example, the vital rates of
an organism are commonly correlated within and between
years: good years for survival also tend to be good years for
reproduction and growth

Morris and Doak
(2002)

Spatial Spatial autocorrelation between observations
(x1, x2, · · · , xn) of a random variable X. Many ecolog-
ical phenomena are structured by forces that have a spatial
component. Hence, the similarity (variance) of features at
different sites is dependent on the distance between the sites

Legendre and Leg-
endre (1998)

Same source Observations and measurements errors of different variables
taken from the same source may be correlated. For example,
measurement and measurement errors of different dioxin
congeners taken from the same individual are likely to be
positively correlated

Hart et al. (2003)

Biological Many biological variables are dependent. For example, the
body size of an organism at sexual maturity and its fecun-
dity, the body weight of an individual and its food intake
rate, the weight of an individual and their skin surface area

Tucker and Ferson
(2003)

Elicitation Information elicited from experts may be dependent for
many reasons. For example, they all reflect a single school
of thought, they all have seen the same (partial) set of data,
they are influenced by a single dominant individual

Bier (2004)

Statistical Dependence between sampling distributions of parameters
of parametric distributions. For example, non-linear de-
pendence between samples of the parameters α and β of a
Gamma distribution

Frey and Burmas-
ter (1999)
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Assuming risk factors are independent, however, can lead to bias and overly precise predictions
(Regan et al., 2002b). Moreover, low or even zero correlation coefficients do not imply indepen-
dence, and dependency can influence tail risks even if correlation is zero (Ferson and Hajagos,
2004).

Envelope alternatives
The problem of computing the distribution of the sum of two random variables X and Y , when
nothing is known about the dependency between them has a long history. Frechet (1935) solved
the problem for conjunction and disjunction of events A and B with probability P(A) and P(B),
but it took another 52 years before the more general case was solved for random variables with
marginal distributions F(x) and F(y), and for a larger class of operations (Frank et al., 1987).
Frank’s theoretical solutions, however, are not well suited to calculation via a computer because
they involve finding the largest and smallest values over an infinite number of cases10.

Williamson and Downs (1990) subsequently operationalised Frank’s solution by providing al-
gorithms that compute the bounds in a way that accounts for the discretisation error introduced
by encoding continuous distributions with a finite computer representation. Their algorithms
allow the convolution of two random variables with unknown dependency for all binary op-
erations such as product, ratio, sum and difference (Table 3.5). Moreover, the solutions are
guaranteed to enclose all distributions that could arise as a result of the convolution no matter
what dependence there may be between the variables, and for individual binary operations they
are point-wise best possible, that is, they cannot be any narrower without excluding distribu-
tions that could arise under some dependence between X and Y (Ferson and Hajagos, 2006).
The algorithms of Williamson and Downs also have a number of other attractive properties:

• they require less computer time and memory than convolutions obtained via Monte Carlo
simulation, and are much more convenient than sensitivity studies that explore the effects
of different dependence;

• they can be combined in risk assessment calculations with assumptions of independence
so that some variables are assumed to be independent, whilst no assumptions are made
about other variables; and,

• their “outward bounded” discretisation of a continuous distribution function allows prob-
ability boxes to be constructed from precise and imprecise distributions with an arbi-
trarily small discretisation error. This provides a platform that extends Frank’s solutions
for precise marginal distributions to imprecise marginal distributions, thereby enabling
probability bounds analysis (Section 4).

Applying the Williamson and Downs algorithms in a pair-wise fashion to the marginal distribu-
tions of all the random variables in a risk function can result in broad upper and lower bounds
for the overall risk estimate (see Section 3.2.2). These bounds can be tightened if the analyst
has some knowledge about the sign of the dependency between the variables using the “partially
specified dependence” methods described by Ferson and Hajagos (2006). For example, if two
variables are known to be positively dependent, then the convoluted distribution function of the
sum can be found using algorithms that are similar to Williamson and Downs (Table 3.5).

10Frank’s solutions are for infinite sets and entail infimum (inf ) and supremum (sup) functions. For finite sets
the infimum equals the minimum and the supremum equals the maximum
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Model the joint distribution
The dependency between random variates can be modelled and simulated in a number of ways,
using either the parameters of their joint distribution functions or via samples drawn from their
marginal distribution functions in a fashion that is faithful to the known or assumed dependency
between them. Welsh et al. (1988) and Smith et al. (1992) provide algorithms for comput-
ing the moments of correlated variables under various convolutions (Table 3.6). Scheuer and
Stoller (1962) provide a numerical method for generating correlated normal random variates,
whist Iman and Conover (1982) provide a more general distribution-free method for induc-
ing correlation between variables during a simulation. This method is popular and it has been
adopted in various risk assessment software packages such as @Risk (Haas, 1999).

Methods such as Iman and Conover’s are accurate, numerically inexpensive and fairly simple to
implement, but it is important to recognise that they cannot represent all forms of dependence,
and in many cases are limited to (potentially unrealistic) linear or monotonic dependency. For
this reason, statisticians often cross-check the value of a correlation coefficient against a scat-
ter plot of the data used to calculate the coefficient in order to protect against the potentially
misleading impression that high (or low) correlation coefficients can give (see for example
Hutchinson and Lai (1990) or Ferson and Hajagos (2004)). Scatter plots, however, are typically
unavailable to analysts performing data-free simulation with risk assessment software. In these
circumstances analysts must either accept that they are simulating correlation, not dependency,
or use other techniques that are capable of representing more complex forms of dependence that
can occur in reality. One such technique entails dependence functions known as copulas.

Copulas are multivariate functions that couple marginal distributions together in ways that can
characterise complex non-linear dependencies either via inference or in forward propagative
analysis of uncertainty. Nelsen (1999) provides the following definition of a bivariate copula:
Consider a pair of random variables X and Y , with distribution functions F(x) = P(X ≤ x) and
F(y) = P(Y ≤ y) respectively and a joint distribution function H(x, y) = P(X ≤ x,Y ≤ y). To
each pair of real numbers (x, y) we can associate three numbers that all lie on the interval [0,
1]: F(x), F(y) and H(x, y). Each pair of real numbers leads to a point

(
F(x), F(y)

)
in the unit

square [0, 1]× [0, 1] and this ordered pair in turn corresponds to a value of H(x, y) in [0, 1]. The
function that assigns the value of the joint distribution to each ordered pair of values from the
individual (marginal) distributions is called a copula, typically denoted C

(
F(x), F(y)

)
. More

generally, for a n dimensional random vector U on the unit cube, a copula C is

C(U1,U2, · · · ,Un) = P(U1 ≤ u1,U2 ≤ u2, · · · ,Un ≤ un). (3.5)

One important result from the theory of copulas is Sklar’s Theorem (1959). The theorem states
that if H is an n-dimensional distribution function with continuous marginal distributions func-
tions F1, F2, · · · , Fn, then there exists a unique n-copula C such that for all x in<n

H(x1, x2, · · · , xn) = C (F1(x1), F2(x2), · · · , Fn(xn)) . (3.6)

If each Fi is discrete then C is unique on Range (F1)× Range (F2)×, · · · , Range (Fn). Sklar’s
theorem is important because it proves that any n-dimensional probability distribution can be
expressed in terms of its marginals via a copula. Hence there are no limitations to the types of
dependency that can be represented with copulas.

Theoretically there are an infinite number of ways to link the ordered values of a multivariate
distribution function to its marginal distributions, and hence in theory an infinite number of
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copulas. In practise, however, analysts tend to stick to a handful of copulas that have useful
mathematical and statistical properties. Common examples in the risk assessment literature
include the normal copula, Frank copula (Table 3.6), Gumbel copula, Joe copula and Clayton
copula (Jouini and Clemen, 1996; Clemen and Reilly, 1999; Haas, 1999; Li, 2000; Embrechts
et al., 2001; Yan, 2007). Figure 3.4 shows contour plots of the density functions of four popular
bivariate copulas, with identical marginal distributions and the same dependence measure (in
this case Kendall’s tau = 0.5). The different patterns of dependence induced by each of the
copulas are clearly evident.

One very important property of copulas is that they provide multivariate dependence structures
that are separate from their marginal distributions, and since any continuous random variable
can be transformed to be uniform over the range [0, 1] by its probability integral transformation,
copulas can be constructed with any continuous marginal distribution. For example, Figure 3.5
shows the contour plots for the same set of copulas in Figure 3.4 but this time with Beta (10,
2) and Lognormal (5, 1) marginals. This example demonstrates the complex patterns of depen-
dency that copulas are capable of representing. Note that this pattern of dependency cannot be
mimicked with a linear correlation coefficient.

Two other important results from the theory of copulas are the Frechet-Hoeffding limits for joint
distribution functions of random variables and the product copula Π(u, v) = u ·v. Frechet (1951)
and Hoeffding (1940) showed that for any bivariate copula C and for all u, v on the unit square:

W(u, v) = max(u + v − 1, 0) ≤ C(u, v) ≤ min(u, v) = M(u, v). (3.7)

Hence by Sklar’s theorem if X and Y are random variates with a joint distribution H(x, y) and
marginal distributions F(x) and F(y), then for all (x, y)

max
(
F(x) + F(y) − 1, 0

)
≤ H(x, y) ≤ min

(
F(x), F(y)

)
. (3.8)

The Frechet-Hoeffding limits are important because the lower bound Wn is smaller than every n-
copula, and the upper bound Mn is larger than every n-copula, and hence via Sklar’s theorem the
value of all distribution functions must lie within these bounds. The Frechet-Hoeffding limits
therefore bound the joint distribution function of n random variables irrespective of the depen-
dency between the variables. Williamson and Down’s algorithms make use of these limits to
calculate bounds on convolutions of random variables without having to make any assumptions
about the nature of the dependency between them (Table 3.5).

The product copula is important because, again via Sklar’s theorem, two random variables X and
Y are independent if and only if their joint distribution has the product copula C

(
F(x), F(y)

)
=

F(x) · F(y).

Using copulas to model dependency requires an appropriate metric of dependence, typically
transformed versions of Spearman’s rank correlation coefficient or Kendall’s tau, 11 and an
appropriate copula. Choosing an appropriate copula, however, invokes model structural uncer-
tainty. The true data generating mechanism for a bivariate or multivariate data set is usually
unknown and several candidate copulas may fit the data equally well.

11Most copulas are parameterised by a dependency parameter that in many cases is a simple transformation of a
rank-order correlation coefficient such as Spearman’s rank correlation coefficient or Kendall’s tau
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Empirical copulas and log-likelihood methods for fitting parametric copulas are available and
statisticians typically recommend fitting a number of candidate copulas to the data and choos-
ing among ones with the highest likelihood (Yan, 2007; Nelsen, 1999). The list of appropriate
copulas may be constrained by their inherent properties, 12 but in many cases the analyst will
still be faced with a potentially large number of candidates. Like all model selection prob-
lems, the particular choice of copula can have important implications for the results of the risk
assessment, particularly because different copulas assign different levels of dependency to the
upper and lower tails of bivariate distributions - an effect known as “tail dependency” (Haas,
1999; Embrechts et al., 2001). This effect is clearly evident in the Clayton and Gumbel copulas
illustrated in Figure 3.5.

The main advantage of copulas is that they provide a direct and relatively simple way to model
joint dependency. A risk function of n random variables can be directly modelled by assigning
marginal distributions to each of the variables, estimating a rank correlation coefficient between
each variable and choosing an appropriate copula Cn. Copulas therefore provide an alternative
to the potentially complex calculations that are needed to express a joint distribution as the
product of conditional independent distributions (see below).

Another important advantage of copulas is that they allow the analyst to propagate the effects of
tail dependence through a risk assessment. This can be important if the parameters of a problem
are independent under “normal” conditions (e.g the process is operating around the mean or the
mode of the parameters concerned) but become dependent at the extreme ranges of a parameter.
It is important to note, however, that this type of behaviour may not be evident in data sets
collected under “normal” conditions and may therefore be a potential source of completeness
or scenario uncertainty, treatments for which are discussed in Section 3.

Copulas can also be used with probability boxes and Dempster-Shafer structures to convolve
imprecisely known random variables using the “diagonal difference” method (Ferson and Ha-
jagos, 2004). In propagative uncertainty analysis, however, implementing a copula-based ap-
proach requires a reliable estimate of the rank correlation matrix. This is an inherently difficult
task. Clemen and Reilly (1999) identify methods to elicit rank correlations from experts, but
these methods are rarely used in ecological risk assessment, and in practise copulas are mainly
used in the inferential mode of uncertainty analysis.

Factor the joint distribution
If risk factors are treated as random variables, then risk is a function of their joint density. An
alternative way to model, simulate and perform inference with a multivariate density is to factor
it into a series of simpler (usually univariate), conditionally independent densities. At the heart
of this approach are the two fundamental rules of probability (Bishop, 2006):

p(X) =
∑

Y

p(X,Y) (Sum rule)

p(X,Y) = p(Y |X)p(X), (Product rule)

where p(X,Y) is the joint distribution of the random variables X and Y , and p(X|Y) is the con-
ditional distribution of X given Y .

12Some types of copula can only model positive dependency (Archimedean copulas of dimension 3 or higher),
and some are non-comprehensive - i.e. cannot represent the full [−1,+1] range of Kendall’s tau or Spearman’s
rank correlation coefficient
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From the product rule, together with the symmetry property p(X,Y) = p(Y, X) the follow rela-
tionship known as Bayes theorem immediately follows

p(Y |X) =
p(X|Y)p(Y)

p(X)
, (Bayes rule)

where the denominator can be expressed, via the sum rule as

p(X) =
∑

Y

p(X|Y)p(Y). (3.9)

The product rule holds for cases where X and Y are not independent. Repeated application of
this rule allows high-dimension multivariate probability density functions to be factored into
products of simpler, conditionally-independent, density functions that can be sampled one (or
more) at a time. For example, an arbitrary joint density function p(X,Y,Z) can, by application
of the product rule, be written as

p(X,Y,Z) = p(X|Y,Z)p(Y,Z). (3.10)

A second application of the product rule to the second term on the right hand side of 3.10 gives

p(X,Y,Z) = p(X|Y,Z)p(Y |Z)p(Z). (3.11)

Hence the potentially complex joint density has been factored into a product of simpler inde-
pendent density functions. This factorisation holds for any choice of joint density.

Some of the simplest examples of these conditional independence relationships are found in the
conditional probability tables that underlie Bayesian Networks. In this context the joint proba-
bility density of the network is factored into the product of a set of conditional densities, one for
each node of the network, but conditioned only on the parents of that node (Section 4). Bayesian
networks allow variability to be treated in a forward propagative mode that (typically) relies on
experts to complete the conditional probability tables associated with each node. Factorisation
of joint probability density functions, however, is a much more general strategy and is widely
applied in an inferential model of uncertainty analysis. Clark (2003) provides a relatively sim-
ple example that illustrates the process well. The model in this case is a statistical model of
the fecundity of an endangered species, where the data yi are observations of the number of
offspring produced by i = 1, · · · n breeding pairs. The fecundity of the species is described by
a Poisson distribution with rate parameter λi. The likelihood for a data set of n independent
identically distributed observations is

p(y|λ) =

n∏
i=1

Poisson(yi|λi). (3.12)

In this model the fecundity of the species is allowed to vary between breeding pairs - i.e. not all
breeding pairs have precisely the same rate parameter, some are more, or less, successful than
others. The variability between breeding pairs is observed to be greater than the variance of the
Poisson distribution, hence fecundity it is described by a Gamma distribution

p(λ|α, β) = Gamma(λi|α, β), (3.13)

with parameters α and β that may be considered constant or assigned distributions themselves.
Note here that the probability of λi is written as a conditional probability to emphasise that
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it depends on the parameters α and β. The joint (posterior) density of the model parameters
conditioned on the observations is factored into a set of univariate, conditionally independent,
density using Bayes’ rule (omitting the normalising term in the denominator) and the product
rule

p(λ, α, β|y1:n) ∝

Conjugate pair︷                                            ︸︸                                            ︷
n∏

i=1

Poisson(yi|λi)
n∏

i=1

Gamma(λi|α, β) p(β)p(α). (3.14)

Each of the density functions on the right hand side of 3.14 can be sampled either one at a time
or as a pair. The first two densities on the right hand side of the equation form a conjugate-pair,
meaning that their product produces (after some algebra) another standard univariate distribu-
tion which is easily sampled. Typically in models of this type the normalising constant omitted
from 3.14 has no analytical solution. In this case the posterior density is numerically derived
using Markov Chain Monte Carlo (MCMC) methods. These methods include Gibbs sampling
where conjugacy allows direct sampling from standard distributions or the Metropolis-Hastings
algorithm where it is not possible to directly sample for one of the parameters in the model
because its probability density is the product of two densities that are not conjugate.

The chief advantage of models such as 3.14 is that they allow inference over many sources of
real-world variability, including variability between individuals in time and space (Link et al.,
2002; Clark and Bjornstad, 2004). These types of models also allow the analyst to incorpo-
rate observation models between the data and the process model, (caricature E, Figure 3.2).
This is an important and exciting development in statistical science. These hierarchical models
provide a potentially more accurate distinction between the adequacy of alternative models by
separating the variability in a data set that is not explained by a model (process noise) from the
observation error in the data set and the population-level variability of input variables (Clark,
2003, 2007).

There are a range of frequentist and Bayesian inferential methods for models that distinguish
process noise and observation error. Some of the earliest, the Kalman Filter and Error in Vari-
ables method (Schnute, 1994), assume linear process models and normally distributed error
variables. These approaches have been subsequently extended to non-linear models and non-
Gaussian error distributions using spline approximations (Kitagawa, 1987) or advanced Se-
quential Monte Carlo methods and adaptive MCMC methods (Peters et al., 2010). Again the
methodology here relies on MCMC methods to approximate the analytically intractable inte-
grals associated with these distributions.

MCMC calculations are sometimes difficult and computationally intensive (Cressie et al., 2007).
The potential for more precise predictions of process error, however, has encouraged statisti-
cians and modelers to use hierarchical models, and examples relevant to biosecurity, including
disease surveillance and the spread of invasive species, are now available in the literature (Ranta
et al., 2005; Hooten and Wikle, 2008). Interestingly, many of applications of these methods
cross the traditional divide between statistical and mechanistic models by transforming differ-
ential equations to difference equations and treating the problems of modeling fitting in the
presence of observation error as a regression problem (Clark, 2007).
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4 Uncertainty analysis methods
Methods for forward propagative uncertainty analysis have been mentioned on various occa-
sions throughout the previous sections of the report. This section provides a systematic sum-
mary of these methods. In each case the summary is necessarily brief. The objective here
is to provide the reader with a basic understanding of the method, and their advantages and
disadvantages.

4.1 Analytical methods
The Delta method
The Delta method is a technique for finding approximations to the moments (particularly the
variance) of functions of random variables when these moments cannot be directly evaluated
(Oehlert, 1992). The technique also goes by a variety of other names such as the method of
moments or the mean-value first-order second-moment method (Morgan and Henrion, 1990;
Kuo et al., 2007). The Delta method works by replacing a function h of n random variables
h(x) = h(x1, x2, · · · , xn) by its Taylor series in powers (xi − xi)

h(x) = h(x) +

n∑
i=1

(xi − xi)
[
∂h
δxi

]
x=x

+

n∑
i=1

n∑
j=1

(xi − xi)(x j − x j)
[
δ2h
∂xi∂x j

]
x=x

+ HOT, (4.1)

where x = (x1, x2, · · · xn) are the means of the random variables xi and HOT represents the
higher order terms in the Taylor series expansion. For many practical applications the higher
order terms and cross product terms in Equation 4.1 are ignored leaving what is known as the
first order approximation of the function h(x)

h(x) ≈ h(x) +

n∑
i=1

(xi − xi)
[
∂h
∂xi

]
x=x

. (4.2)

Taking the moments about the origin and about the mean of Equation 4.2 provides a first-order
approximation for the mean and variance

E
[
h(x)

]
≈ h(x) (4.3)

Var
[
h(x)

]
≈

n∑
i=1

n∑
j=1

Cov(xi, x j)
[
∂h
δxi

]
x=x

[
∂h
δx j

]
x=x

≈

n∑
i=1

Var(xi)
[
∂h
δxi

]2

x=x
+ 2

n∑
i=1

n∑
j=1

Cov(xi, x j)
[
∂h
δxi

]
x=x

[
∂h
δx j

]
x=x

. (4.4)

If we know or assume that the inputs (xi, x j) are independent, then the second term in Equa-
tion 4.4 is zero and we recover the predictive method-of-moments formula for the variance of
functions of random variables in Table 3.5. Alternatively, if we assume or know the covariance
between the inputs then Equation 4.4 provides the basis for the variance formulas in the first
row of Table 3.6. This should be apparent by recalling the definition of the Pearson product
moment correlation coefficient:

ρx,y =
Cov(x, y)
σx · σy

.

60



Equations 4.3 and 4.4 are exact in some simple cases such as the sum or difference of indepen-
dent random variables, or more generally where the function h is linear in its input variables.
These exact cases can also be extended to the products and ratios of powers of uncertain vari-
ables h(x) =

∏n
i=1 xai

i . Taking a log transformation reduces this function to a simple (linear)
weighted sum of the log of the uncertain inputs ln[h(x)] =

∑n
i=1 ai ln(xi), resulting in the follow-

ing exact13 formulas for the mean and variance

E
[

ln
(
h(x)

)]
=

n∑
i=1

aiE
[
ln(xi)

]
(4.5)

Var
[

ln
(
h(x)

)]
=

n∑
i=1

a2
i Var

[
ln(xi)

]
+ 2

n∑
i=1

n∑
j=i+1

aia jCov
[
ln(xi), ln x j

]
. (4.6)

Risk functions that involve products and ratios of powers are quite common, particularly in
ecotoxicology (Table 2.2) and import risk assessment. Indeed the case study developed during
this project is a good example (see Figure 1.1). Slob (1994) discusses uncertainty analysis
in this context further, highlighting the additional results that follow if the risk factors X are
independent and identically (log-normally) distributed.

Nowadays, the Delta method is not widely used in ecological risk assessment (Section 5) al-
though it was historically more popular in engineering contexts. The main advantages of this
method are that the numerical calculations are simple and easy to implement once the algebraic
analysis has been completed. Some authors also argue that the method is clear and intuitive,
generally decomposing the variance of the output into the sum of the contributions from each
input (Morgan and Henrion, 1990). There are, however, several disadvantages to this approach:

• the complexity of the algebra increases rapidly with more complex models, due to the
large number of interactions in the covariance terms. This problem is exacerbated if the
cross-product term or any of the higher order terms in Equation 4.1 are retained;

• the propagation of uncertainty is restricted to the parameters of the distribution, most
often the mean and variance. The method says nothing about the tails of the resulting dis-
tribution. This issue can only be addressed in very limited cases (through the central limit
theorem) or by making very strong assumptions about the distributions of the uncertain
risk factors, such as independent and identically normally distributed (Slob, 1994); and,

• the method is not accurate if the risk function is not smooth (not continuously differen-
tiable) or if important covariance terms are omitted.

Other analytical methods
Kuo et al. (2007) and Yu et al. (2001) cite two other (approximate) analytical uncertainty anal-
ysis methods: Rosenblueth’s Point Estimation Method (RPEM) and Harr’s Point Estimation
Method (HPEM). These methods, however, do not appear to be widely known or applied. A
Web of Science search returned only 5 and 4 hits respectively. Yu et al. (2001) also reports
markedly different results between Monte Carlo Simulations and RPEM and HPEM, and poor
performance with non-linear risk functions.

13The formulas are exact so long as the geometric means and geometric covariance matrix for X are finite
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4.2 Probabilistic methods
4.2.1 Monte Carlo simulation

First order Monte Carlo simulation
Monte Carlo Simulation (MCS)belongs to a class of computational algorithms known generally
as Monte Carlo methods. The class of Monte Carlo methods is large and varied but all of its
algorithms rely on randomly generating samples from a defined input domain, such as a set of
probability density functions, to solve problems that do not have an analytical solution. Monte
Carlo methods have a long and successful history, that dates back to at least the turn of the 20th

Century, although the term “Monte Carlo” was only coined in the 1940’s by John von Neumann
as a code word for secret work on the diffusion of neutrons (Burgman, 2005).

In risk assessment circles, Monte Carlo Simulation is used to propagate the effects of variable
risk factors through n-dimensional risk functions in cases where the complexity of the risk func-
tion and/or the distribution of the individual risk factors, preclude an analytical solution. In this
context MCS can be considered the mainstay of probabilistic quantitative risk assessment (Ras-
mussen, 1981; Vose, 2000). Monte Carlo methods, however, have a much broader application
than quantitative risk assessment and are used widely in a range of statistical problems to solve
analytically intractable optimisation and integration problems, such as finding the maximum
of a multi-modal likelihood function, or estimating the normalising constant (an integral) in a
Bayesian Hierarchical Model such as Equation 3.14 (Robert and Casella, 1999)

Monte Carlo methods work by using simulation methods to approximate integrals of functions
of random variables ∫

χ

h(x)p(x)dx, (4.7)

where p(x) is a probability density, h(x) is a function (in our context a risk function) of the
random variable X and χ denotes the set where this random variable takes it values (usually
equal to the support of the density p() (Robert and Casella, 2010). Monte carlo integration
approximates Equation 4.7 by generating a sample (X1, · · · , Xn) from the density p(x) with the
empirical average

h̄n =
1
n

n∑
j=1

h(x j). (4.8)

Importantly, the error associated with this approximation decreases by a factor of 1/
√

n irre-
spective of the dimensions of the function h(x).

Monte carlo simulation treats the values h(x j) as possible outcomes of the (risk) function h()
and collates these into an empirical distribution function. Figure 4.1 provides a schematic repre-
sentation of a first order Monte Carlo Simulation in a typical import risk assessment context. In
this example the risk function h(X) is a simple product of 8 input parameters, whose variability
is represented by standard density functions - i.e density functions that can be sampled using
the standard inverse distribution method (Vose, 2000). The MCS approximates the probability
density of the risk function by taking (usually independent) samples from each of the variable
inputs, applies the risk function deterministically to each of the N sets of 8 samples, and collates
the result in a histogram or cumulative distribution function.

62



Figure 4.1: Simple schematic of a first order Monte Carlo Simulation for an import risk assessment
model. The model is run many times. On each occasion a variate is randomly selected
from the parametric distributions representing variability in the model parameters (here
assumed to be independent). The results of the all model runs are typically collated in a
histogram showing the variability of the overall risk estimate.
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In practical applications the probability density functions associated with each of the risk fac-
tors may represent several sources of uncertainty, including variability and some forms of epis-
temic uncertainty such as subjective judgement, measurement error and sampling uncertainty.
They may therefore be derived from repeated measurements of a process, theoretical arguments
and/or elicitation of an expert’s beliefs. The various ways to choose a distribution from among
the large number of standard parametric probability density functions are discussed in Section
3.2.8. Alternatively empirical distribution functions may be used, but again these will generally
require hundreds of observations in order to accurately characterise the full range of variability.

The schematic in Figure 4.1 is an example of a first-order Monte Carlo Simulation - i.e. it ig-
nores uncertainty in the parameters of the distribution functions. Many authors emphasise the
need to separate parametric variability - that is irreducible variability in the input parameters of
risk functions - from theoretically reducible epistemic uncertainty about this variability (Hoff-
man and Hammonds, 1994; Hattis and Burmaster, 1994; Clark, 2007). As discussed in Section
3.2, uncertainty about the variability of an input parameter (risk factors) can occur for a num-
ber of reasons, principally through sampling uncertainty but it can also reflect differences of
opinion between experts, scenario uncertainty and model structure uncertainty. The effect of
this uncertainty is usually propagated through Monte Carlo simulation by averaging over it in a
second order simulation.

Second order Monte Carlo simulation
Second order MCS recognises that the parameters of the probability distribution functions that
describe the variability of risk factors may not be precisely known. In second order MCS this
uncertainty is propagated through the simulation by creating a probability density or interval
to describe the epistemic uncertainty in the parameters of the input distribtion. This density
or interval is sampled in an “outer” simulation to obtain an estimate of the parameters that
are subsequently used to create density functions for the input parameters that are sampled in
the “inner” simulation in the usual fashion. This procedure is sometimes referred to as “two-
dimensional” MCS to reflect the two simulations (the inner and outer) that occur. The various
parametric and non-parametric methods for constructing confidence intervals around sample
statistics, that can be subsequently sampled in the outer simulation of a second order MCS, are
discussed in Section 3.2.7. Modern examples of this approach to uncertainty analysis can be
found in Wu and Tang (2004), Pouillot et al. (2007) and Vicari et al. (2007).

The main advantage of Monte Carlo simulation is that the approximation error is not influenced
by the dimensions of the function h(x). The accuracy of the simulation depends on the number
of samples N and this is not influenced by the number of input variables in the risk assessment
problem. Monte Carlo integration is therefore resilient to the “curse of dimensionality” which
is why it is widely used in complex statistical inference problems. MCS is also immune to the
problem of repeated uncertain parameters14 so long as the simulation is correctly programmed.
Moreover, Monte Carlo simulation is supported by a large number of user-friendly software
packages such as @Risk (Vose, 2000) that can accommodate the influence of linear correlation
between uncertain input parameters where this is known or assumed.

There are also a number of important problems with Monte Carlo Simulation (Ferson and Long,
1995; Ferson, 1996b; Ferson and Ginzburg, 1996) chief amongst which are: a) its high infor-
mation requirements that must be met with either data or assumptions; b) the potential for non-

14Repeated uncertain parameters artificially inflate uncertainty estimates with interval-based methods of uncer-
tainty propagation. It is discussed further in Section 4.4.1
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linear dependency between input variables and the parameters of their density functions; and,
c) the unwarranted precision that occurs when precise probability density functions are used
to propagate epistemic uncertainty through risk functions. Ferson and Ginzburg (1996) sum-
marises this last problem well. They demonstrate how a Monte Carlo simulation of the product
of two random variables with marginal uniform distributions, chosen to represent two uncertain
parameters on the grounds of Laplace’s principle of insufficient reason, results in a distribution
with a marked central tendency that is not justified by the original information regarding the in-
put parameters. Moreover they show that this result is not caused by (and is therefore additional
to) the problems of linear or non-linear correlation between the parameters.

The concerns and criticisms directed at MCS by Ferson’s publications are well warranted, par-
ticularly where precise density functions are used in an uncritical fashion to characterise the
many forms of variability and epistemic uncertainty in the input variables of a risk function.
Baudrit et al. (2007a) identify three types of variables in risk assessment problems: random
variables observed with total precision, imprecisely observed random variables and determin-
istic parameters whose value is imprecisely known. These different quantities reflect at least
four potential sources of uncertainty: variability, sampling uncertainty, subjective judgement
and measurement error. First order MCS simply amalgamates all of these quantities and their
various sources of uncertainty into a single density function. This creates a source of potential
confusion and error (Nauta, 2000). Cullen and Frey (1999), for example, list seven different
ways to interpret the probability density functions that are used in a MCS:

• they represent subjective judgement due to inapplicable, inappropriate or otherwise un-
available data sets. In this case uncertainty about the appropriateness of a data set exists
that may not be characterised by a statistical analysis;

• they represent epistemic uncertainty only. This is the most usual approach with no regard
to the distinction between epistemic uncertainty and variability;

• they only represent variability. This assumes that probability densities for variability are
precisely known;

• they represent variability and parametric uncertainty. This approach recognises that for
small sample sizes the parameters of a density function are uncertain, and characterises
this uncertainty using (for example) the sampling distribution of the observed statistic.
Uncertainty propagation requires second-order simulation and recognition of the potential
for statistical dependency between the parameters of the sampling distribution (Table 3.4);

• they correct for the observed bias (overconfidence) in variability projections derived from
measurement error and subjective judgement15 (Shlyakhter, 1992, 1994)

• they represent systematic error, measurement error and variability. Measurements made
with imperfect measuring devices will include variation due to the underlying population
variability and the random and/or systematic errors introduced by the instrument; and,

• they represent a generalised case of variability and epistemic uncertainty. This is ar-
guably the most realistic case. Data usually represents a limited sample of observations
made with an imprecise and sometimes biased instrument. This creates uncertainty about
the possible bias and variance of the measuring device (observation error) and parametric
uncertainty about the probability density functions used to represent population variabil-

15Interestingly I am unaware of any actual application of this potentially very powerful result
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ity. This generalised case can be complicated by (non-linear) dependency between the
various sources of error. For example, measurement errors may be proportional to the
quantity of the value being measured (a source of heteroscedasticity).

The potential for complex non-linear dependency between the sources of variability in real data
sets is another important weakness in Monte Carlo simulation. Techniques for propagating
linear dependency through an analysis when drawing samples in a first- or second-order MCS
are available (Section 3.3). Non-linear dependency can be modelled using copulas but examples
in ecological risk assessment are very rare. Rather the potential for dependency (linear and non-
linear) is routinely ignored in MCS application (Section 5.1). Complex non-linear dependency
can be addressed using the hierarchical Bayesian inference techniques discussed in Section 3.3,
particularly approaches that explicitly incorporate an observation model between the data and
the real-world process of interest (caricature E in Figure 3.2). The complexity of Cullen and
Frey’s general case is the primary motivation for these types of models (Clark, 2007).

Dependency between the different sources of variability will tend to have the most prominent
effect on the tails of the risk estimates - i.e. in the low probability, high consequence events. The
effects of linear dependence can be easily investigated using an approach known as “dispersive
MCS” (Ferson, 1996b; Ferson and Hajagos, 2004). This approach imposes maximum linear
correlation between the samples drawn from the input parameters of the risk function in MCS.
Ferson and Hajagos (2004) provide a simple Excel-based example of this method.

4.2.2 Probability boxes and probability bounds analysis

The term probability bounds analysis was coined by Ferson (2002) to describe a collection of
methods and algorithms that allow risk assessment calculations to be performed with probability
boxes, or p-boxes. These methods include the important case of dependency bounds analysis,
developed by Williamson (1989) and Williamson and Downs (1990) to calculate the upper and
lower bounds on the distribution of a function of random variables when only the marginal dis-
tributions of the variables are known (Table 3.5). Probability bounds analysis and dependency
bounds analysis belong to a class of methods that use imprecise probabilities to simultaneously
represent epistemic uncertainty and variability.

A probability box (p-box) represents the class of distribution functions F(x) specified by a
pair of left (upper) and right (lower) distribution functions F(x) and F(x) such that F(x) ≤
F(x) ≤ F(x) for all x, and, optionally, additionally specified by bounds on the parameters or
type of distribution (Ferson and Hajagos, 2004). The most important practical characteristic
of p-boxes is that they can be tailored to the available data in a manner that allows rigorous
risk calculations without having to resort to assumptions about, for example, the parameters
or type of a variable’s distribution function. If these assumptions can be justified they can be
incorporated into a p-box, typically narrowing or “pinching” the p-box, and in the extreme
reducing it to a precise distribution function whose location, scale or shape parameters are
assumed to be precisely correct. Ferson (2002) and Ferson et al. (2003) provide comprehensive
descriptions of the different ways to construct p-boxes based on the various forms of (usually
limited) data that are available to risk analysts. Figure 4.2, for example, shows probability boxes
constructed using nine different methods:

• {min, max}: this is the one of the simplest p-boxes, suitable for situations where all that
is known is that a random variable cannot be smaller than a, and cannot be larger than b.
In the example shown here the limits are [0, 10];
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• {min, max, mean}: if the limits and mean of the variable are known then the p-box can
be tightened by a mathematical constraint known as Rowe’s range-mean inequality. In the
example shown in Figure 4.2 the limits are [0, 10] and mean is 3. The upper and lower
limits of the p-box are reduced to satisfy the requirement that the probability mass to the
left of the mean is balanced by the mass to its right;

• {min, mean}: knowing only one endpoint of the variables range (i.e. its upper or lower
limit) and its mean leads to a very wide p-box constructed via the Markov inequality. In
the example shown in Figure 4.2, the lower limit is known to be 0, and the mean is known
to be 3, but the upper limit is unknown;

• {min, max, median}: knowledge of the median, as well as the limits, of a variable,
“pinches” the p-box to the definite point at the 50th quantile. If the value of the median is
uncertain then the pinching is less severe. In the example shown in Figure 4.2 the limits
are again [0, 10] and the median is 3;

• {min, max, mode}: if the shape of the variable’s distribution function is known to be
unimodal, and its range and mode are known, the upper and lower limits of the p-box can
also be substantially narrowed over the {min,max} case. The {min,max,mode} example
in Figure 4.2 is for a variable on the range [0, 10] with a mode at 3;

• {mean, std}: the Chebyshev inequality is used to construct a p-box where the mean and
standard deviation (or variance) of a variable is known but the shape of its distribution
function is not. The example in Figure 4.2 shows the p-box for a sample of observations
whose mean is 18.8 and whose standard deviation is 9.1. No other assumptions about the
endpoints or shape of the distribution function are made;

• {min, mean, std}: if one of the endpoints of the variables range is known, together with
the mean and standard deviation, then the p-box can be substantially constrained via the
Cantelli inequality (Benzi et al., 2007). The example shown in Figure 4.2 shows the
effect of knowing the mean (18.8), standard deviation (9.1) and the minimum value (3)
of a variable. This approach can be generalised to the situation where both endpoints are
known;

• confidence intervals: there are a number of ways to construct p-boxes from the confi-
dence intervals of a sample statistic or empirical distribution function. These p-boxes
account for sampling uncertainty caused by small sample sizes, and include the extreme
case where the sample consists of a single observation (Wall et al., 2001). Figure 4.2
shows an imprecise empirical distribution function constructed by using the Kolmogrov-
Smirnov statistic to create 95% confidence limits for all values of the hypothetical sample
X = (17, 11, 14, 38, 15, 3, 15, 16, 20, 25, 21, 28, 8, 32, 19) (Sokal and Rohlf, 1995);

• imprecise parametric distribution function: the final example in Figure 4.2 shows a
p-box that represents an imprecise parametric distribution function. Here the shape of the
distribution function is assumed to be known (e.g. normally distributed) but the analyst
is uncertain about the parameters of the distribution - the mean is thought to lie on the
interval [16, 20] and the standard deviation on the interval [9, 10]. The p-box constructed
via the Chebyshev inequality for the same (imprecise) mean and standard deviation is
shown as the dotted blue lines. The difference between the two bounds shows the strength
of the assumption that the variable has a Normal distribution.
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Figure 4.2: Probability boxes constructed with nine different methods reflecting the different
amount and quality of information typically available in risk assessment problems
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With the exception of the confidence-limit methods, the p-boxes described above have two
very important properties: they are “rigor-preserving” and “best-possible” (Ferson et al., 2003).
Rigor-preserving means that the p-box is guaranteed to enclose the underlying distribution or
quantity so long as the information that it is based on is correct - e.g. the range of the variable is
truly contained within the stated limits. Best-possible means that the p-box cannot be made any
tighter without further information or assumptions. These properties are very important because
they guarantee that p-boxes provide an honest account of the uncertainty in a variable (sensu
Burgman, 2005) and also provide a way to measure the strength of some of the assumptions
that are often introduced into a risk assessment. For example, if we assume nothing about
the shape of the distribution function of a random variable, the Chebyshev inequality allows
us to calculate the upper bound on the probability of a selecting a random value that is five
standard deviations or more larger than its mean. The answer is 1 in 25 or 4%. If we assume,
however, that this random variable has a Normal distribution then the chance of selecting the
same value is approximately 1 in 3.5 million. Hence the assumption that a random variable has
a Normal distribution is a strong assumption because it says an awful lot about the probability
of observing values that are far from the mean.

Assumptions about the shape of a distribution function may be justified on the grounds of the
mechanism that is thought or known to be generating variability in a parameter (Tables 3.2 and
3.3) but in many practical situations assumptions about the shape of a distribution are often
made for the purposes of computational convenience. Assumptions about the dependence or
independence between risk parameters are also typically made on the grounds of computational
convenience rather than any empirical information that demonstrates that they are, for exam-
ple, independent. In these circumstances, p-boxes provide an “honest” uncertainty propagation
alternative to gauge the strength of these assumptions and their effects on the output of a risk
assessment. Probability boxes can also be used to envelope the different opinions of experts
whose estimates of uncertain parameters are elicited, thereby faithfully capturing the diversity
of their opinions.

Probability bounds analysis proceeds by applying the algorithms for enveloping dependency
(Table 3.5) to probability boxes. For example, if the p-box for a finite quantity X is

[
FX, FX

]
,

and the p-box for a finite quantity Y is
[
FY , FY

]
then the Frechet-Hoeffding limits (Equation 3.8)

for the quantity X + Y computed without dependence assumption is (Ferson and Hajagos, 2004)

FX+Y(z) = min
z=x+y

min
(
FX(x) + FY(y), 1

)
FX+Y(z) = max

z=x+y
max

(
FX(x) + FY(y) − 1, 0

)
.

The Hypothetical case study compares and contrasts the results of pooling versus enveloping
expert opinion in a probability bounds analysis that also looks at the effect of the independence
assumption. The probability bounds estimates are subsequently compared to the results of a
Monte Carlo simulation based on the pooled (average) opinions of a group of experts, and the
assumption that the probability of each step in the Hypothetical risk model is independent of
the other steps (Box 3).
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BOX 3: PBA AND MCS APPLIED TO THE HYPOTHETICAL CASE STUDY

Probability boxes were created for the Hypothetical case study by enveloping the individual (pre-
cise) distribution functions elicited from each of the experts. Enveloping is an aggregation proce-
dure that preserves all of the variability between experts and their individual uncertainty. These
envelopes, shown in Figure 4.3, were created using Scott Ferson’s S4Pbox.R functions. Histograms
of the MCS samples taken from each of the pooled distributions for the nine steps of the Hypothet-
ical risk model are shown in Figure 4.4. Red vertical lines show the 10th and 90th percentiles of
the data (dashed lines) around the mean (solid line). The potentially complex effects of pooling are
evident in the multiple modes of some of these histograms, particularly that for the proportion of
infested orchards.

Method Opinions Dependence Q(95)

Qualitative NA NA [0.05, 0.3]

MCS Pool Independent 0.0024

PBA Pool Independent [0.0024, 0.003]

PBA Pool No assumption [0, 1]

PBA Envelope Independent [0, 0.25]

PBA Envelope No assumption made [0, 1]

Table B2: 95th percentile of the annual probability of introduction, establishment and
spread of Hypothetical following a qualitative and quantitative risk assessment, with Monte

Carlo Simulation and Probability Bounds Analysis results shown

Figures 4.5, 4.6 and Table B2 summarise the results of the Hypothetical risk assessment using PBA
and MCS. Figure 4.5 shows the annual probability of entry, establishment and spread per fruit,
whilst Figure 4.6 shows the annual probability for N fruit based on expert estimates of the volume
of trade in a year. The shaded purple boxes shows the qualitative risk assessment result “Low” and
the interval definition of this term (Table B1).

PBA results (coloured lines) are guaranteed to encompass the MCS result (black line). The top
left quadrant of each figure has been enlarged to show this. The other important result is that, in
this instance, the effect of pooling is swamped by the dependence assumptions. The upper bounds
on the 95th percentile of the enveloped PBA result (blue lines) approaches the upper bound of
the qualitative result if we assume independence in the model (Table B3). This however seems a
priori unlikely because it assumes, for example, that the probability of detection at the border is
independent of the number of infected fruit that arrive at the border. If we relax this assumption
the upper bound on the individual per fruit risk is close to the qualitative prediction, but the upper
bounds on the 95th percentile of the risk following one year of trade reaches 1 for both pooled and
enveloped predictions, much higher than the qualitative estimate and the MCS estimate.

These results show the strength of the dependence assumption in qualitative and quantitative risk
assessment, and also highlight the potential for risk estimates to be very broad if these assumptions
are removed. Very broad risk estimates are likely to span decision criteria and may therefore be
criticised as unhelpful in a decision-making process. They can serve to highlight, however, the
limitations of current information and the effects of (sometimes) unjustified assumptions. They
should not therefore be seen as a limitation of honest risk assessment, but rather a strength.

70



Fi
gu

re
4.

3:
Pr

ob
ab

ili
ty

bo
xe

s
th

at
en

ve
lo

pe
(r

ed
lin

es
)

ea
ch

of
th

e
ex

-
pe

rt
’s

di
st

ri
bu

tio
n

fu
nc

tio
ns

(c
ol

ou
re

d
da

sh
ed

lin
es

),
to

ge
th

er
w

ith
th

e
po

ol
ed

di
st

ri
bu

tio
n

fu
nc

tio
n

(b
la

ck
da

sh
ed

lin
e)

fo
r

ea
ch

of
th

e
st

ep
s

in
th

e
hy

po
th

et
ic

al
ri

sk
as

se
ss

m
en

tm
od

el

Fi
gu

re
4.

4:
M

on
te

C
ar

lo
ap

pr
ox

im
at

io
ns

of
th

e
po

ol
ed

pr
ob

ab
ili

ty
de

n-
si

tie
s

fu
nc

tio
ns

fo
r

ea
ch

of
th

e
st

ep
s

in
th

e
hy

po
th

et
ic

al
ri

sk
as

se
ss

m
en

tm
od

el
sh

ow
in

g
in

so
m

e
ca

se
s

th
e

co
m

pl
ex

m
ul

ti-
m

od
al

de
ns

ity
of

th
e

po
ol

ed
op

in
io

ns

71



Fi
gu

re
4.

5:
A

nn
ua

l
pr

ob
ab

ili
ty

of
en

tr
y,

es
ta

bl
is

hm
en

t
an

d
sp

re
ad

of
hy

po
th

et
ic

al
pe

r
fr

ui
t

es
tim

at
ed

qu
an

tit
at

iv
el

y
us

in
g

M
on

te
C

ar
lo

Si
m

ul
at

io
n

(b
la

ck
lin

e)
an

d
Pr

ob
ab

ili
ty

B
ou

nd
s

A
na

l-
ys

is
(y

el
lo

w
,g

re
en

,b
lu

e
an

d
re

d
lin

es
)

w
ith

an
d

w
ith

ou
tt

he
as

su
m

pt
io

n
of

in
de

pe
nd

en
ce

.
Pu

rp
le

da
sh

ed
bo

x
is

ov
er

al
l

qu
al

ita
tiv

e
ri

sk
as

se
ss

m
en

tr
es

ul
t

Fi
gu

re
4.

6:
R

es
ul

ts
of

th
e

hy
po

th
et

ic
al

ri
sk

as
se

ss
m

en
ts

ho
w

in
g

th
e

qu
al

-
ita

tiv
e

ri
sk

es
tim

at
e

(p
ur

pl
e

da
sh

ed
bo

x)
,

th
e

re
su

lts
of

th
e

M
on

te
C

ar
lo

Si
m

ul
at

io
n

as
su

m
in

g
in

de
pe

nd
en

ce
be

tw
ee

n
ea

ch
st

ep
of

th
e

ri
sk

m
od

el
(b

la
ck

lin
e)

an
d

th
e

re
su

lts
of

of
th

e
Pr

ob
ab

ili
ty

B
ou

nd
s

A
na

ly
si

s
w

ith
an

d
w

ith
ou

tt
he

as
-

su
m

pt
io

n
of

in
de

pe
nd

en
ce

(y
el

lo
w

,g
re

en
,b

lu
e

an
d

re
d

lin
es

)

72



4.3 Graphical methods
4.3.1 Bayesian networks

Bayesian Networks (BNs)16 cross the divide between qualitative models, mechanistic models
and statistical models (Section 3), and are one of the few methods that can perform forward
uncertainty propagation with little or no data, and statistical inference when data is available.
BNs provide a transparent, mathematically coherent way to express one’s belief in a conceptual
model, and the conditional probability of events, in a manner that can be updated as data are
gathered during the monitoring and validation stages of an assessment. BNs have much to offer
as a risk assessment tool and have been identified as a pragmatic and scientific approach to
modeling complex systems in the presence of “high uncertainty” (Hart and Pollino, 2008).

BNs are a relatively new tool. They emerged during the late 1980s and early 1990s as a syn-
thesis of developments in statistical graph theory (Wright, 1934; Shipley, 2000) and Artificial
Intelligence, specifically as solutions for conditional probability distributions within complex
causal networks (Pearl, 1986; Lauritzen and Spiegelhalter, 1988). The initial development and
uptake of BNs focussed largely on medical applications, and examples relevant to the diagnosis
of medical conditions predominate early statistical literature. The advantages of a probabilistic
description of the relationships in a complex system, however, were quickly recognised by ecol-
ogists and by the late 1990’s Bayesian networks were being applied to prediction and diagnosis
in ecological systems (see reviews in McCann et al. (2006) and Uusitalo (2007)). Today they are
a relatively popular method of uncertainty propagation (and inference) with some biosecurity
examples in the literature (Henrion, 1989; McMahon, 2005; Peterson et al., 2008; Hood et al.,
2009).

The term “Bayesian Network” was coined by Pearl (1986) to describe the “dependency-graph”
representation of any joint distribution P(x1, · · · , xn). The graphical representation of the joint
distribution function is achieved via a Directed Acyclic Graph (DAG), that consists of a set of
nodes linked by directed (one-way) arrows that indicate the conditional relationship between
nodes. Nodes are comprised of states that are independent, mutually exclusive and exhaustive
propositions about the values that the variable represented by the node can take. The arrows be-
tween nodes describes the particular product-rule decomposition of the joint distribution that in
turn reflects the presumed or inferred cause and effect relationship in the system being studied.
For example, this factorisation of a three-variable joint distribution

P(x1, x2, x3) = P(x3|x1, x2)P(x2|x1)p(x1), (4.9)

represents a unique DAG with two arrows linking the node x3 to its “parents” (x1, x2) to repre-
sent the factor P(x3|x1, x2), and one arrow linking the node x2 to its parent x1 to represent the
factor P(x2|x1) (Bishop, 2006). More generally, the unique decomposition of any joint distribu-
tion of a set of risk factors (nodes) represented by a Bayesian Network can be written

p(X) =

K∏
k=1

p(xk|pak), (4.10)

where K is number of nodes in the DAG, pak denotes the set of parents of each node and xk the
values of the variable at the node conditional on the values of its parents.

16Bayesian Networks are variously described in the literature as probability networks, influence networks, belief
networks, Bayesian belief networks, and so forth
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Equation 4.10 highlights the causal nature of the directed acyclic graph: nodes within the graph
are dependent only on their parents, and are conditionally independent of each other once their
parents are given. Having constructed the DAG, the Bayes Network is completed by specifying
the conditional probability associated with each variable (node). This can be achieved in several
ways (Friedman, 2004)

• via deterministic functions (mechanistic models) that determine the value of xk given the
input parameters pak of the function;

• via any statistical regression model that relates the response variable xk to the explanatory
variables pak; and/or,

• via decision trees or conditional probability tables (CPTs) that describe the probability of
discrete values of xk for all combinations of the discrete values of its parents.

The structure of a BN represents an assumption about the joint distribution of the risk factors
(represented by the nodes of the directed acyclic graph) that are deemed relevant to the problem
in hand. In other words the DAG represents a qualitative conceptual model of cause and effect.
The conditional probability models associated with each node are a quantitative, statistical or
mechanistic model of these causal relations.

The DAG in Figure 4.7 shows the factorisation of the joint distribution of a four variable bio-
surveillance test problem into a set of conditional relationships between the test result, the
disease status of the test animal, its age class and the disease zone in which it was raised

P(test,disease,age,zone) = P(test|disease)P(disease|age,zone)P(age|zone)P(zone).

Figure 4.7 also shows the conditional probability tables that quantify the relationship between
the variables within the structure dictated by the DAG. In this example the nodes “zone” and
“age-class” are prior variables - i.e. have no parents within the DAG. Notice also how the joint
distribution of “disease” depends on the number of states of each of its parents. Here construc-
tion of the CPT for the “disease” node requires 12 entries. More generally a binary node with
n binary parents requires 2n entries to complete its CPT which can represent a considerable
analytical burden.

Having constructed the DAG and completed the quantitative component of the network, the BN
provides for prediction and diagnosis. In the predictive mode the BN provides the probability
of the states of all nodes in the network conditional on the original values specified for the prior
nodes. Diagnosis conditional on observations, however, is achieved through the use of Bayes’
theorem. Most BN software packages, for example, allow the user to specify the observed
values of a node within the network, which will automatically update the values of all other
nodes in the network, via Bayes’ theorem and the fundamental rules of probability (Section
3.3), to be consistent with this observation.

Bayesian Networks are an attractive uncertainty analysis tool for many reasons. They are well
suited to problems with small or incomplete data sets and when parameterised manually they
are not restricted by a minimum sample size (Uusitalo, 2007). BNs are very flexible - they
can be constructed using empirical data, expert opinion or a mixture of both (Wooldridge and
Done, 2004). Bayesian networks can also incorporate prior information from a diverse range
of disciplines in participatory settings, this facet together with their graphical representation
of cause and effect, make them well suited to cross-disciplinary collaboration (Pollino et al.,
2007).
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Perhaps the biggest advantage of BNs, however, is that the process of building the DAG, and
quantifying the conditional relationships between the nodes of the network, forces the ana-
lyst(s) to think very carefully about the mechanisms, processes and context of their problem.
The BN allows the analyst to express their beliefs about things that are and are not casually
connected, and the graphical presentation of this information facilitates the participation of, and
communication to, stakeholders and other interested parties. Furthermore, the BN approach
acknowledges that dependencies between nodes may be uncertain and/or variable and the ex-
plicit use of the conditional decomposition of the joint probability distribution forces experts to
express probabilistic dependency in a mathematically coherent manner. The use of conditional
probability tables, for example, quickly exposes any inconsistency between an expert’s belief
in an event A and his or her conditional belief in event A given B (Moskowitz and Sarin, 1983).

The current application of Bayesian networks to ecological risk assessment problems also suf-
fers from a number of drawbacks, notably:

• the predictions of a BN are very sensitive to the structure of the DAG (Druzdzel and
van der Gaag, 2000) but it is rare to see the issue of model structure uncertainty addressed
in ecological applications. This is particularly true for large networks, presumably be-
cause of the overheads associated with constructing and quantifying a single network, let
alone plausible alternatives. Figure 4.8, for example, highlights the importance of the
structural assumptions that underlie any particular DAG. The DAG in the top half of the
figure was designed to emulate the European and Mediterranean Plant Protection Organ-
isation (EPPO) import risk assessment scheme (Kuhnert et al., 2009). The independence
between pest concentration, survival and growth, and between volume of pest arriving and
detection, however, are questionable. The DAG in the bottom half of the figure presents
an alternative, arguably more plausible structure, that explicitly allows for negative (or
positive) density-dependent growth effects during transit, and conditions the probability
of detection upon the number of arriving individuals. Note the reversal of the probability
of entry. This effect is partly due to the negative density-dependence relationships (that
might plausibly be positive), but overwhelmingly due to the positive dependence between
probability of detection and number of pests arriving with a commodity (which is very
unlikely to be anything other than positive);

• in data-rich situations it is possible to automate the construction and parameterisation of
the network (Friedman, 2004). It is very rare, however, to see this in ecological practice17.
The majority of BNs (at least in ecological applications) are constructed and quantified
using expert opinion and in large networks this requires estimates of hundreds or even
thousands of conditional probabilities. As noted above, BNs protect against conditionally
incoherent probability estimates, but they provide no protection against the other heuris-
tics and cognitive biases discussed in Section 3.5. Henrion and Breese (1991) and Renooij
(2001) discuss this issue with specific reference to Bayesian Networks;

• BN predictions are sensitive to a range of computational issues, notably the way in which
continuous prior information is discretised and the way in which data is scaled prior to
implementing the network (Kuhnert et al., 2009); and,

• by definition a Directed Acyclic Graph cannot capture the effects of feedback in a system
- i.e. a path traced through the structure of DAG cannot pass through a variable (node)

17I am aware of only one example: Milns, I., Beale, C. M. and Smith, V. A. (2010) Revealing ecological
networks using Bayesian network inference algorithms, Ecology Online Preprint, 23 Feb 2010
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more than once. This is a potentially important restriction in ecological systems because
the dynamics of these systems are typically mediated by positive and negative feedback
between components of the system (see Section 4.3.2). Another implication of this re-
striction is that DAGs cannot be used to capture the dynamics of time-variant processes
without building a separate network for each time step. The overheads associated with
constructing and quantifying separate networks appears to preclude manual parameteri-
sation, restricting this application to data rich situations.

In data-poor situations the advantages of Bayesian networks can be realised, and their disad-
vantages most readily minimised, when they are applied to relatively simple systems - i.e. when
the overheads associated with constructing and quantifying alternative model structures are not
overly onerous, and when feedback is not important to the process at hand. The most appropri-
ate applications in these situations are those such as the bio-surveillance problem exemplified in
Hood et al. (2009). In data-rich situations BNs can be used to represent and analyse uncertainty
in large complex systems, whose dynamics are likely to be determined by time varying pro-
cesses and feedback cycles. The extension to these systems relies on the more general and more
recent developments of statistical graph theory, and to date these development do not appear to
have been applied to ecological risk assessment problems.

4.3.2 Loop analysis

All risk assessments, qualitative or quantitative, are constructed around a conceptual model of
the system in question. Loop analysis (also known as qualitative modeling) provides a quick,
rigorous and transparent method that enables certain predictions to be made about the behaviour
of this model and to explore the effects of model uncertainty on these predictions. Qualitative
modeling is best suited to the early “problem formulation” stage of a risk assessment (USEPA,
1992), prior to the identification of hazards and estimation of risk (Hayes et al., 2007b).

Qualitative modeling proceeds by determining the system’s structure, which is defined by the
variables of the system and the relationships by which they are linked. In biological systems,
variables are typically interacting populations of different species, and their dynamics can be
accounted for by generalized Lotka-Volterra equations, wherein each contributes towards the
birth or death of another. Similarly, the dynamics of human social and economic systems can
be described by the interactions of different sectors and entities of society (such as governing
bodies, social customs, and markets) that control flows of resources, goods, and services that
are either measurable, such as money, or immeasurable, such as status and world view.

Variables and relationships in loop analysis are portrayed by Sign-Directed Graphs (SDGs) (or
signed digraphs), where a link from one variable to another ending in an arrow (Õ) represents
a positive direct effect, such as births produced by consumption of prey, and a link ending
in a filled circle (�) represents a negative direct effect, such as death from predation. All
possible ecological relationships can be described in this manner: predator-prey or parasitism
(û), mutualism (Ö), commensalism (Ý), interference competition (�), and amensalism (�).
Self-effects are shown by links originating and ending in the same variable, and are typically
negative (l), as in self-regulated variables, but can also be positive (�) where variables are
self-enhancing. Importantly, loop analysis ignores the strength of the pairwise relationships in
the SDG by assigning one of two unit signs −1, or + 1 to each interaction. Furthermore, the
interactions in the SDG are typically considered to be fixed and independent of population size.
However, there can be interactions that are modified by the abundance of a third variable, which
creates additional direct effects in the system (Dambacher and Ramos-Jiliberto, 2007).
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Figure 4.8: Two BNs designed to represent the EPPO risk assessment schema, highlighting the in-
fluence of model structure uncertainty on the network predictions. In the DAG shown
in a) pest concentration, survival during transport and growth during transport are inde-
pendent of each other. Similarly the total volume of pest arriving and the probability of
detection at the border are also independent. Both of these propositions are unlikely to
be true. The DAG in b) includes a density dependent relationship between initial pest
concentration, survival and growth during transport, and makes detection at the border
dependent on the number of pests arriving
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Once the structure of a system is defined then it is possible to: a) analyse the system’s feedback
which determines the qualitative conditions for system stability; and b) examine its response to
sustained (press) perturbations. System feedback is governed by the products of the interactions
in the SDG. Negative feedback returns the opposite effect to an initial change in a variable, and
acts to maintain a system’s equilibrium. The overall stability of a system can be judged and
understood according to two criteria that depend on the relative sign and balance of the sys-
tem’s feedback cycles (Puccia and Levins, 1985; Dambacher et al., 2003a). In general, stability
requires that the net feedback in a system is negative, and that feedback at lower levels of the
system is stronger than feedback at higher levels. Negative feedback ensures that a system’s
dynamics are self damped, and stronger feedback at lower levels ensures that a system will not
overcorrect and exhibit unrestrained oscillations. As system size and complexity increases, the
symbolic contingencies underlying the conditions for stability in any one model become too
complex to interpret through the Signed Digraph. To address this problem Dambacher et al.
(2003a) developed a set of stability metrics that can be used to judge the potential for stability
in large complex models.

A press perturbation is defined as a sustained change to a rate of birth, death or migration of a
species (Dambacher et al., 2002), or the equivalent increase or decrease in mass, value or flow
of other non-biological variables in the SDG. The response of simple systems subject to press
perturbations can be predicted by examining the SDG and calculating the product of the sign
of the direct effects from the impacted node to all other nodes, multiplied by the sign of the
“complementary subsystem” (the feedback of the variables not on the path from the input to
the response variable). Again, however, in complex systems this quickly becomes impossible
due to the large number of paths and complementary subsystems. Predictions for these systems
is achieved via an equivalent algebraic analysis of the system’s community matrix (refer to
Appendix B).

The utility of loop analysis in a risk assessment context is as a method of forward uncertainty
propagation for model structure uncertainty and scenario uncertainty. The Signed Directed
Graphs can be quickly constructed with a range of different stakeholders to capture different
conceptual models and thereby investigate the potential effects of model structure uncertainty,
and/or different perturbation scenarios (Figure 4.9). For example, Hayes et al. (2008) coined
the termed “pressure scenarios” to describe the combination of uncertain model structure and
uncertain future stresses on systems, and used loop analysis to identify system responses that
were either consistent across, or idiosyncratic of, these scenarios. Dambacher et al. (2009)
adopt a similar approach to scenario uncertainty in commercial fisheries.

The advantages of qualitative analysis of conceptual models early in the risk assessment process
are numerous: loop analysis can represent conceptual models in a transparent fashion and help
minimise the effects of linguistic uncertainty. Like Bayesian networks, the graphical structure
of the SDG is attractive to stakeholders without mathematical training and can be used to elicit
conceptual models from a diverse range of different disciplines. Loop analysis also has a rigor-
ous mathematical foundation that can identify unstable (and therefore potentially implausible)
conceptual models, the direction of the response of variables subject to multiple, simultaneous,
pressures, and the probability of sign determinacy - i.e. the probability that the direction of
response will be correct irrespective of the magnitude of the interaction strengths (parametric
uncertainty) that it ignores.

By ignoring the magnitude of the interaction coefficients in the community matrix, Qualita-
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Figure 4.9: Three hypothetical qualitative models (left) and their equivalent community matrix
(right), showing possible interactions between a non-native invasive shrimp and four
components of the invaded ecosystem: detritus, zooplankton, benthic invertebrates and
juvenile fish. Lines with arrows indicate positive effects, and those with filled circles de-
note negative effects. Self-effects are shown by lines that start and end at the same node.
The different models are used to explore three different hypotheses: the shrimp feeds
only on detritus (Model 1); the shrimp feeds on detritus and competitively interferes
with zooplankton (Model 2); and, the shrimp feeds on detritus, benthic invertebrates
and competitively interferes with zooplankton (Model 3). By analysing the sign of the
interaction terms in the community matrices the analyst can predict the (in this case
indirect) effect of the shrimp on juvenile fish. (Source: Hayes et al. (2007b))
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tive modeling (caricature C, Figure 3.2) achieves generality and realism, but at the expense of
precision. The lack of precision, and the other equilibrium assumptions associated with loop
analysis, entail a number of important drawbacks

• the technique assumes that all interaction within the SDG are equally “strong”. The
implications of this assumption can only be examined in a limited sense by considering
models with and without interactions that are deemed “weak” or otherwise unimportant
to the overall dynamics of the system;

• the technique cannot address questions such as “how much should we spend on x to get
more of y?”. The predictions of loop analysis are restricted to the direction (increase,
decrease or ambiguous) of change of each variable in the SDG, it says nothing about the
magnitude of change;

• qualitative modeling describes system dynamics through a set of linear differential equa-
tions (Appendix B). It therefore assumes that the system’s equilibrium, whether it is de-
scribed by fixed points or sustained bounded fluctuations, will exhibit familiar levels or
trajectories of abundance. Furthermore, qualitative predictions of a variable’s response
to press perturbations describe a linear shift from one equilibrium to another, and do not
address transient behaviour between equilibria, and cannot be used to make predictions
for systems that are always held away from an equilibrium by constant external forcing.

In practise, the assumptions associated with qualitative modeling require that: a) there is some
level of resolution (in space and time) and some level of aggregation of the system’s variables,
at which the system displays familiar dynamics that can be adequately described by linear dif-
ferential equations; b) that these dynamics are relevant to the problem at hand; and, c) that the
model is built at this level of resolution. Hence, when building qualitative models the modeler
must choose from among a (ideally systems-based) hierarchy of possible model structures at,
for example, increasing spatial resolution such that the variables within the model are relevant
to the question being answered, whilst the constant, non-linear or random variations that are
omitted from it are not (Levins, 2006). In complex systems, however, this process is difficult to
codify and requires an experience modeler.

4.3.3 Fuzzy cognitive maps

The term cognitive map is used to describe a variety of conceptual constructs but it is most
commonly associated with an influence diagram (or causal map) that shows the variables (vari-
ously termed states, nodes, concepts, etc.) deemed to be important to a problem and the direct
effects (variously termed as arcs, edges, links, interactions, etc.) between these variables (Siau
and Tan, 2005). The term cognitive map was first used in the 1970’s by the political scientist
Robert Axelrod to represent graphical portrayals of social scientific knowledge (Kosko, 1986).
These maps are precisely the Sign Directed Graphs that support loop analysis - i.e. qualitative,
graphical models allowing two-way, positive and negative, causal effects between variables of
a system.

Kosko (1986) coined the term Fuzzy Cognitive Map (FCM) to describe a cognitive map in
which “causal weights” - numbers on the interval [-1, 1] - are added to the direct links of the
Signed Digraph. It is instructive to note that Kosko (1988) refers to Signed Digraphs as “simple
FCMs” with causal edge weights in the set {−1, 0, 1}, hence causality occurs to a “maximal
degree”, whereas FCMs allow “degrees of causality” to be represented. This helps illustrate the
similarities and differences between loop analysis and FCM. The use of term “fuzzy” in FCM,
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however, seems to be open to interpretation. In some applications of FCM the causal weights
placed upon the cognitive map are precise numbers (Hobbs et al., 2002; Ozesmi and Ozesmi,
2004) whereas in other applications they are fuzzy sets describing, for example, linguistic mea-
sures of relative abundance (Ramsey and Norbury, 2009). Biosecurity relevant examples of
FCM in the literature include Ramsey and Veltman (2005) and Ramsey and Norbury (2009)

Graph theory enables a number of similarity statistics to be derived from Fuzzy Cognitive Maps
describing, for example, the connectivity of a map. The utility of FCMs in risk assessment,
however, again lies in exploring the implications of model structure and scenario uncertainty.
The equivalent of perturbation analysis in loop analysis is achieved by solving different maps
(with and without the press perturbation) via an iterated matrix operation that finds the roots of
the linear differential equations represented by the “adjacency matrix” - the FCM equivalent of
the community matrix in loop analysis.

The adjacency matrix W = [wi j] of dimension n contains the causal edge weights of the cog-
nitive map (Figure 4.10). Variables that have no influence on one another are assigned a causal
edge weight of zero. The value of each node S i ∈ [0, 1] of the map is given by a function of the
weighted sum of its parents and the causal edge weights that link it to its parents

S i = fi

(
WS j

)
, (4.11)

where fi(·) is any monotonic function that returns a value on the interval [0, 1]. Any suitably
bounded function can be used and examples in the ecological literature include the logistic
function (Ozesmi and Ozesmi, 2004) and step functions with a lower “activation” level below
which S i is zero (Hobbs et al., 2002). The resulting values of each node, however, have various
interpretations depending on the analysis approach. For example, they can represent a classic
fuzzy set membership number (Section 4.4.1) that describes the extent to which the node meets
a logical proposition (e.g. habitat is suitable for this species), they can describe the normalised
value of a state variable (e.g. the biomass of a species), or the probability of a random event
(Hobbs et al., 2002), and so forth.

Nodes within a FCM are often divided into endogenous nodes (S E), whose values are calculated
by solving the FCM, and exogenous nodes (S F) whose values are fixed by the user to represent
press perturbations such as a management intervention. The steady-state (equilibrium) values
of endogenous nodes are derived by solving the graph. The solution is found by multiplying the
adjacency matrix by an initial states vector S E,0 = [S 1,0, S 2,0, · · · , S E,0] resulting in an amended
states vector S E,1 whose elements are then transformed on to the interval [0, 1] using the function
fi(·). The transformed state vector is again multiplied with the adjacency matrix and the process
repeated until convergence. For example, with a logistic transformation function we have

S E,1 =
1

1 + exp
(
−

[
W(S E,0 + S F)

])
S E,2 =

1
1 + exp

(
−

[
W(S E,1 + S F)

]) (4.12)

...

S E,t =
1

1 + exp
(
−

[
W(S E,t−1 + S F)

]) ,
until there is no further change in the value of S E,t (Figure 4.10). Gauss-Seidel variations that

help accelerate convergence have also been used in the literature (Hobbs et al., 2002).
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FCM’s share many of the advantages of loop analysis: relatively quick, transparent, graphically
based, and therefore a good way to elicit conceptual models from a diverse range of stakehold-
ers. They can examine the implications of diverse opinions about plausible model structures and
can be used to examine the implications of scenario uncertainty, through for example, the differ-
ent management regimes associated with different pressure scenarios. The sign and magnitude
of the steady-state values also provide additional information on the direction and relative mag-
nitude of change in each of the maps’s nodes. The steady-state solution can also incorporate
the effects of linguistic uncertainty via the use of fuzzy sets for the causal weights and it seems
possible to generalise this to parametric uncertainty via the use of an interval (although I am
unaware of any examples of this). There are, however, some drawbacks with FCM’s:

• simple signed FCM’s (Signed Directed Graphs) are easier to construct with experts and
are more reliable than real-valued FCM’s because experts are more likely to agree on the
causal sign of a direct effect than on its magnitude; (Kosko, 1988);

• FCM analysis is based on the same set of assumptions (e.g. assumes linear relationships
between variables and a new stable equilibrium) as loop analysis and therefore suffers
from the same limitations in this regard;

• the units of causality in a FCM can be vague and this can create problems when inter-
preting the results. Ramsey and Veltman (2005) and Ramsey and Norbury (2009), for
example, suggest that in the context of community ecology the predictions from a FCM
can be “loosely” defined as relative abundance scaled to the interval [0,1]. This defini-
tion, however, is problematic for FCM’s that incorporate biological and non-biological
variables. Moreover, the non-linear transformation function in Equation 4.3.3 is arbitrary
(any transformation onto the unit interval can be used) and this will corrupt whatever
units the expert had in mind when assigning magnitude to the interactions in the map.
Comparing different steady-state FCM’s allows predictions of change following a press
perturbation to the system, but the arbitrariness of units in the steady-state solutions will
again confound interpretation. Importantly, the magnitude of the change contains no
information because the absolute value of the increase or decrease is a function of the
arbitrary non-linear transformation, and it is not immediately clear if the iterated trans-
formation used to find the roots will maintain the rank order of predicted change under
different transformations; and,

• there does not appear to be any explicit stability analysis applied to FCM’s and in many
applications there are no self-effects applied to the variables in the maps - the diagonal
elements of the adjacency matrix are zero. As a result there is no guarantee that the
iterative calculations in Equation 4.3.3 will converge to a single value. If there are no
negative entries along the main diagonal of the adjacency matrix - i.e. no negative self-
effects, then the system cannot be asymptotically stable (May, 1974). Moreover, if all
the main diagonal entries are zero, then the system may be neutrally stable and exhibit
oscillatory solutions with magnitude depending on initial state. However, this oscillatory
solution is known to be unstable: small changes to the underlying equations will disrupt
the oscillations (Edelstein-Keshet, 1988).

Fuzzy cognitive maps provide an intermediate step between loop analysis and a fully quantita-
tive, linear, ecosystem model. I am unaware, however, of any studies that have compared the
extent to which the predictions of each approach are interpretable and/or consistent with each
other.
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4.4 Non-probabilistic methods
4.4.1 Fuzzy set theory

Fuzzy set theory generalizes several classic notions of concise sets that underlie, for example,
the axioms of probability theory. Two important concepts generalised by fuzzy set theory are
the notions of membership and relation, that describe the presence or absence of association.

The concept of membership is generalised in two subtly different ways. The first defines a fuzzy
set by generalising the characteristic function18 of a crisp set with a membership function (µA)
on the range [0, 1] that describes the extent to which members (x) of a universal set19 (X) are
members of the set A. The closer the output of the membership function is to 1, the greater the
degree of membership (Klir and Folger, 1988). For example, a membership function for the
fuzzy set of real numbers that are “close to 0” could be

µA(x) =
1

1 + 10x2 . (4.13)

Put more formally: if X is the universe of discourse, with elements x, the fuzzy set A is defined
as a set of ordered pairs A = {x, µA(x)|x ∈ X} where µA(x) is the membership function of x in A.

Fuzzy sets are the constructs of possibility theory because the proposition “X is A” that as-
sociates the variable X with the concept A, is deemed to restrict the possible values that X
may take. The possibility distribution that this proposition induces is numerically equal to the
membership function of A (Goh et al., 2007).

A relationship between fuzzy sets and imprecise probabilities occurs via the notion of the α-
cut of a fuzzy set. The α-cut of a fuzzy set A is defined as the crisp set Aα that contain all
the elements of the universal set X that have a membership function greater than or equal to
α: Aα = {x ∈ X|µA(x) ≥ α}. Since α lies on the range [0, 1] the upper and lower distribution
functions associated with a fuzzy set A are defined by the (crisp) minimum and maximum values
of the α-cut of A. These constructs are often termed “possibility-probability” distributions (Feng
et al., 2010).

The second generalisation of membership is the fuzzy measure. A fuzzy measure is defined by
a function that assigns a number on the interval [0, 1] to the power set of A.20. The concept
of a fuzzy measure, as distinct from a fuzzy set, can be illustrated by the problem of trying to
guess the age of a person we are told is “middle-aged”. The power set in this example might be
the ten crisp subsets {40, 41, · · · , 49}. A fuzzy measure could be used to represent our guess of
the person’s age. The subset that is assigned the highest value by the fuzzy measure represents
our best guess of the person’s age. Contrast this problem with one formulated in terms of fuzzy
sets in which we know the person’s age but must determine the extent to which he or she is
considered to be “old” or “young”.

Fuzzy sets and fuzzy measures are used to treat different types of linguistic uncertainty. Fuzzy
sets provide a way to treat vagueness. Fuzzy measures provide a way to treat ambiguity and
under-specificity. In the first example above the phrase “close to 0” is vague. This source of

18The characteristic function of a set A assigns the value 1 to each element of the universal set if it is a member
of A and 0 otherwise

19The universal set is the set of all possible elementary outcomes or elements of concern in any particular
problem. In a risk assessment context it could represent all the possible events that contribute to an undesired
outcome. It is therefore subject to completeness uncertainty

20The power set of A is the family of subsets that belong to A.
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linguistic uncertainty was treated with a membership function that assigns a precise number
on the interval [0, 1] to an element (in this case a real number x) that unequivocally expresses
membership to a set whose boundaries are not clearly defined (in this case the set of real num-
bers close to zero). In the second example the evidence for the age of a person was ambiguous.
Fuzzy measures treat ambiguous or under-specified statements by assigning a precise number
on the interval [0, 1] to subsets whose membership of a set A is unclear.

The practical application of fuzzy sets to risk assessment appears to be largely restricted to the
treatment of variability. The simplest application involves fuzzy set operations for union (OR),
intersection (AND), and additive complement (NOT), defined for two fuzzy sets A and B as

(AND) µA∩B(x) = min
(
µA(x), µB(x)

)
(OR) µA∪B(x) = max

(
µA(x), µB(x)

)
(4.14)

(NOT) µĀ(x) = 1 − µA(x).

These rules have been used to propagate uncertainty through fault trees and to aggregate ver-
bal (fuzzy logic) descriptions of cause and effect relationships (Duque-Ocampo et al., 2006).
More general arithmetic and algebraic operations can also be extended to fuzzy sets via the
“extension principle” (Zadeh, 1975). The extension principle describes the mapping of fuzzy
sets A1, · · · , An in X to a Fuzzy set B in Y through a function f (·), where B = f (A1, · · · , An).
The membership function of B is given by

µB(y) = supy= f (x1,··· ,xn)

{
min

[
µA1(x1)., · · · , µAn(xn)

] }
. (4.15)

Fuzzy sets are not a very popular method to treat vague terms in risk assessment (Section 5.1)
and there do not appear to be any biosecurity related examples in the literature. Fuzzy sets
do, however, appear to be used more often than probability bounds analysis (based on a very
limited sample). This is puzzling since the latter provides the same functionality as the former
but without the unfamiliar vernacular of possibility theory. Probability bounds analysis also
provides clear and unambiguous methods to deal with dependency between variables during
pair-wise convolutions, whereas the arithmetic and algebraic operations of fuzzy set theory do
not appear to make allowance for dependency between sets. Theoretically this seems possible
via some dependency function on α but I an unaware of any published examples.

4.4.2 Interval analysis

Interval analysis (Moore, 1966) is one of the simplest ways to propagate all forms of variability
and epistemic uncertainty through a risk function. The methods of interval analysis, specifically
interval arithmetic, are also related to deterministic “conservative” methods of risk assessment
that propagate upper or lower bounds (but not both) through risk functions to find the worst case.
Worst-case analysis, however, can lead to hyper-conservative risk estimates and arbitrary levels
of protection (Cogliano, 1997; Ferson, 2002; Burgman, 2005). Interval analysis propagates the
upper and lower bounds through a risk assessment and therefore shows simultaneously the best
and worst case. This offers a view of the other side of the coin but the resultant bounds may still
be hyper-optimistic or -conservative.

Interval analysis replaces all point estimates in a risk function with intervals that are presumed or
known to contain the true value of an uncertain quantity. These intervals can therefore subsume
many different sources of uncertainty, and may accordingly be derived in many different ways.
For example, they may subsume measurement error and represent a classical confidence interval
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for a mean. They may subsume variability and represent the observed or theoretical quantities of
an empirical distribution function, theoretical probability density function or Bayesian posterior
distribution. Burgman (2005) provides a useful summary of the different ways to construct and
choose an interval. Finally, they may subsume subjective judgement, parametric uncertainty,
scenario uncertainty or a combination of all these, and represent the best guess or carefully
elicited beliefs of a group of experts. In the later case, it is often useful for the interval to be
accompanied by some indication of the expert’s confidence that the true value lies within it.

Interval arithmetic propagates interval-valued variables through risk functions. If X and Y are
uncertain variables represented by intervals on the range [x1, x2] and [y1, y2] then the following
arithmetic operations hold21

X + Y =
[
x1 + y1, x2 + y2

]
X − Y =

[
x1 − y2, x2 − y1

]
X × Y =

[
min(x1y1, x1y2, x2y1, x2y2),max(x1y1, x1y2, x2y1, x2y2)

]
(4.16)

X ÷ Y =
[
min(x1/y1, x1/y2, x2/y1, x2/y2),max(x1/y1, x1/y2, x2/y1, x2/y2)

]
0 < Y.

The primary advantages of interval analysis are: a) it is simple and does not require any assump-
tions about the shape or parameters of a density function or about the potential dependency be-
tween uncertain inputs; and, b) it is rigorous - i.e. so long as the uncertain inputs truly lie within
their respective intervals then interval analysis result will truly bound the result of an explicit,
monotonic, risk function (Ferson, 2002). Although conceptually very simple, interval analysis
has some important practical limitations

• division is only defined when the divisor does not contain zero. Hence for two uncertain
variables x = [2, 19] and y = [−5, 15] the function f (x, y) = x/y is not defined. A
related problem occurs in probability bounds analysis - the Frechet-Hoeffding limits for
multiplication and division are undefined for distributions that span zero. Solutions to this
problem exist for standard (precise) distributions but not currently for probability boxes
(pers comm Scott Ferson);

• interval analysis becomes much more difficult if the risk function is not explicitly known
(e.g. a computer model whose details are unknown). In this situation, the simple arith-
metic operations in Equation 4.16 may not return the true bounds of the function. For
example, if the range of an interval input happens to span the maximum or minimum
value of function, then the maximum or minimum value of the function will lie on the
interior on the interval input (Ferson, 2002). If the (unknown) risk function is, or can be
assumed to be, approximately linear, then alternative methods exist to propagate interval-
valued inputs (Kreinovich and Nguyen, 2009); and,

• the range of an interval analysis result can be very large with risk functions that involve
large numbers of uncertain inputs and arithmetic operations. Moreover, interval analysis
provides no measure of the plausibility of values within the resulting range. Thus, if the
resulting interval spans a resulting criteria it provides no information about the likelihood
that the criteria will be exceeded, only that in a worst or best case situation it could be
exceeded. In some circumstances, this could undermine the utility of the assessment.

21The operations for multiplication and division are simpler if the intervals represent uncertain probabilities on
the range [0, 1]
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4.4.3 Info-gap theory

Ben-Haim (2006) describes Info-gap theory (IGT) as a method for evaluating the effects of
severe uncertainty that is radically different from all current theories of decision-making under
severe uncertainty. IGT is different because it offers a non-probabilistic approach to decision-
making under uncertainty. It provides a quantitative representation of Knight’s concept of “true
uncertainty” for which “there is no objective measure of probability” (Ben-Haim, 2004). It has
been identified as a method that is suitable when the information base is so depauperate that
the analyst cannot parameterize a probability distribution, decide on an appropriate distribution
or even identify lower or upper bounds on possible parameter values. It is therefore identified
by some practitioners as the method of choice when your uncertainty is “unbounded” (Halpern
et al., 2006).

Since the first comprehensive description of the theory in 2001, IGT has attracted many propo-
nents, principally in the fields of ecology, engineering and economics (see http://info-gap.
com/) and there currently at least eight biosecurity examples in the published literature (Yemshanov
et al., ress; Burgman et al., 2010; Carrasco et al., 2010; Yemshanov et al., 2010; Davidovitch
et al., 2009; Rout et al., 2009; Moffitt et al., 2008, 2007). There is, however, an on-going de-
bate surrounding IGT that revolves around two claims: a) IGT is not a radically new theory but
rather a reformulation of minimax analysis that has been known in the mathematical research
literature for over 60 years; and b) its results are sensitive to initial estimates and are not there-
fore robust to “severe uncertainty” (Sniedovich, 2007, 2008, 2010). It is also worth noting that
Ferson and Tucker (2008) highlight similarities between IGT, fuzzy arithmetic and probability
boxes

Info-gap theory seeks to find decisions that are robust to uncertainty. It measures the robustness
of a decision by showing how wrong an initial model, or an initial estimate of its parameters, can
be before a critical point is reached. It also allows the analyst to compare alternative decisions
and identify points along a “horizon of uncertainty”, at which decisions should change if critical
requirements must be met.

The Info-Gap solution for decision-making under uncertainty entails three elements:

• a decision space Q that includes a number of alternative decisions, actions or choices
(q ∈ Q) available to a decision maker. These choices may be alternative surveillance
strategies, risk management strategies, decisions about the size of nature reserves, etc.

• a reward function R that measures how successful the decision is. Reward functions
are typically simple process models, risk functions or utility functions, that measure the
performance of a decision. Associated with the reward function is a critical reward value
rc that must be met; and,

• a non-probabilistic model U for the uncertain quantities u in the reward function, param-
eterised by the term α that measures the amount of uncertainty.

A generic Info-Gap model based on these three constructs is described by the “robustness func-
tion” α̂(q, rc)

α̂(q, rc) = max
{
α : rc ≤ min

u∈U(α,ũ)
R(q, u)

}
. (4.17)

On first appearance the notation surrounding IGT can appear daunting. It is worth therefore
reiterating in words what the robustness function means. Equation 4.17 states that the robustness
of a decision q with uncertain elements u is the maximum amount of uncertainty α such that the
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minimum reward associated with the decision R(q, u) is greater than the critical reward value
rc. The aim of IGT is to help guide the decision-maker in choosing the “best decision” where
best is defined as the decision with the greatest robustness function conditional on the reward
function and the initial estimates ũ of the uncertain elements in this function.

The uncertain quantities in the reward function are almost always the parameters of the process
model or risk function, but in certain circumstances can include the model itself (see below).
Furthermore, ecological applications of Info-gap theory almost always use a “fractional-error”
uncertainty model that creates an expanding interval (α ≥ 0) around an initial or best estimate
of each uncertain parameter (ũi) ∣∣∣∣∣ui − ũi

ũi

∣∣∣∣∣ ≤ wiα. (4.18)

This model creates a family of nested intervals that become broader as the value of α increases

(1 − wiα)ũi ≤ ui ≤ (1 + wiα)ũi. (4.19)

The weight parameter wi allows the analyst to moderate the influence of individual parameters
on the horizon of uncertainty, for example setting low values (wi � 1) for parameters which
are known to be less variable or less uncertain than others. In ecological practice, however, the
weight parameter is usually set to 1 in which case the fractional error model will apply the same
amount of uncertainty uniformly to all uncertain parameters. In some applications this may be
unrealistic, as some parts of a problem may by much better known or characterised than others
(Ferson and Tucker, 2008). Other non-probabilistic uncertainty models include envelope-bound
models (|ũi − ui| ≤ wiα) and ellipsoid-bound models ((ui − ũi/ũi)2 ≤ (wiα)2) (Moilanen et al.,
2006). Models that allow for dependencies between uncertain parameters are also available
(Ben-Haim, 2006).

Info-Gap’s most important property is its definition of the best decision as that which is most
immune to the uncertainty in the decision maker’s model of the world, represented by the re-
ward function. This is an important counterpoint to optimality-based approaches that identify
the best decision as that which maximises the reward function. The word “optimal” implies
that the decision could be no better but this is conditional on the reward function (model) and
may not be true for variations of this function. Info-gap theory places the uncertainty in the
reward function at the center of the decision-making process and encourages decision makers
to maximise immunity to uncertainty rather than maximising reward. This is a very sensible
approach, and one that recognises that there is no such thing as an “optimal” decision in a
non-deterministic decision-making process.

Info-gap theory is ideally suited to the situation wherein the analyst is comfortable specifying
one or more models for the problem at hand (the reward function), and an initial estimate for
its uncertain parameters, but is uncomfortable or unwilling to specify a probabilistic model,
for example a precise parametric distribution, to represent their uncertainty in values that these
parameters may take. IGT uncertainty models impose less restrictions and less structure (than
precise parametric distributions) on the possible or likely values that an uncertain parameter
may take, and may therefore offer a more comfortable alternative to analysts in situations of
“severe uncertainty“.

The conclusions of an Info-gap analysis, however, can depend on the analyst’s initial estimate
ũ and their belief in the plausibility of deviations from this estimate, as the following example
demonstrates. Figure 4.11 replicates a published IGT solution to a bio-surveillance problem.
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In this example the decision maker is faced with two bio-surveillance strategies. The first strat-
egy places more emphasis on standard surveillance techniques, such as traps, sampling lures
and other well structured sampling methods. The second strategy places more emphasis on
unstructured observations by trained field personnel and casual observations by relatively un-
trained workers. The uncertain parameter in this example is the probability p of detecting a pest
species in a single sample.

The authors’ original estimate of the detection probability p̃ is 0.22. In Figure 4.11 we explore
the implications of varying this initial estimate by ±50% - i.e. starting the analysis with p̃ = 0.33
and p̃ = 0.11. In all cases we want to ensure that the probability of detecting a new pest is at
least 80% - the grey vertical line in Figure 4.11. Three conclusions can be drawn from this
comparative analysis:

• if p̃ = 0.33 then strategy 1 has a robustness at the critical reward level of approximately
0.5. With a fractional-error model this mean that the initial estimate can lie on the range
0.33 ± 0.17 and still guarantee a detection probability of at least 0.8 with this strategy.
The robustness of strategy 2 is lower for this critical detection probability and indeed for
all levels of robustness ≤ 1. Strategy 1 is therefore unambiguously the best;

• if p̃ = 0.22 then strategy 1 has a robustness at the critical reward level of approximately
0.3, meaning that the initial estimate can lie on the range 0.22 ± 0.07 and still ensure an
80% chance of detecting a new pest. The robustness of the second strategy, however,
is much closer to the first. Notice that the first estimate supports p̃ = 0.22 as a “safe
possibility” under strategy 1 because 0.22 lies within the interval [0.16, 0.5] but the second
conclusion does not identify p̃ = 0.33 as a safe possibility under strategy 1 because it lies
outside the interval [0.15, 0.29]; and,

• if p̃ = 0.11 then strategy 1 cannot satisfy the critical reward requirement (p ≥ 0.8) and
strategy 2 becomes the preferred strategy with a robustness approximately equal to 0.1.
Notice that IGT highlights the potential for strategy 1 to be unsatisfactory with such a
low initial estimate because p̃ = 0.11 lies outside both of the previous intervals, but the
reversal of the strategy preference, albeit with low robustness, is not revealed unless the
analyst tests the effects of alternative initial starting values.

It is important to recognise that the effect of the initial estimate on IGT conclusions will vary
on a case-by-case basis. This example simply serves to highlight the possibility of a better
management strategy under different initial conditions. This might seem obvious but this facet
of the theory is not widely recognised in the ecological literature. Rout et al. (2009) is a rare
exception in this regard, warning that Info-gap theory should not be mindlessly applied, and
should not be applied where the uncertainty is so severe that a “reasonable” initial estimate
cannot be selected. The term reasonable, however, is very vague in this context.

The possibility of a better management strategy under an alternative initial condition raises an-
other important issue. If, for a given critical reward, the preferred management strategy varies
with the initial estimate of an uncertain parameter, the analyst will be forced to consider the
plausibility of different parameter values in order to identify a preferred strategy, particularly if
the robustness of the alternative strategies are similar. IGT, however, does not provide any esti-
mate of the plausibility of different values, this issue is left with the analyst. Analysts who were
attracted to IGT because they are very uncertain, and hence reluctant to specify a probability
distribution for a model’s parameters, may be disappointed to find that they need to specify the
plausibility of possible parameter values in order to identify a robust management strategy.
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Figure 4.11: Robustness functions for two surveillance strategies highlighting the possibility for the
preferred order of different management strategies to vary under different initial esti-
mates of uncertain parameters (in this case the probability of detecting a pest species
in a single sample). Black lines show the original result published by Davidovitch
et al. (2009). Red and blue lines show alternative plausible values for the uncertain
parameter. The vertical grey line is the critical reward requirement. In this case the
requirement is that the probability of detecting a new pest incursion must be ≥ 0.8
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In biosecurity risk assessment one of the most severe forms of uncertainty is our limited under-
standing of complex ecological processes that manifests as model structure uncertainty. IGT
does not provide a ready-made solution to this problem and, as with many other applications
of uncertainty analysis, this form of uncertainty is typically not addressed in ecological appli-
cations. IGT provides an alternative non-probabilistic way to express uncertainty, but in most
ecological applications it is applied to uncertain parameters of probabilistic models, such as the
rate of a Poisson process, or the probability of detecting a pest in a trap. Its greatest strength is
that it places uncertainty at the forefront of the decision selection problem.

An important point is that its recommendations could be sensitive to the initial estimates of the
uncertain parameters. As a method of uncertainty analysis it is not unique in this regard, but,
as Figure 4.11 demonstrates, small departures from an initial estimate can still lead to different
conclusions.

This is important because IGT does not distinguish between the likelihood of different initial
estimates. Hence, if recommendations based on an Info-gap analysis change with different
initial estimates, and these estimates are highly uncertain (for example two equally credible
experts have different views on the “best” initial estimate) then the theory may not be able to
unambiguously identify the best course of action. If the robustness is low at the point where
the preference order of the two decisions change (conditional on the required reward) then
the theory highlights that the current level of understanding and information is insufficient for
reliable decision-making. This insight, of course, presumes that analysts test for the effect of
different initial conditions when using IGT.
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5 Uncertainty analysis in practise

5.1 Who’s using what?
Risk assessment and uncertainty analysis is practised across a wide range of disciplines. A
Web of Science literature search was designed and implemented at the outset of the project
to gauge the popularity of different forward uncertainty propagation techniques across various
risk assessment application domains. Table 5.1 shows the boolean search terms applied to the
title (TS) field of the Web of Science records. The search terms were modified following initial
feedback at the project workshop held on the 28th July 2008.

Identifier Search terms

#3 #2 AND #1

#2 TS=(“fuzzy set*” OR “delta method” OR “interval analys?s” OR “monte carlo
simulation*” OR “copula*” OR “probability bound* analys?s” OR “depen-
dency bound* analys?s” OR “cauchy deviate” OR “info gap” OR “dempster
shafer” or (hierarchical SAME bayes*) OR “qualitative model?ing” OR “loop
analys?s” OR “bayes* belief network*” OR “bayes* analys?s of computer code
output*” OR “cognitive map*”)

#1 (TS=“risk assessment” OR TS=“risk analys?s” OR TS=“invasive species”
OR TS=“alien invasive species” OR TS=“non indigenous species” OR
TS=“non native species” OR TS=“alien species” OR TS="foreign species"
OR TS=“introduced species” OR TS=“biosecurity” OR TS=“bio security” OR
TS=“pest”)

Table 5.1: Boolean search run on the Web of Science to identify risk assessment studies that use
forward propagative uncertainty analysis techniques

The initial application of the literature search recovered 349 references between the years 2000
to 2008. References for the year 2007 and 2008 (139 in total) were subsequently collated and
categorised according to uncertainty analysis method, application domain and risk assessment
endpoint (Figures 5.1 and 5.2).

The outstanding result of this literature search is the clear popularity of first order Monte Carlo
Simulation. Over the two-year period more than 70 quantitative risk assessment studies used
this method to propagate uncertainty through a risk function (Figure 5.1). The analysis of
methods by discipline and by endpoint (Figure 5.2) did not identify any clear patterns of usage in
this, or indeed the other, uncertainty analysis methods. Bayesian methods - Bayesian networks
and Bayesian hierarchical models - figure prominently in the remaining methods, together with
fuzzy sets and hybrids - i.e. studies that use two or more of the methods listed here. None of
these methods, however, are anywhere near as popular as first order Monte Carlo Simulation.

The analysis by discipline and endpoint (Figure 5.2) suggests that human health and safety,
followed by water quality, systems reliability and food safety, are the most common endpoints
in quantitative risk assessment that use the uncertainty analysis methods identified here. MCS
methods appear to dominate in fields such as toxicology, medicine and life sciences (covering
endpoints such as biosecurity, food safety, water quality, etc.) with a somewhat more even mix
of methods in engineering and financial applications.
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Figure 5.1: Dot plots illustrating the frequency of fourteen forward propagative uncertainty analysis
techniques in risk assessment studies published in 2007 and 2008
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Figure 5.2: Bar plots showing the frequency with which different forward uncertainty propagation
methods were used by different disciplines and for different risk assessment endpoints
in the years 2007 and 2008.
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5.2 Methods evaluation
Section 4 of the report summarises ten different ways to propagate variability and epistemic
uncertainty through risk functions. Whilst the advantages and disadvantages of each approach
are discussed, it is perhaps not immediately apparent which method might be best suited to any
particular situation. This section of the report attempts to evaluate each of the methods against
a set of evaluation criteria in order to shed further light on this issue. The evaluation criteria are:

• Assumptions: What assumptions must be made by the analyst in order to implement the
method? How strong are these assumptions? How much data is required to support these
assumptions?

• Technical complexity: Is the method well understood? What level of technical expertise
is required to implement the method? Is this level of expertise widely available?

• Software availability: What types of software are available to implement the method?
What level of training is required to implement the software? What are the computational
overheads associated with the method?

• Decision utility: How useful is the approach to decision makers? Will it consistently
produce reliable answers when implemented by different competent analysts? How wide
are the upper and lower bounds of the answer likely to be?

These criteria were chosen because they address issues of practical implementation, and may
therefore help practitioners identify which method(s) might best serve their particular needs.
Ultimately this comparison, together with the comparison of their individual advantages, will
help to identify an overall strategy for uncertainty analysis that is outlined in Section 6 of the
report.

5.2.1 Assumptions

The three most important assumptions in propagative uncertainty analysis are: a) the structure of
the model or risk function; b) the probabilistic or non-probabilistic function(s) used to represent
the different sources of variability and epistemic uncertainty in the model variables; and c) the
nature of the dependency between the variables and (where appropriate) the parameters of their
density functions where uncertainty is represented probabilistically.

On the whole, model structure uncertainty is rarely addressed in quantitative or qualitative risk
assessments. Loop analysis and fuzzy cognitive maps provide a relatively rapid way to address
this issue requiring, in the first instance, no more than a simple influence diagram. Both rely
on Signed Directed Graphs, thereby allowing for the presence of feedback that is disallowed in
the Directed Acyclic Graphs. Both methods, however, assume that the dynamics of the system
in question can be adequately portrayed with linear differential equations, and loop analysis
provides no information on the transient dynamics of the system as it shifts between equilibria.

The extent to which Fuzzy Cognitive Maps can accurately portray transient dynamics is unclear
because the interaction weights are normalised (in a potentially non-linear manner) as the graph
is solved. Loop analysis assumes that interactions between variables in the model are in some
undefined sense equally “strong”. Vague predictions are the price of this very loose assumption.
Fuzzy cognitive maps can accommodate subjective uncertainty about the interaction weights
through fuzzy sets and therefore presumably through simple intervals as well.

The predictions of all of the other propagative uncertainty techniques identified here are also
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conditional on the assumed model, and all require the variables (risk factors) of this model to
be parameterised in some fashion. In the absence of observations, first and second order Monte
Carlo simulation require the most onerous assumptions in this context, not only in relation to
the probability density function used to represent variability and/or epistemic uncertainty, but
also in the nature of the dependency between these variables. In practise the default assumption
is one of independence but this is not a conservative approach.

Probability bounds analysis performs much better in this regard. Not only does it free the
analyst from having to make assumptions about the shape, scale or location parameters of the
probability density function, it also enables him or her to separate the effects of variability from
epistemic uncertainty, without the need of additional (hyper) parameterisation, and explore the
bounds created by positive or negative non-linear dependency. The price of this assumption-free
flexibility is potentially large bounds. Interval analysis offers the same advantages at the same
price but with the additional cost of providing no information on the plausibility of the values
that lie within the endpoints of the interval answer.

Info-gap theory rates reasonably well against the assumption criteria. In most applications its
predictions are conditional on a single model, and ecological examples usually assume that
the horizon of uncertainty increases at an equal rate across all of the models parameters. It is
possible to info-gap model uncertainty but this is rare in ecological practice (see however Fox
et al. (2007) and McDonald-Madden et al. (2008) for good examples). Info-gap solutions do
not rely on extensive parameterisation, although they do require the analyst to choose among a
number of alternative models of uncertainty. IGT also makes no assumptions about dependency
since it does not rely on a probabilistic interpretation of uncertainty.

Bayes Networks make no assumptions about dependency. They explicitly acknowledge the
conditional dependence between nodes of the network, and force the analyst to address this in
a mathematically coherent manner. The predictions of Bayes Networks, however, are sensitive
to the model structure, and Directed Acyclic networks impose additional assumptions on the
nature of the cause and effect relationships that they represent, specifically excluding the effects
of feedback in the system. Bayesian Networks are methodologically restricted in this regard,
however, “loopy Belief Networks” and dynamical networks are an active area of statistical
research. There are, however, very few published applications of dynamic networks applied to
ecological problems or biosecurity related problems (see Sebastini et al. (2006) and Johnson
et al. (2010) for examples in this context).

5.2.2 Technical complexity

The technical complexity of the techniques described above varies considerably between meth-
ods. Info-gap theory is the most technically demanding whilst interval analysis is the least de-
manding in this regard. Info-gap solutions are often not analytical and can involve technically-
advanced, constrained optimisation. Probability bounds analysis, Bayesian Networks and fuzzy
set theory are the next most technically challenging methods. The language used to describe
Probability Bounds analysis and Bayesian Networks is usually very clear (exceptionally so in
the case of PBA), and because these methodologies are probabilistic, the language is likely to
be familiar to secondary or tertiary educated practitioners.

The basic concept behind Probability Bounds Analysis - an upper and lower bound on a distri-
bution function - is not difficult to grasp. The algorithms and limits that propagate these bounds
through arithmetic operations, however, are not trivial and are not widely known. Moreover,
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these algorithms are currently implemented in a pair-wise fashion, thus requiring careful pro-
gramming and occasionally restructuring of a problem to avoid the occurrence of repeated vari-
ables, and some arithmetic operations are not currently available for probability boxes that span
zero. Extensions of the limits used by PBA to the more general case of three or more variables
are complex and still an open research question.

The basic concepts, methods and algorithms of fuzzy set theory are not overly complex. The
language associated with this theory, however, is unlikely to be familiar to anyone without
specialist training in set theory and alternative schools of uncertainty analysis. This is likely to
present a reasonable barrier to risk practitioners who are presented with this material for the first
time. The theory of fuzzy sets is obfuscated further because it lacks an unambiguous axiomatic
framework. The links between evidence theory, possibility theory and imprecise probability
theory are often not clearly articulated in the literature. There is some overlap between the
methods and algorithms of these theories but this interpretation often does not match the original
motivation of, for example, belief functions or possibility theory (Baudrit et al., 2007a). This
situation may reflect the fact that evidence theory and possibility theory are young theories
when compared to probability theory, and that their techniques and methods are still evolving.

The basic theory underlining the conditional structure of a Bayesian Network (the sum and
product rules) is not difficult to grasp and does not require a high level of statistical training.
Moreover, the Bayesian Networks developed for ecological risk assessment applications are
usually restricted to relatively simple systems with discrete conditional probability tables at
each of the network nodes. These structures can be built with minimal training. The formal
methods of inference and diagnosis in Bayes Networks, however, require a greater level of sta-
tistical training to understand, although this complexity is typically hidden behind a software
application. The statistical theory of graphical models is also much more extensive than that
suggested by the usual applications of Bayes Nets in risk assessment, and requires a high (post-
tertiary) degree of specialised training to understand and implement. This may be one reason
why the structure of a Bayesian Network is rarely inferred from data in risk assessment prob-
lems, and why the full scientific utility of statistical graph theory is under-utilised in ecological
risk assessment problems.

The Delta method is simple to understand and easy to implement for simple models. It quickly
becomes more challenging, however, as the number of parameters in the model increases, partic-
ularly if the cross-product terms and/or second-order terms are retained, requiring of the analyst
a good grasp of calculus. Loop analysis and fuzzy cognitive maps are also similarly easy to
implement and solve with very simple systems of two or three variables. Loop analysis is par-
ticularly appealing in this context as symbolic solutions are available for these types of systems.
Solutions for more complex systems, however, require a good tertiary-level understanding of
matrix algebra and calculus.

The theory behind first- and second-order Monte Carlo simulations is relatively easy to un-
derstand (particularly given the ready availability of software and instruction documentation).
Understanding the effects of linear and non-linear dependency requires a greater level of exper-
tise, and the algorithms used to generate correlated and/or dependent random variables require
a tertiary level of statistical training. Again, however, these algorithms are usually hidden from
the user by software. Unfortunately the difference between linear correlation and non-linear
dependency is also sometimes missing from the manuals that accompany this software.
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5.2.3 Software availability

The popularity of Monte Carlo simulation may be due in part to large number of software pack-
ages that are available to the user. MCS simulations can be performed with a large variety of
commercial software packages such as Crystal Ball, @RISK, MATLAB, Maple, Mathematica,
etc. and freeware packages such as R and PopTools. R libraries for second-order MCS have
also recently been developed and are freely available (Pouillot and Delignette-Muller, 2010).
@RISK and PopTools run in Microsoft’s Excel programme and can therefore be implemented
in simple spreadsheet formats without the need for any programming skills.

Bayesian Networks are also supported by a fairly large class of commercial software pro-
grammes, including Netica, Hugin Expert and MATLAB, together with some freeware pro-
grammes such as MSBNx, SMILE and GeNIe. Some of the commercial platforms can also be
downloaded for free and run in a “limited mode”. These packages typically come with exten-
sive documentation and user-friendly GUI’s and therefore require little, if any, programming
skills. More general applications of statistical graph theory can be implemented with statistical
packages such as R but these require substantial programming skill.

Probability bounds analysis can be performed with one commercial software package RAMAS
Risk Calc (Ferson, 2002) and a freeware package known as Statool (Berleant et al., 2003).
Scott Ferson has also developed a series of functions in R that can be used to perform PBA
within the R environment. These functions are not currently available as an R library on CRAN
but can be accessed by contacting Scott directly (scott@ramas.com) and sourced in the usual
manner. Statool and Risk Calc are supported by detailed instruction manuals. Risk Calc allows
immediate-mode calculation (much like a calculator) and is easy to run once the user becomes
familiar with its syntax and functions. Risk Calc also enables the user to implement interval
analysis techniques. A software add-in for Microsoft Excel that supports arithmetic with inter-
vals, probability distributions and p-boxes, within Excel’s spreadsheet format, is also currently
being developed (pers comm Scott Ferson).

Loop analysis calculations require specialised commercial mathematical software such as Maple
or MATLAB. Symbolic representation of these calculations is currently only available through
Maple. The calculations require a high level of programming skills. Fuzzy set theory, Info-gap
theory, interval analysis, the Delta method and fuzzy cognitive maps can also be implemented
and solved using these programmes and a wide range of statistical software applications in-
cluding R. Again implementing these methods with these software packages requires a detailed
understanding of the algorithms associated with each method, as well as training and familiarity
with the software programming language. With the exception of interval analysis, I am unaware
of any commercial or freeware software packages that are dedicated to these methods.

5.2.4 Decision utility

The decision-utility criteria address the extent to which each of the methods provides consis-
tently precise and accurate answers. Clearly this will be partly determined by the nature of
the problem in hand and the amount of data available to the analysis, but a few general com-
ments in this regard are possible. Monte Carlo simulation provides a mechanism for consistent
and relatively precise predictions. The precision of the prediction is driven by the variance of
the probability density functions used to describe uncertain input parameters, the tail-shape of
these density functions, the dependency between them and the risk function that describes the
problem at hand. Distributions with low variance, low tail mass (e.g. the Normal distribution),
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that are assumed to be independent and propagated through simple risk functions, with small
parameter dimension, will lead to more precise predictions.

The extent to which MCS predictions might be accurate, however, depends on how well the
assumptions of the analysis are supported by data and/or theory. In data-rich situations - i.e.
situations supported by hundreds of observations - it is possible to identify parametric density
functions that accurately represent the data. Empirical information on the covariance structure
of the data should also highlight the presence of dependency, and if linear, this can also be incor-
porated into the simulation. The predictions are still conditional on the model, but alternative
plausible models can be easily built and simulated with existing software packages. Conditional
on the risk function (the model), and correct programming, this situation provides the best op-
portunity for accurate risk prediction so long as the data are representative of the risk-generating
conditions associated with the problem at hand.

In data-poor situations the assumptions that must be made to run a Monte Carlo Simulation
are unlikely to be well supported. Furthermore the large number of factors that contribute to a
Monte Carlo answer, namely: the risk function, the type of density function of each risk factor,
the parameterisation of these density functions and the nature of the dependency between the
input parameters, are likely to preclude any systematic evaluation of the effect of plausible al-
ternative assumptions on the risk estimate. Probability bounds analysis provides a rigorous and
robust alternative in these situations, that can be tailored to reflect whatever data is available
and alleviate the requirements for assumptions regarding the type and/or parameters of the den-
sity functions, and the dependence between them. In data-poor situations, however, probability
bounds analysis is likely to result in very wide bounds that span the decision maker’s man-
agement criteria. Probability bounds estimates are also still conditional on the risk function.
Interval analysis is also likely to suffer from the same problems, but it suffers further in this
regard because it does not offer the opportunity for identifying where the bulk of the probability
mass lies within its final bounds.

Info-gap theory provides an alternative decision-support mechanism in these circumstances.
Info-gap results are still conditional on the risk function (although in theory this can also be
“info-gapped”) but it makes no assumptions about the probabilistic characteristics of uncertain
input parameters or the dependency between them. In ecological practice, however, uncertain
input parameters are typically treated as independent. Info-Gap solutions can be sensitive to the
initial parameter estimates, and the decision utility of its solutions may be undermined if these
estimates are poorly known. This situation can be improved by a evaluating plausible combi-
nations of initial values but in practice this requires a priori information on the plausible range
of each parameter, and could entail a large number of computations. Moreover, Info-Gap solu-
tions are most useful when the robustness curves for alternative management strategies do not
cross. In these situations the methodology will unambiguously identify the best management
strategy (again conditional on the model). If the robustness curves cross, however, the utility
of the methodology is again diminished because it provides no information on the likelihood of
the horizon of uncertainty associated with the change in best management action.

Bayesian Networks, like Monte Carlo simulation, offer the potential for accurate and precise
predictions. In this instance, however, it is more difficult to explore the implications of model
structure uncertainty (if the conditional probability tables are completed manually) and the pre-
dictions of a Directed Acyclic Graph are unlikely to be accurate if the dynamics of the system in
question are sensitive to, or dictated by, feedback. The primary advantage of Bayes networks,
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and indeed statistical models more generally, is that they offer the analyst the opportunity to
test the likelihood of the data under different models, and hence test for agreement between the
model and its parameterisation using observations of the risk generating process. In data-rich
situations it is possible to automatically populate and structure a Bayes Net so that it provides
the most parsimonious description of the conditional relationship in the data. This capability
offers substantial decision utility but it requires the decision maker to place a certain amount of
trust in the mathematics that underlie it.

It is difficult to build a compelling case for the decision utility of fuzzy set theory because: a)
extensive methods exist to convert experts’ beliefs and interpretations of linguistic terms into
numerical intervals, removing the necessity of methods designed to treat vagueness and ambi-
guity; and b) the advantages of the upper and lower bounds of belief and plausibility measures
can be achieved with a method (imprecise probability) that is highly likely to be more familiar
to decision makers. The decision utility of the Delta method also ranks low because of its in-
ability to describe the tails of risk problems - i.e. the low probability, high consequence events,
that often have an important bearing on risk management.

Loop analysis deliberately makes vague predictions. In some circumstances knowing the broad
direction of change may be sufficient for management purposes, and knowing the extent to
which this prediction is robust across a number of plausible models, may enhance its utility
considerably. Loop analysis, however, cannot be used to assess the unit benefit for unit cost of
management and this limits its utility as a management decision aid. Fuzzy cognitive mapping
may be able to provide additional utility by providing some indication of the relative magnitude
of change but the corruption of the absolute magnitude of the interaction weights means that it
also cannot measure the absolute “bang for buck”. The primary utility of both of these methods
is a means to explore the implications of model structure uncertainty prior to embarking on
more precise methods of uncertainty analysis or inference.
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6 Discussion and recommendations

6.1 Uncertainty and qualitative risk assessment
Risk assessment entails judgements and arithmetic operations with stochastic variables. Uncer-
tainty enters the process via the language used to describe and contextualize the assessment, via
our limited knowledge about the most appropriate structure of a risk function and via the inher-
ent variability of the variables in these functions. There are important theoretical and practical
reasons to keep these different sources of uncertainty separated throughout the risk assessment
that are primarily motivated by the need to separate uncertainty that in theory can be reduced
with additional resources (linguistic uncertainty and epistemic uncertainty) from that which
cannot (variability). Moreover experience shows that risk assessments that do not explicitly
attempt to separate linguistic uncertainty and epistemic uncertainty from variability can provide
ambiguous and/or overconfident predictions.

The principal impediment to uncertainty analysis within qualitative risk assessment is that vari-
ability and epistemic uncertainty are confounded with each other and with linguistic uncer-
tainty. Separation of the three sources of uncertainty requires, as a minimum, that linguistic
uncertainty is eliminated from the problem as far as possible. Fuzzy sets and possibility theory
provide a mechanism that was specifically designed to eliminate two important sources of lin-
guistic uncertainty (vagueness and ambiguity). These sources of uncertainty, however, can also
be eliminated with probability theory via formal elicitation methods and probability bounds
analysis. This approach has the additional advantage of: a) being able to minimise other well
known heuristics and biases in human perception and judgements of uncertain events; and, b)
couching its analysis within the realms of probability theory which is likely to be more familiar
to decision makers than evidence or possibility theory.

Some of the problems associated with qualitative risk assessment, particularly those that per-
form arithmetic on qualitative expressions of likelihood (or indeed consequence) via matrix-
based methods, are only apparent when one source of linguistic uncertainty (vagueness) is
eliminated via numerical definition of terms such as “high”, “medium” or “low”. In these
circumstances interval analysis provides a means to compare the predictions of the qualitative
assessment with the equivalent numerical result. The analysis presented here demonstrates that
these types of qualitative assessment are prone to bias and non-commutative results. This oc-
curs because the convolution rules dictated by the matrix-based operations are arbitrary and in
general will not conform to mathematical rules. The simple example shown in Figure 2.2 illus-
trates this problem in relation to Biosecurity Australia’s risk assessment schema. It is, however,
a much more general problem that accompanies the other issues with qualitative risk matrices
already identified in the literature (Cox et al., 2005; Cox, 2008).

These issues aside, there are a number of other fundamental issues with qualitative approaches
to risk assessment that are related to the science-quality criteria of transparency, repeatability
and falsifiability, and the decision-utility criteria of precision and accuracy, namely:

• qualitative risk assessment predictions cannot be (in)validated with observations, and un-
certainty cannot be coherently propagated through risk functions without translating qual-
itative metrics of likelihood or consequence into numerical metrics; and,

• the effects of dependency between risk-generating events cannot be coherently explored
allowing for different interpretations of the factors responsible for the same observed out-
comes, and potentially paradoxical assumptions about the relatively likelihood of events.
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Overall it is very difficult to see how science- and decision-quality criteria can be maintained
with qualitative risk estimates. Language is vague and ambiguous thereby reducing trans-
parency and precision. It can be interpreted differently by different analysts thereby challenging
repeatability. Most importantly, it cannot be falsified and cannot therefore in principle be shown
to be inaccurate. All of these quality criteria require linguistic descriptions of likelihood and
consequence to be numerically defined. Once this step is carefully taken, language may be use-
ful for the purposes of communicating risk and uncertainty but it need not play any further role
in risk assessment.

6.2 Honest quantitative risk assessment
Once linguistic uncertainty is minimised, there are three important issues that should be ad-
dressed as part of the uncertainty analysis stage of a risk assessment:

• what variables (risk factors) are included or excluded from the risk model, and how is
uncertainty in the model structure captured and propagated through the assessment?

• how is variability and epistemic uncertainty represented in the variables of the model, and
how is this propagated through the assessment?

• are the variables in the risk model independent, and if not, how is actual or potential
dependency captured and propagated through the assessment?

In the absence of data - i.e. in a forward propagative mode of uncertainty analysis - the chal-
lenges associated with each of these three issues are typically reduced or eliminated from an
assessment by making assumptions about the model structure, the shape, scale or location of
the distribution that represents variability and/or epistemic uncertainty in the model’s variables,
and the nature of the dependency between these variables. These types of assumptions have an
important bearing on the results of the risk assessment. The principal objectives of propagative
uncertainty methods are to report, and where practical test, the effect of these assumptions on
the overall risk estimate, and in doing so achieve an honest assessment.

In approaching this problem the analyst can adopt one or more of a number of general strategies
to epistemic uncertainty, variability and dependency:

• simply ignore: this is sometimes defensible for parametric uncertainty and model struc-
ture uncertainty, but only in limited circumstances. For example, model structure un-
certainty can be ignored where the model or risk function is dictated by legislation or
guidelines. In this context the risk assessment results are only defensible as a guide to the
relative magnitude of risk but this can be useful as a risk-screening decision aid;

• eliminate: this is possible for variability (and to a limited degree dependence) by either
building a more complex risk model (to capture the cause and effect processes that create
variability) or via choosing a simpler assessment endpoint that enables a simpler risk
model with a lower parameter dimension. The first approach may not be attractive in
data-limited circumstances because it can increase model structure uncertainty. The latter
approach is only tenable if meaningful decision criteria can be stipulated by a decision
maker for the simpler endpoint;

• compare and envelope: comparative strategies are akin to sensitivity analysis and seek
to highlight the effect of assumptions on risk estimates. Enveloping methodologies place
bounds on the best and worst estimates and seek to guarantee that the true result will lie
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within these bounds. Interval analysis, probability boxes and probability bounds analy-
sis can satisfy this guarantee for variability and dependence with minimal conditions, for
example, that the true value of an uncertain quantity lies within an elicited interval. Over-
confident expert opinion is clearly a challenge in this regard. Info-gap theory attempts
to place an upper bound on the effects of uncertainty on decisions but its recommenda-
tions may be sensitive to initial conditions. Moreover, comparison and enveloping cannot
in principal provide guarantees for model structure uncertainty. In the absence of data
and statistical inference this problem is unconstrained but is best approached by consult-
ing widely and comparing as many plausible models as is possible within the resources
available to the study. Techniques such as influence diagrams, loop analysis and fuzzy
cognitive maps can be helpful in this context;

• average over: an analyst can average over variability and several sources of epistemic
uncertainty, including model structure uncertainty, using techniques such as second-order
Monte Carlo Simulation and Bayesian model averaging. Again, however, in the absence
of data this problem is unconstrained and computationally more demanding than the com-
pare and envelope strategy. The range of plausible model structures, or alternative prob-
ability density functions, that can be addressed within the resources of a single study
are therefore likely to be smaller with this strategy, and in the case of model structure
uncertainty it can lead to risk estimates that are incompatible with accepted theories; and.

• model and factorise: this strategy is applicable to variability and dependence and in the
presence of data also provides a means to identify parsimonious descriptions of cause
and effect and thereby treat model structure uncertainty. Copulas and Bayesian networks
can be used to treat dependence and partition different sources of variability in a risk
assessment problem. These methods can be used in data-poor situations but the lack
of data-based constraints can still undermine attempts to provide a systematic analysis.
Moreover, the full benefits of Bayesian networks, and statistical graph theory and hierar-
chical modeling in general, cannot be realised in the absence of data.

When considering an honest appraisal of model structure uncertainty it also important to bear in
mind that model complexity is not synonymous with accuracy. Complex mathematical models
are sometimes seen as more realistic and relevant than simple models (Bartell et al., 2003).
There is, however, no evidence to support the contention that complex ecological models are
more accurate than their simpler counterparts (Reckhow, 1994; Arhonditsis and Brett, 2004;
Fulton et al., 2004). The aim of an honest quantitative risk assessment is therefore to use
the most parsimonious representation of the risk-generating process as possible. Parsimony,
however, can only be tested when risk predictions are compared to observations.

6.3 Uncertainty, statistics and quantitative risk assessment
Smith (2002) suggests that there is a major difference in the way statisticians and risk analysts
view uncertainty because the models used in risk assessment are not simple empirical (data-
based) models but mechanistic models. Mechanistic models can be divided into two types:
deterministic and stochastic. Deterministic models have no stochastic components and typi-
cally ignore most sources of real-world variability. They therefore have limited utility in a risk
assessment context. Stochastic mechanistic models include at least one random component to
represent real world variability, and at this point the boundary between mechanistic model and
statistical model becomes fuzzy.
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Virtually all quantitative risk assessments describe risk as a function of one or more variables
or risk factors: Risk = f (X) (Table 2.2). The function f (·) can take many different forms but
it usually represents some mechanistic description of the risk-generating process. The function
captures variability by treating one or more of the input variables X as a random variable - i.e.
f (X) is a stochastic mechanistic model. More sophisticated analysis can separate variability
and epistemic uncertainty via hierarchical models or by treating input variables as imprecise
distribution functions, as described in Section 3. By contrast, the explanatory variables in a
statistical model do not have to represent theoretically important components or processes of the
risk-generating mechanism. In practise they are usually a set of available observed covariates
whose collection may or may not have been informed by domain-based understanding and
theory.

Statistical models are not, however, defined by, or restricted to, non-mechanistic descriptions
of physical or biological processes. Indeed some of the most exciting developments in statis-
tical science in the last two decades has been in the area of data assimilating models (State
Space Models, Hidden Markov Models, etc.). These approaches can convert a set of differential
equations describing, for example, the growth and spread of an invasive species (a mechanis-
tic model) into a regression problem (a statistical model) by including a process error term to
represent all the real-world variability that is not captured by the model and/or by treating the
outcomes of the mechanistic model as a latent stochastic process that is observed imperfectly
(caricature E, Figure 3.2). Statistical inference on the model parameters, the latent state(s), pro-
cess error and/or observation error terms typically proceeds via Bayesian Monte Carlo methods
such as Gibbs sampling, Metropolis-Hastings within Gibbs or more advanced adaptive MCMC
methods and Sequential Monte Carlo methods, depending on inter alia the complexity of the
mechanistic model (Carlin and Louis, 2009; Koller and Friedman, 2009). A growing number of
examples of ecological applications of these methods are now available in the literature (Clark,
2003; Clark and Bjornstad, 2004; Clark, 2007; Arhonditsis et al., 2007; Peters et al., 2010).

In the cases highlighted above, the traditional distinction between “statistical model” and “mech-
anistic model” (sensu Smith (2002)) is not useful or instructive. The only important difference
between quantitative risk functions (based on stochastic mechanistic models) and statistical
models is that the latter are specifically designed to explain observed variation. The complexity
of a statistical model is therefore constrained by the need to estimate the model and/or its param-
eters from the available data set. Quantitative risk functions on the other hand can be specified
prior to, or in the absence of, any observations. Hence there is no a priori restriction on the
complexity of a quantitative risk model other than domain-based knowledge and the computing
power needed to run it.

It is bad practice, and indeed unscientific, to make but not test risk assessment predictions.
Furthermore virtually all risk assessment frameworks emphasise the importance of monitoring
(collecting data), reviewing risk assessment predictions and where necessary, repeating the as-
sessment cycle if predictions are not supported by observations. Hence all risk assessment exer-
cises, and the analysis of variability and epistemic uncertainty, should be viewed as a statistical
inference problem informed by observations of the risk-generating process and its outcome.
The forward uncertainty propagation techniques identified under the broad heading of “uncer-
tainty analysis” in Figure 3.1 are largely a means to start the risk assessment process prior to the
availability of observations. Thereafter they should be supported and ultimately replaced by the
inference methods identified under the broad heading of “statistics”. The distinction between
the two groups of methods should not be seen as an enduring distinction between two separate
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disciplines.

Validating or invalidating risk predictions with observations can be a challenging problem, par-
ticularly for rare events (Ferson, 1996a). Validation should, however, be targeted at the entire
risk-generating process and not simply at the endpoint of the process. Virtually all risk func-
tions and conceptual models entail a series of events that contribute to the overall assessment
endpoint. Furthermore, these events are sometimes not all extremely rare. Hence, while it may
not be possible or indeed desirable to gather observations on the risk endpoint, it will almost
always be possible to expose inputs, assumptions and intermediate variables in the risk function
to actual observations.

In import risk assessment, for example, the survival and initial establishment phase is often the
most improbable because it is the most stringent and difficult phase for an invading organism to
successfully negotiate, and is it also one of the most difficult steps to physically monitor. Earlier
steps in the event chain, however, such as the incidence of infection at collection stations in the
exporting nation or the proportion of infected produce that reaches the border are easier to mon-
itor and there are strong theoretical grounds to suspect higher rates of occurrence. Steps in the
risk-generating process with these characteristics are potentially easier to monitor and thereby
allow inference and (in)validation of quantitative risk assessment predictions and uncertainty
analysis assumptions.

6.4 A recommended strategy for uncertainty analysis
The discussion of the preceding sections has highlighted a number of general strategies for lin-
guistic uncertainty, epistemic uncertainty, variability and dependence in risk assessment. They
have highlighted science-quality and decision-utility criteria, the difficulties with qualitative risk
assessment in this context, and the importance of observations in constraining epistemic uncer-
tainty and (in)validating risk assessment predictions and assumptions. A synthesis of these
discussions, together with an examination of the pros and cons of different uncertainty analysis
methods, suggests the following overall strategy for uncertainty analysis in data-poor situations:

1. use formal elicitation techniques to canvass the opinions, construct conceptual models
and parameterize the beliefs of stakeholders and experts. Use either predictive or struc-
tural elicitation methods to convert conceptual models into statistical, qualitative and/or
mechanistic models and convert beliefs about stochastic variables into numerical intervals
with assigned levels of confidence;

2. ensure feedback is embedded within the elicitation procedure (to minimise the potential
for misunderstanding) and apply an advocacy-like procedure to ensure that all aspects of
the risk assessment are rigorously reviewed;

3. state risk-decision criteria (risk acceptability levels) in a numeric, measurable fashion for
as many of the steps in the risk-generating process as is possible, including steps leading
up to the overall assessment endpoint;

4. maintain plausible diverse opinions and in the first instance envelope this diversity using
techniques such as loop analysis, comparisons of alternative risk functions, interval anal-
ysis, probability boxes and probability bounds analysis. If the upper bound on the sub-
sequent risk estimate is lower than the decision criteria associated with the assessment
endpoint, report the result and consider the need for monitoring strategies that enable
(in)validation of as many of the steps in the risk-generating process as possible within
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the resources available to the assessment. If possible, collect data and use statistical in-
ference methods to check that the risk-generating process is operating within the bounds
predicted for each step of the process by the risk assessment;

5. if the lower bound on the enveloped risk estimate is higher than the decision criteria
associated with the assessment endpoint consider prohibiting, stopping or otherwise mit-
igating the risk-generating process and if necessary repeat the risk assessment with risk
management steps in place, and include within the assessment the impact of management,
and the effects of decision uncertainty upon this; and,

6. if the upper and lower bounds of the enveloped risk estimate straddle the decision criteria
associated with the assessment endpoint consider first the effects of dependence and the
mitigating effects of positive or negative dependence. For example, a potential application
of positive quadrant dependence arises in import risk assessment because the probability
of detecting organisms at the border should be positively dependent on the number of
organisms that arrive at the border - i.e. as the number of infected units rises so should
the probability of their detection. Treating these events as independent denies the reality
of inspection regimes, inflates uncertainty bounds and can lead to paradoxical simulations
where large numbers of infected units are multiplied by a small probability of detection
(and vice-versa) in naive simulations.

The strategy outlined above is designed to enable uncertainty analysis with the minimum amount
of assumptions. The objective here is for the assessment to be roughly right rather than precisely
wrong. If the enveloped predictions continue to cross the assessment endpoint then two avenues
are available to the assessor and manager:

• consider prohibiting or otherwise deferring the risk-generating process and the risk as-
sessment, and collect data that enables statistical inference and a more precise empirical
estimate of the risk function (statistical or mechanistic model) and/or the variables (risk
factors) associated with this model; or,

• use the most plausible assumptions about the model structure and its variables to provide
a more precise risk prediction by modeling and/or factorising the uncertainty associated
with the problem using techniques such as Bayesian Networks and second-order Monte
Carlo Simulation supported by linear or non-linear estimates of dependence.

It is very important with the second option that the assumptions associated with the analy-
sis are clearly communicated together with the effects of alternative plausible assumptions on
the risk estimate where possible. It is also important that monitoring strategies are designed
and implemented in order to (in)validate as many of the steps in the risk-generating process
as possible and thereby enable a gradual departure from data-poor circumstances to data-rich
circumstances, and a move towards the inference opportunities of modern statistical methods.

The decision to proceed with, defer, prevent or mitigate a risk-generating process is informed
by risk assessment but ultimately made on socio-economic grounds. The objective of the strat-
egy outlined above is to keep the risk assessment component of this process as useful, scientific
and as honest as possible, within the limits of currently available methodology. The extent
to which this strategy is applicable to a given situation will be in part dictated by the specific
circumstances of the assessment. It is not, for example, intended as a strategy for risk screen-
ing although some of its initial elements may still prove useful in this context. The different
approaches to elicitation (predictive versus structural) may also provide an opportunity to ei-
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ther complement or skip propagative uncertainty analysis methods. The core components of
the strategy are probability-based methods supported by observations and a gradual move to-
wards statistical inference. I recommended that these components are retained in any particular
application.
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Appendix A: Hypothetical elicitation and analysis
For variates that take values on the interval [0, 1] we fitted a Beta distribution function to each
of the expert’s second intervals by using a standard optimisation routine (the optim function in
R). The optimisation routine finds the parameters (α, β) of a Beta distribution function with 10th
and 90th quantiles that match the lower and upper bounds (respectively) of the expert’s second
interval by minimising the following sum of squares function:

S S =
[
tq1 − pbeta(p1, α, β)

]2
+

[
tq2 − pbeta(p1, α, β)

]2

where tq is a vector of target quantiles (10th and 90th for an 80% confidence interval), p is a
vector of the lower and upper bounds of the quantity in question (e.g. the proportion of infected
orchards) and pbeta is the R function that returns the Beta distribution function.

For variates that take values on the real line (volume of trade in 2009) we identified the mean
and standard deviation of a Normal distribution function whose 10th and 90th quantiles matched
the lower and upper bounds (respectively) of the expert’s second interval using standard rela-
tionships between the mean, standard deviation and quantiles of a Normal distribution.

It is important to note that in both cases the distribution fitting routines described above assume
or require: (1) the expert provides a lower and upper bound; (2) a level of confidence is assigned
to this bound; (3) a standard distribution is assumed for the variate (e.g. beta or normal); and,
(4) the distribution is symmetrical around the lower and upper bounds.

The distribution fitting procedure described above results in seven distribution functions (one
for each expert) for each of the nine questions in the risk assessment model. For each question
we also fitted a pooled distribution using the simple linear pooling methodology described in
O’Hagan et al (2006) . In this approach we pooled the distribution function (as opposed to the
density function) but the function is otherwise identical:

FPool = Σn
i=1wiFi(θ)

where the subscript i represents each expert, n is the total number of experts, Fi(θ) is the ex-
pert’s distribution function with parameter vector θ, and wi is the weight attributed to each
expert’s opinion. Note that in this example we have weighted each expert equally such that
wi = 1/n. The resulting pooled distribution is therefore a simple average of all of the experts
individual distributions. The linear pooling method is simple, intuitive and will faithfully cap-
ture the range of opinions expressed by each expert. The pooling procedure, however, results
in a non-parametric distribution. This is not, however, a serious impediment to any subsequent
calculations.

Having fitted and pooled the distributions for each question in the risk assessment model the
analysis is in a position to compare the results of a Monte Carlo Simulation (MCS) with a
Probability Bounds Analysis (PBA). For the MCS, the pooled distributions are sampled using
a standard inverse distribution method (also known as the inverse transform sampling method).
In this application 2000 samples were randomly selected from each of the pooled distribution
as inputs into the risk assessment model. The subsequent risk estimates were collected, sorted
and portrayed in an empirical distribution function. The Probability Bounds Analysis was per-
formed using the S4 library developed by Scott Ferson, Applied Biomathematics, using the
methods described in Ferson and Hajagos (2004), Tucker and Ferson (2003) and Ferson (2002).
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Appendix B: Press perturbation predictions
Section 4.3.2 presented an overview of loop analysis (qualitative modeling) and introduced the
concept of a Signed Directed Graph (SDG). This appendix presents the mathematical details
of a press perturbation analysis based on the system’s community matrix, derived from the
system of equations that are graphically represented by the SDG. Computer programs for these
analyses can be found in the most recent revision of Supplement 1 of Dambacher et al. (2002)
in Ecological Archives E083-022-S1 at http://www.esapubs.org/archive/.

Consider the growth rates of n interacting populations of species, described by the following
system of linear differential equations

dNi

Nidt
=

n∑
j=1

αi jN j + βi − δi + ιi − εi (i = 1, · · · , n) (6.1)

where the per capita rate of change in population abundance of Ni is controlled by density-
independent rates of birth (βi), death (δi), immigration (ιi), and emigration (εi), and αi j density-
dependent interactions. Equation 6.1 can be generally stated as

dNi

Nidt
= gi(N1,N2, · · · ,Nn; p1, p2, · · · , pm), (6.2)

where the growth function of each population (gi) is determined by the system’s variables (Ni)
and the growth rate parameters p = (αi j, βi, δi, ιi, εi)

At equilibrium, population abundances (Ni) are constant and defined by dNi
Nidt |N∗ = 0. In the

neighborhood of an equilibrium point, density-dependent interactions, represented by the com-
munity matrix A (Levins, 1968) (see below) determine the balance between the equilibrium
population abundances, and the density-independent rates of growth, via the linear matrix equa-
tion AN∗ = −k, where k = βi − δi + ιi − εi.

The elements of the community matrix A are calculated as

αi j =
∂
(

dNi
Nidt

)
∂N j

∣∣∣∣
N∗

=
∂gi

∂N j

∣∣∣∣
N∗
. (6.3)

These elements define the relationships or direct effects between system variables. An alterna-
tive approach is to consider the system’s Jacobian matrix (A′), which is derived from the dNi/dt
form of Equation 6.3

α′i j =
∂
(

dNi
dt

)
∂N j

∣∣∣∣
N∗

=
∂Nigi

∂N j

∣∣∣∣
N∗

(6.4)

The sign structure of the community and Jacobian matrices are identical, and thus for the pur-
pose of qualitative modeling, either one can be used. Quantitative stability analysis, however,
requires the use of the Jacobian matrix, although calculations of perturbation response can pro-
ceed with either the community or Jacobian matrix.

Prior to stability and perturbation analysis, the relationships between variables are portrayed by
sign digraphs. For example a simple three variable omnivory system can be portrayed in the
following Sign Directed Graph The corresponding community matrix
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A = αi j =


−a1,1 −a1,2 −a1,3

+a2,1 −a2,2 −a2,3

+a3,1 +a3,2 −a3,3

 (6.5)

contains the equivalent information.

Any long-term impact on an ecosystem can be interpreted and evaluated as a sustained change
in one of the system’s pm growth parameters. This is the case whether the change comes from
within the system via a density-dependent parameter, as in Mendelian selection, or externally
by way of a density-independent parameter, as in change coming from the environment or
change from management, development, or experimental purpose. The predicted change in the
equilibrium level of each variable is found (via the implicit function theorem) by differentiation
of Equation 6.2 with respect to pm

∂N∗

∂pm
= −A−1 ∂g

∂pm
. (6.6)

Given the matrix equality

A−1 =
1

det(A)
adj(A), (6.7)

where “det” is the matrix determinant and “adj” is the adjoint matrix (or classic adjoint matrix),
Equation 6.6 can be more conveniently expressed as

dN∗ =
1

det(−A)︸    ︷︷    ︸
overall feedback

complementary feedback︷     ︸︸     ︷[
adj(−A)

] (
∂g
∂pm

)
∂pm︸       ︷︷       ︸

strength of perturbation

. (6.8)

Here we have, via Cramer’s Rule, the solution for ∂N∗ - the difference between the old and new
equilibrium abundance for each population), and (∂g/∂pm)∂pm - the strength or magnitude of a
given input or perturbation.

For our example system, the solution for the effects of a parameter change will be

∂N∗ =


a1,1a3,3 + a2,3a3,2 −a1,2a3,3 − a1,3a3,2 a1,2a2,3 − a1,3a2,2

a2,1a3,3 − a2,3a3,1 a1,1a3,3 + a3,1a1,3 −a1,1a2,3 − a1,3a2,1

a2,1a3,2 + a2,2a3,1 a1,1a3,2 − a1,2a3,1 a1,1a2,2 + a2,1a1,2


a1,1a2,2a3,3 + a1,1a2,3a3,2 + a2,1a1,2a3,3 + a2,1a1,3a3,2 + a3,1a1,3a2,2 + a3,1a1,2a2,3

(
∂g
∂pm

)
∂p

(6.9)
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By comparing Equations 6.8 and 6.9 it is evident that the matrix A has two separate functions
in determining a population’s response to a perturbation. Through the adjoint of A, all direct
and indirect effects in the system are combined in complementary feedback cycles (Dambacher
et al., 2002), which mediate the relative variation in the response of each population, whilst the
determinant of A (which constitutes the overall feedback of the system) scales the magnitude
of each variable’s response to a perturbation. For example, for a given input, if the overall
feedback is relatively weak, then the effect of the complementary feedback cycles on population
abundance will be relatively large. Stability analysis requirements (Dambacher et al., 2003a)
show that the determinant of -A must be positive and this requires that a3,1a1,2a2,3 to be relatively
weak. Note that the use of the determinant of -A maintains a sign convention in the adjoint
matrix for even- and odd-sized systems (Dambacher et al., 2002).

The sign direction (increase, decrease or ambiguous response) of each of the individual pop-
ulations to a system perturbation can be discerned from the adjoint matrix. A positive input
to a variable-through an increase in birth rate or decrease in death rate-is read down a col-
umn, and response predictions for each variable are read along the rows. For example for
a positive input to N2, the prediction of decreased abundance of N1 is determined by two
feedback cycles with negative sign - i.e. adj(−A)1,2 = −a1,2a3,3 − a1,3a3,2, while the response
of N3 is ambiguous because it is determined by two feedback cycles of opposing sign - i.e.
adj(−A)3,2 = a1,1a3,2 − a1,2a3,1. Note: where inputs to a variable are negative, through a decrease
in birth rate or increase in death rate, then the signs of the adjoint matrix elements are simply
reversed.

Ambiguous predictions from the adjoint matrix are interpreted via a technique of weighting the
net number of feedback cycles to the absolute number in a response Ů i.e. the weighted predic-
tion for a response prediction is equal to the net number of feedback cycles divided by the total
number of cycles (Dambacher et al., 2003b). For instance, the predicted response of N3 for an
input to N2 is ambiguous because there are the same number of positive and negative feedback
cycles. If, however, there were a total of four feedback cycles in a perturbation response, three
of which were positive and one negative, then the net number of cycles would be two and the
weighted prediction of the response would be 2/4 = 0.5. The sign determinacy of responses
with weighted predictions 0.5 has been shown to generally be > 90% through simulations using
random parameter space (Dambacher et al., 2003b). Below this threshold the sign determi-
nacy of responses declines to zero for weighted predictions equal to zero. Hosack et al. (2008)
show that this relationship is insensitive to different probability density functions assigned to
the elements of the adjoint matrix.

In the analysis of linear systems, multiple inputs have an additive effect on the equilibrium
of a variable through the superposition principle. Thus if there was simultaneous inputs that
increased the birth rate of N1 and increased the death rate of N2 (for example by culling), then
the predicted response of N3 is given by

dN∗3 =
1

det(−A)

[
(a2,1a3,2 + a2,2a3,1)

∂g1

∂β1
dβ1 − (a1,1a3,2 − a1,2a3,1)

∂g2

∂δ2
dδ2

]
(6.10)

131








	1 Introduction
	1.1 Project background
	1.2 Report structure and outline
	1.3 Fundamental issues
	1.4 Notation

	2 Risk and uncertainty
	2.1 What is risk?
	2.2 Why and how is risk assessed?
	2.3 What is uncertainty?
	2.3.1 Linguistic uncertainty
	2.3.2 Variability
	2.3.3 Epistemic uncertainty


	3 Uncertainty analysis
	3.1 Linguistic uncertainty
	3.2 Epistemic uncertainty and variability
	3.2.1 Methods overview
	3.2.2 Model uncertainty
	3.2.3 Completeness
	3.2.4 Scenario uncertainty
	3.2.5 Subjective judgement
	3.2.6 Measurement error
	3.2.7 Parametric uncertainty and sampling uncertainty

	3.3 Dependence

	4 Uncertainty analysis methods
	4.1 Analytical methods
	4.2 Probabilistic methods
	4.2.1 Monte Carlo simulation
	4.2.2 Probability boxes and probability bounds analysis

	4.3 Graphical methods
	4.3.1 Bayesian networks
	4.3.2 Loop analysis
	4.3.3 Fuzzy cognitive maps

	4.4 Non-probabilistic methods
	4.4.1 Fuzzy set theory
	4.4.2 Interval analysis
	4.4.3 Info-gap theory


	5 Uncertainty analysis in practise
	5.1 Who's using what?
	5.2 Methods evaluation
	5.2.1 Assumptions
	5.2.2 Technical complexity
	5.2.3 Software availability
	5.2.4 Decision utility


	6 Discussion and recommendations
	6.1 Uncertainty and qualitative risk assessment
	6.2 Honest quantitative risk assessment
	6.3 Uncertainty, statistics and quantitative risk assessment
	6.4 A recommended strategy for uncertainty analysis


