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Executive Summary  
 

This report looks at two important dimensions to the characterization of consequences 

in the context of biosecurity decision-support. 

 

Part A explores time preference. Pests vary in the time over which their impacts are 

realized. Likewise, stakeholders vary in the time horizons they consider relevant to 

biosecurity concerns. Agricultural impacts might reasonably be considered over 30 

years.  Ecologists typically consider environmental impacts over much longer time 

frames. Part A addresses: 

 The conceptual relevance of time preference to biosecurity using monetary 

benefits and costs associated with the decision of whether or not to invest in 

preventing invasion of a weed. 

 How time preference has been approached in case studies reported in the 

literature, focussing on contrasts between decision support approaches based 

on conventional benefit-cost analyses versus those that use a multi-attribute 

approach.  The literature highlights the failure of multi-criteria approaches to 

address time preference. 

 An empirical study that elicited time preferences from biosecurity experts and 

managers for market and non-market-impacts.   

 Problems in dealing with time preference using multi-attribute decision 

support and a remedy based on normative understanding of weights and their 

role in articulating trade-offs. 

 

Part B demonstrates the relevance of the economic concept of ‗value of 

information‘(VOI), and how biosecurity managers can use VOI analysis to decide 

whether or not to reduce uncertainty by collecting additional information through 

monitoring, experimentation, or some other form of research.  It explores: 

 How some uncertainties may be scientifically interesting to resolve, but 

ultimately irrelevant to decision-making.  VOI analysis provides a rigorous 

way of assessing the benefits of collecting additional information, and 

determining whether reducing uncertainty will result in a better decision. 

 A prototype model where a manager must choose between eradication or 

containment of an infestation.  Eradication is more cost-effective for smaller 
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infestations, but once the extent reaches a certain size it becomes more cost-

effective to contain.  When choosing between eradication and containment, 

how much does knowing the extent of the infestation more exactly improve 

the outcome of the decision?  We calculate the expected value of perfect 

information (EVPI) about the extent, which provides an upper limit for the 

value of reducing uncertainty. 

 We then illustrate the approach using the example of red imported fire ant 

management in south-east Queensland.  We calculate the EVPI for three 

different uncertain variables: the extent of the infestation, the sensitivity (true 

positive rate) of remote sensing, and the efficacy of baiting.  This case study 

is an illustration only, although with further work it could be developed into a 

useful support tool. 

 Future avenues for research in this area include modelling the time delay 

associated with research and monitoring, and applying more complex VOI 

calculations such as the expected value of partial information and the 

expected value of sample information. 
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 A 1.0 Introduction 

 

Biosecurity management aims to prevent and mitigate the impact of exotic species 

and diseases.  These impacts can be wide-ranging, and can include decreases in the 

productivity of agriculture or forestry (Julia et al., 2007; Yemshanov et al., 2009), 

extinction of native species and communities (Primack, 2006), disruption of 

ecosystem services (Cook et al., 2007), and effects on human health (Solley et al., 

2002).  In prioritising species and diseases for quarantine or control action, 

biosecurity decision-makers must often make tradeoffs between these different types 

of impacts.  To complicate matters further, they must often compare and evaluate 

outcomes occurring over completely different time frames. 

 

Under all models of decision-making, the future is less important than the present.  

Formal elicitation of time preference is laborious (Meyer 1976). To illustrate, let‘s say 

we expect a stream of consequences over the next four years x = (x1, x2, x3, x4).  The 

consequences may be monetary gains, monetary losses, health outcomes, decline in 

the population size of a threatened native species, or changes in crop yield.  To 

capture an individual decision-maker‘s time preference we first ask, if x4 were 

reduced to zero, what compensating change must be made in x3 to maintain 

indifference?  That is we ask for a quantity 3x̂ such that the decision-maker is 

indifferent to a choice between two streams 

(x1, x2, x3, x4)  and  (x1, x2, 3x̂ , 0). 

Suppose the consequences are monetary gains, so that x4 > 0 and ( 3x̂  - x3) > 0. 

Individual decision-makers will have individual choices for investment and 

consumption over time. Presumably 3x̂  depends on x3 and x4, but it might also depend 

on x1 and x2.  The choice in year 3 need not be the same as the choice in year 2.  So 

next we need to find a quantity 2x̂  such that 

(x1, x2, 3x̂ , 0)  and  (x1, 2x̂ , 0, 0) 

are indifferent.  And finally we obtain 1x̂  such that 

(x1, 2x̂ , 0, 0)  and  ( 1x̂ , 0, 0, 0) 

are indifferent.  By transitivity we now have indifference between  

(x1, x2, x3, x4)   and  ( 1x̂ , 0, 0, 0) 
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The quantity 1x̂  is the net present value of the stream of consequences (x1, x2, x3, x4). 

 

Analysts rarely elicit time preferences in such a direct and formal way.  Instead, 

assumptions are made to approximate social time preference.  In economics, the 

discounted utility model (Samuelson, 1937) is the standard for time preference 

(Frederick et al., 2002).  The basic premise of this model is that money available now 

can be invested in financial markets and gain interest over time.  Therefore, just as 

compounding investments grow exponentially through time, future amounts are 

discounted exponentially with the time delay before their receipt.  The discount rate is 

chosen based on market interest rates, with the same rate applied to both gains and 

losses, and to all tradeable goods and services (Hardisty and Weber, 2009). For non-

market consequences, the assignment of a rate equivalent to the opportunity cost of 

investing in financial capital may be a very poor representation of a decision-maker‘s 

time preference.  

 

Perhaps unsurprisingly, experiments in behavioural economics and psychology have 

found that human behaviour does not conform to this rational economic model.  The 

future is less important than the present, but evaluations of future outcomes are driven 

by more than considerations of market interest rates.  For example, people have a 

strong urge to obtain gains now rather than later (known as ‗pure time preference‘), 

independent of any rational reason for doing so (Hardisty and Weber, 2009). 

 

Substantial experimental evidence shows humans and other animals discount the 

future in a hyperbolic, rather than exponential, pattern (Henderson and Langford 

1998, Frederick et al. 2002).  For example, when choosing between an immediate 

(small) food reward and a delayed (larger) reward, laboratory rats and pigeons opt for 

the delayed reward more frequently than predicted under exponential discounting 

(Mazur, 1997).  A hyperbolic function does not de-value future outcomes as severely 

as an exponential function with the same discount rate.  Some economists have 

advocated hyperbolic discounting to address concerns around intergenerational equity 

(Weitzman, 1994).  Debate among economists centres on the relative merit of the 

exponential and hyperbolic functions (Hansen, 2006). Other alternatives, such as the 

gamma function (Weitzman, 2001) have received far less attention. 
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Also, people do not discount all outcomes at the same rate—discounting gains at a 

higher rate than losses, and large outcomes at a lower rate than small outcomes 

(Chapman, 1996).  Experiments have also shown that individuals can apply different 

discount rates within different ‗domains‘, for example, they may discount monetary 

outcomes at a different rate to health outcomes, with yet another rate for 

environmental outcomes (Chapman, 1996; Hardisty and Weber, 2009). This ‗domain 

independence‘ has interesting implications for public policy formation.  

Many governments now use different discount rates to evaluate projects in different 

policy areas, but there seems to be no consensus on how these discount rates should 

be chosen (Zeckhauser and Viscusi, 2008). 

 

Section A2 report outlines the conceptual relevance of time preference to biosecurity 

using monetary benefits and costs associated with the decision of whether or not to 

invest in preventing invasion of a weed. Section A3 explores how time preference has 

been approached in case studies reported in the literature, focussing on contrasts 

between decision support approaches based on conventional benefit-cost analyses 

versus those that use a multi-attribute approach.  Section A4 reports outcomes of an 

empirical study that elicited time preferences from biosecurity experts and managers.  

Finally, Section A5 addresses difficulties in dealing with time preference using multi-

attribute decision support and suggests a remedy. 
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A 2.0  Discounting and its relevance for biosecurity decision-making 

 

To illustrate the important role time plays in decisions about biosecurity management, 

we consider a scenario of horticultural plant introductions.  For an introduced plant to 

become an invasive weed, it must first become naturalised, that is, it must form self-

sustaining populations.  Of all plants that are introduced, only some will naturalise, 

and only some of those naturalised plants will go on to become invasive weeds (Fig. 

A2.1).   

 

This pathway was examined by Caley et al. (2008) for woody ornamental plants.  

They combined South Australian nursery data with prior information on naturalisation 

rates to predict that 18.6% of introduced plants would naturalise (pn = 0.186), and of 

these, 44% would go on to become either major or minor invasive weeds (pw = 0.44).  

They also found that the mean time to naturalisation was 149 years, with the 95% 

confidence interval between 130 and 174 years. 

 

For woody ornamental plants, there can therefore be a long delay between the time of 

introduction, and when the plant begins to cause significant damage.  This is 

illustrated by one of Australia‘s weeds of national significance—Lantana camara was 

introduced as an ornamental plant in the early 1840s and for decades was considered 

to be benign. Now widely distributed, it costs the Australian grazing sector more than 

$104 million per year in lost productivity (Stock et al., 2009). 

 

 

 

Fig. A2.1. Schematic representing the pathway from plant introduction to weediness. 

Once a plant is introduced it has probability pn of becoming naturalised, and once 

naturalised, it has probability pw of becoming an invasive weed. 

 

 

In this example we consider a hypothetical ornamental plant that has recently been 

introduced to Australia, and is not yet naturalised.  This plant has been identified as 
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having an above average chance of naturalisation (pn = 0.6), and of becoming invasive 

(pw = 0.8).  If it does become invasive, it is predicted to cause a loss in agricultural 

productivity of $500 million (in real dollars) once it spreads to its full extent.  For 

simplicity, we will treat this as a one-off loss occurring at the time of naturalisation, 

although it would more likely be an annual loss incurred over a number of years.  That 

is, for the sake of conceptual illustration, we make the simplifying assumption that the 

time stream of consequences is zero up to the point of naturalisation and that we are 

only interested in costs incurred in the first year of naturalisation. 

 

Imagine there is a management action we could take now to prevent this plant 

becoming naturalised and invasive, for example, restricting the sale of the plant in 

nurseries.  This management action will cost $1 million in real dollars.  The question 

we pose here is, would it be cost-effective to take this action?  That is, should we 

incur a $1 million loss now, or do nothing with the expectation of a much larger loss 

in the future? 

 

We can calculate the expected loss caused by our hypothetical plant as the probability 

that it will become invasive, multiplied by the loss if it does.  This gives an expected 

loss of $240 million.  Spending $1 million to prevent a loss of $240 million seems like 

a cost-effective decision, with a return on investment of 240:1.  However, given that 

the mean time to naturalisation is 149 years, this loss is likely to be incurred far into 

the future.  How this will affect management decisions depends on our attitude to 

future losses—whether we discount, how we discount, and what discount rate we use. 

 

Under exponential discounting, the standard economic model of time preference, the 

present value of a future amount is calculated as 

Dk

A
V

)1(
,         (A2.1) 

where A is the future value, k is the discount rate, and D is the time delay.  The 

discount rate is usually an annual rate, with D the number of years until the future 

value is obtained. Time invariant discounting implies impacts in the distant future 

become very small in terms of their contribution to present (dis)value. 
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Under hyperbolic discounting, the model best describing many people‘s inter-

temporal choices, the present value of a future amount is calculated as 

kD

A
V

1
.         (A2.2) 

As mentioned in the introduction, a hyperbolic function de-values the future less than 

an exponential function with the same discount rate (k). 

 

This becomes obvious when calculating the present value of the expected damages 

from our hypothetical plant, which are predicted to occur 149 years into the future 

(Fig. A2.2).  If the decision-maker does not discount future costs (i.e. the discount rate 

is 0%), the present value of this expected damage is $240 million, which makes 

prevention extremely cost-effective (Fig. A2.2, Table A2.1).  If we apply a very low 

discount rate of 1%, the present value of the expected damage is $54.5 million under 

exponential discounting, and $96.4 million under hyperbolic discounting (Fig. A2.2, 

Table A2.1).  While these present values are now quite different, it is still optimal to 

spend $1 million on prevention under either discount function (Table A2.1). 

 

As the discount rate is increased, the present value of the expected damage diverges 

under the different discount functions (Fig. A2.2, Table A2.1).  This in turn leads to 

different management prescriptions, depending on which discount function is used 

(Table A2.1).  With a discount rate of 6%, which is around the standard discount rate 

(), the present value of the expected damage is only $40,704 using exponential 

discounting.  This means it becomes more cost-effective to incur damage in the future 

than to spend money now on prevention.  However, applying the hyperbolic discount 

function at the same rate means the present value of the expected damage is $24.1 

million, and prevention is more cost-effective. 
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Fig. A2.2. The present value of the damage caused by the hypothetical plant species, 

discounted over 149 years at different rates and using exponential (red) and 

hyperbolic (blue) discount functions. 

 

 

Table A2.1.  The present value of the expected damage from our hypothetical plant 

species under different discount rates and functions, and the implications for cost-

effective management. 

Discount 

rate 

Discount function Present value of 

expected damage, V 

Most cost-effective 

management decision 

0% Exponential $240 million Prevention 

0% Hyperbolic $240 million Prevention 

1% Exponential $54.5 million Prevention 

1% Hyperbolic $96.4 million Prevention 

4% Exponential $695,414 Do nothing 

4% Hyperbolic $34.5 million Prevention 

6% Exponential $40,704 Do nothing 

6% Hyperbolic $24.1 million Prevention 

10% Exponential $163 Do nothing 

10% Hyperbolic $15.1 million Prevention 
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This hypothetical scenario illustrates how the choice of discount rate and function can 

drive economic assessments that inform decision-making.  Despite the fact that 

exponential discounting can drastically de-value outcomes occurring decades into the 

future, it is used routinely in economic analyses of public policy decisions (Summers 

and Zeckhauser, 2008).   

 

However, it has been acknowledged that projects undertaken on behalf of society 

should be subjected to a lower discount rate than private investments (Summers and 

Zeckhauser, 2008).  While the ethical implications of discounting for 

intergenerational equity and environmental preservation have been identified and 

discussed, there is no consensus on how to account for this in the selection of discount 

functions and rates (Summers and Zeckhauser, 2008).  For example, The Stern 

Review (Stern 2006) attracted considerable controversy over its assignment of a 1.4% 

rate for discounting damages caused by global warming.  Nordhaus (2006) argued that 

this near-zero rate was manifestly inconsistent with the time preference revealed by 

market indicators. 
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A 3.0  Treatment of time in biosecurity decision analyses 

 

Given that time preference is an important component of biosecurity decision 

problems, we conducted a review of the scientific literature to examine how time has 

been treated in previous analyses of biosecurity management decisions.  We began by 

searching the Institute for Scientific Information (ISI) Web of Science database for 

journal articles containing the keywords: 

 ‗invasive species‘ or ‗quarantine‘ or ‗biosecurity‘, AND 

 ‗benefit cost‘ or ‗multi-criteria‘ or ‗multi-attribute‘ or ‗multi-objective‘ or 

‗prioritisation‘ or ‗decision-making‘ or ‗risk analysis‘. 

We also searched for alternative spellings of these keywords, including variations 

without hyphenation.  This initial broad search identified 309 candidate articles. 

 

We screened these articles to focus solely on decision analyses for managing invasive 

animals, plants, and fungi.  The alternative options considered in these analyses could 

be different management actions, or different species or areas on which to focus 

management resources.  We were interested only in analyses that considered the 

impacts of invasive species, and measured or quantified these impacts in some way.  

This screening process resulted in a final database of 56 journal articles (see Appendix 

A1).  Of these articles, 22 focused on pre-border management of invasives, 30 on 

post-border management, and 4 considered management across the biosecurity 

continuum. 

 

The earliest article was published in 1995, with the majority published after 2006 

(Fig. A3.1).  We classified articles as either ‗economic‘ analyses, which quantified all 

the impacts of invasive species as monetary costs or benefits, or ‗multi-criteria‘ 

analyses, which quantified different types of impacts with different units or attributes, 

including constructed scales (Keeney and Gregory 2005).  Although there was a 

general increase in the number of biosecurity decision analyses published through the 

period 1995 to 2010, there was no obvious trend in the ratio of economic to multi-

criteria analyses published (Fig. A3.1). 



  

 

 
 

  11  

0

2

4

6

8

10

12

1994 1996 1998 2000 2002 2004 2006 2008 2010

Year published

N
u

m
b

e
r 

o
f 
a

rt
ic

le
s

multi-criteria

economic

 

Fig. A3.1. Number of biosecurity decision analyses published 1995 - 2010.  Economic 

analyses quantified all impacts of invasive species as monetary costs or benefits, 

while multi-criteria analyses quantified different types of impacts with different units. 

 

 

Of 36 economic analyses, only 4 (11%) included estimates of environmental impacts 

in their assessment of invasive species damage (Fig. A3.2). An additional 5 analyses 

(14%) discussed how environmental impacts could be incorporated, but did not 

quantify them for the case study considered.  In contrast, 19 of the 20 multi-criteria 

analyses quantified environmental impacts (Fig. A3.2).   

 

In the analyses that did not include environmental impacts, it was difficult to 

determine the reason: while environmental impacts may have simply been ignored or 

deemed irrelevant to decision making, it is also possible that the particular species 

considered did not impact on the environment.  Either way, our results show that 

multi-criteria analysis is the preferred method for incorporating environmental 

impacts within a decision analysis.  This is not surprising, given that multi-criteria 

analysis allows impacts to be expressed in their natural units, for example, the number 

of bird species affected by invasive vertebrates (Brooke et al., 2007), while economic 

analyses require environmental impacts to be monetised.  Although there are several 

methods for monetising environmental attributes, they can require substantial work to 
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implement and remain somewhat controversial (see Spangenberg and Settele, 2010 

for a critical review of valuation methods). 
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Fig. A3.2.  The number of economic and multi-criteria decision analyses that 

quantified environmental impacts. 

 

 

The majority of economic analyses incorporated time in some way (Fig. A3.3). 

Eleven of these did so by specifying a fixed time frame over which they considered 

the impact of invasive species.  For example, Zhang and Swinton (2009) calculated 

the expected loss in agricultural revenue from an invasive aphid over a period of five 

years.  Over half of the economic analyses (53%) discounted future outcomes (Fig. 

A3.3).  Of these, eleven used exponential discounting, seven did not specify a 

discount function (although we can assume they used exponential discounting as the 

standard method), and one tested both exponential and hyperbolic discount functions 

(Keller et al., 2007).  Only one analysis incorporating environmental impacts used a 

different (lower) discount rate for environmental impacts than for market impacts 

(Nunes and Markandya, 2008).  None of the multi-criteria analyses specified the time 

frame of impacts, or used any form of discounting (Fig. A3.3). 
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Fig. A3.3. The number of economic and multi-criteria decision analyses to incorporate 

time, and the method used. 

 

 

In summary, the literature search provided two key findings: 

(i) multi-criteria approaches are much more likely to accommodate non-market 

impacts than traditional benefit cost analyses; however 

(ii) multi-criteria approaches are naïve in their treatment of time preference, 

commonly ignoring the issue altogether. 
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A 4.0  Eliciting time preference in multi-attribute problems 

 

Our literature review demonstrated that multi-criteria analysis is the preferred method 

for biosecurity decisions involving environmental impacts.  However, none of these 

multi-criteria analyses incorporated time preference.  To demonstrate how time 

preferences for non-monetary impacts can be quantified and elicited, we conducted a 

small survey of biosecurity experts. 

 

A 4.1  Survey methods 

We used in-person questionnaires to compare discounting of monetary and 

environmental outcomes within a biosecurity setting (see Appendix A2).  Twenty 

participants completed the survey while attending a workshop on decision making for 

biosecurity management.  Most participants were employees of state and federal 

agencies, whose roles involve making decisions about pre- or post-border biosecurity 

threats.  Economists with experience evaluating the cost-effectiveness of biosecurity 

programmes, and experts in structured decision making also participated. 

 

Participants were presented with two separate questionnaires on subsequent days of 

the workshop.  One questionnaire elicited discount rates for positive outcomes (gains) 

while the other elicited discount rates for negative outcomes (losses).  To minimise 

anchoring bias the order of these questionnaires was counterbalanced – half of the 

group was given the gains questionnaire to complete first, while the other half was 

given the losses questionnaire first.  Fifteen participants completed both the gain and 

loss questionnaires, while five completed only one questionnaire. 

 

Each questionnaire contained two sets of choice questions in counterbalanced order: 

one set with monetary outcomes, and one set with environmental outcomes.  The 

monetary outcomes were gains or losses in agricultural productivity, specifically to 

the grains industry.  The environmental outcomes were increases or decreases (of 

more than 10%) in the population levels of a number of native species.  Within each 

set, participants were asked to make 12 choices between an immediate outcome and 

an outcome of varying magnitude occurring after a delay of 20 years. 
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This titration procedure was used to find the point at which participants were 

indifferent between present and future outcomes.  The future outcomes tested ranged 

between 0.8 and 11 times the magnitude of the present outcome.  Using the 

hyperbolic discounting formula (eqn. A2.2) this translates to a range of annual 

discount rates (k) from -0.01 to 0.5. A positive k means future outcomes are 

discounted, so the participant prefers gains to occur immediately and losses to be 

delayed.  The larger the value of k, the stronger this preference.  A k of zero means the 

present and future are considered equal, while a negative k means the participant 

prefers losses to occur immediately and gains to be delayed. 

 

For each set of choice questions, we found the point at which the participant switched 

from preferring the present outcome to the future outcome.  We defined the 

indifference point as the midpoint between the two values for future outcomes where 

this switch occurred.  We then calculated the participant‘s annual discount rate k from 

this midpoint using the hyperbolic discounting formula above.  For participants whose 

preference did not switch, we assigned a discount rate at the limit of the range 

considered, i.e. either -0.01 or 0.5.  This is a conservative approach that may 

underestimate the magnitude of the participant‘s true discount rate. 

 

The third question in each questionnaire was a swing weighting question, to gauge 

how participants weight outcomes occurring in different domains (monetary versus 

environmental).  Participants were presented with two options, each comprised of a 

monetary outcome and an environmental outcome, both at the extremes of the ranges 

considered in the choice questions.  One option gave the best monetary outcome and 

worst environmental outcome, and the other gave the worst monetary outcome and 

best environmental outcome.  Participants were asked to rank these options for 

importance (most favourable or most harmful, depending on whether the outcomes 

were gains or losses).  They were then asked to assign a weight of 100 to the highest-

ranked option, and weight the remaining option relative to the highest-ranked option. 

For example, assigning a weight of 50 to the remaining option would mean it is half 

as important as the top ranked option (von Winterfeldt and Edwards 1986). 

 

We used the swing weighting responses to obtain participants‘ point of indifference 

between immediate outcomes in the two different domains.  We refer to these 
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measures as the participants‘ exchange rates, because they specify the size of the 

agricultural outcome the participant would be willing to exchange for a particular 

biodiversity outcome (or vice versa).  We used these exchange rates to test whether 

differences in the perceived magnitude of agricultural and biodiversity outcomes 

affected the rate at which participants discounted outcomes over time. 

 

 

A 4.2  Temporal discount rates 

We excluded data from one participant whose responses to the choice questions 

switched back and forth more than once.  This exclusion is consistent with the 

standards of a similar study (Hardisty and Weber, 2009).  This left a sample size of n 

= 15 for the gain questionnaire and n = 18 for the loss questionnaire, with 14 

participants completing both questionnaires.  

 

The median annual discount rates for agricultural gains, agricultural losses, and 

biodiversity gains were very similar, while the median for biodiversity losses was 

lower (Fig. A4.1). However, this difference was not statistically significant, with large 

overlap in the 95% confidence intervals around the medians (Fig. A4.1). In all 

categories, participants gave a wide range of responses (Fig. A4.1). Indeed, for 

agricultural losses, participants‘ discount rates covered the full range of possibilities, 

from -0.01 to 0.5.  For biodiversity losses, most participants‘ discount rates were less 

than 0.3, with a single outlier of k = 0.5. 

 

There was no evidence of a difference in the discount rates given by participants on 

different days of the workshop (Fig. A4.2), indicating that participants‘ responses 

were not unduly affected by the different activities occurring on each day. 

 

We used data from participants who completed both the gain and loss questionnaires 

(n = 14) to examine the consistency of individuals‘ discount rates.  Individuals‘ 

annual discount rates were significantly linearly correlated across the different 

categories (Table A4.1).  Individuals therefore gave consistent discount rates 

regardless of valence (gains and losses) or domain (agriculture and biodiversity).  
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Interestingly, the strongest and most significant linear correlation occurred between 

discount rates for agricultural gains and biodiversity losses. 

 

Fig. A4.1. Box and whisker plot of participants‘ annual discount rates for gains and 

losses in agriculture and biodiversity. The red lines show the median value, while the 

blue box shows the inter-quartile range. The notched section of the box around the 

median shows the 95% confidence interval around the median value. Black whiskers 

show the range of responses, while red crosses indicate outliers. 

 

 

Fig. A4.2. Box and whisker plot of participants‘ annual discount rates on subsequent 

days of the workshop. The red lines show the median value, while the blue box shows 

the inter-quartile range. The notched section of the box around the median shows the 

95% confidence interval around the median value. Black whiskers show the range of 

responses, while red crosses indicate outliers. 
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Table A4.1. Correlations between individuals‘ annual discount rates for gains and 

losses in agriculture and biodiversity 

Outcome Ag Gain Ag Loss Bio Gain Bio Loss 

Ag Gain __    

Ag Loss 0.66* __   

Bio Gain 0.71** 0.74** __  

Bio Loss 0.90*** 0.74** 0.85*** __ 

Note: Shows Pearson correlation co-efficient r, with * p < 0.5, ** p < 0.01, *** p < 

0.001. 

 

 

A 4.3  Exchange rates 

In the swing weighting question, participants were asked to rank and weight two 

options in order of importance, assigning a weighting of 100 to the most important 

option (most harmful or most favourable, depending on the questionnaire).  Five 

participants performed the weighting task incorrectly, for example, assigning weights 

that summed to 100 instead of assigning a weight of 100 to the most important option.  

Two participants were inconsistent in their ranking and weighting of options.  The 

swing weighting responses of these seven participants were therefore excluded from 

further analysis.  This left a sample size of n = 13, with ten participants completing 

both the gain and loss questionnaires.  

 

The exchange rates express the utility participants experience from biodiversity 

outcomes relative to agricultural outcomes.  Participants with high exchange rates 

experience more utility for biodiversity than participants with low exchange rates.  

Participants were willing to exchange between $68,627 and $17 million in extra 

agricultural productivity for an increase of 10% in the population numbers of a single 

native species.  However, the majority of participants were willing to exchange less 

than $3.6 million (Fig. A4.3).  Participants thought that a decrease of 10% in the 

population numbers of a native species was equivalent to a loss in agricultural 

productivity of between $68,627 and $6 million, with the majority again specifying 

less than $3.6 million (Fig. A4.3). The median exchange rates were not significantly 
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different for gains and losses (Fig. A4.3).  Again, there was no evidence that the day 

on which the questionnaire was taken influenced participants‘ responses (Fig. A4.4). 

 

 

Fig. A4.3. Box and whisker plot of participants‘ exchange rates between agriculture 

and biodiversity, for both gains and losses. The exchange rate is expressed as the 

amount of gained/lost agricultural productivity (in millions of $) participants would be 

willing to exchange for an increase/decrease of 10% of the population numbers of a 

native species. The red lines show the median value, while the blue box shows the 

inter-quartile range. The notched section of the box around the median shows the 95% 

confidence interval around the median value. Black whiskers show the range of 

responses, while red crosses indicate outliers. 
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Fig. A4.4. Box and whisker plot of participants‘ exchange rates on subsequent days of 

the workshop. The red lines show the median value, while the blue box shows the 

inter-quartile range. The notched section of the box around the median shows the 95% 

confidence interval around the median value. Black whiskers show the range of 

responses, while red crosses indicate outliers. 

 

 

Of the ten participants that completed the swing weighting questions for both gains 

and losses, four had the same exchange rate across both valences.  The remainder of 

responses suggest a tendency for lower exchange rates for losses than for gains (Fig. 

A4.5).  This means participants put less emphasis on biodiversity when thinking about 

lost agricultural productivity and species declines, than when thinking about increased 

agricultural productivity and increased species population numbers. 
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Fig. A4.5. Comparison of individuals‘ exchange rates for gains and losses. The dotted 

line marks where exchange rates for gains and losses are equal, while the solid line is 

a least squares linear regression line (c = 0.7974 [SE 0.3939], m = 0.318 [SE 0.0678]; 

F1,8 =22.01, p = 0.0016, R
2
 [adjusted] = 70%). The slope of this regression line is 

significantly different from a slope of 1 (with p = 8.11 × 10
-6

). 

 

 

The ‗magnitude effect‘ describes how people discount larger outcomes at a lower rate 

than smaller outcomes (Chapman, 1996).  If the perceived magnitude of outcomes in 

different domains affected participants‘ discount rates in this way, we would expect 

participants with higher exchange rates (who experience more utility for biodiversity 

than agriculture) to have lower discount rates for biodiversity than for agriculture.  

We would therefore expect exchange rates to be negatively correlated with 

biodiversity discount rates and positively correlated with agriculture discount rates 

(Chapman, 1996).  We in fact found the opposite, that exchange rates were 

significantly negatively correlated with agriculture discount rates (r = -0.4436, p = 

0.034).  There was no significant correlation between exchange rates and biodiversity 

discount rates (r = -0.278, p = 0.199).   

 

A 4.4  Discussion 

This study offers a unique perspective on temporal discounting, differing in several 

ways from previous time preference elicitation studies.  Most studies eliciting time 
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preferences have focused on monetary or health decisions for which the outcomes are 

purely personal, that is, the decision-maker receives or loses a monetary amount, or 

experiences an increase or decrease in their personal health.  The few studies 

examining time preferences for environmental outcomes (which by definition must be 

societal outcomes), have compared these to personal monetary or health outcomes 

(Guyse et al., 2002; Hardisty and Weber, 2009).   

 

In contrast with these previous studies, none of the outcomes in this study are 

personal; rather they are outcomes that will either be absorbed by others (the grains 

industry) or by the whole of society.  The framing of our questionnaire was therefore 

unique, in that participants were asked for their preferences not as individuals, but as 

managers making decisions on behalf of society.  Due to the composition of our study 

group, this was a scenario that most participants were familiar with. 

 

An individual‘s discount rates tend to be consistent within a single domain (e.g. for all 

monetary outcomes), but can be quite different between domains.  This is known as 

‗domain independence‘ (Chapman, 1996).  Previous studies found evidence of 

independence between monetary and health domains (Chapman, 1996; Chapman and 

Elstein, 1995; Hardisty and Weber, 2009), but no evidence of independence between 

monetary and environmental domains (Hardisty and Weber, 2009).  Our study is 

consistent with this finding, as we found no difference in individuals‘ discount rates 

for monetary and environmental outcomes.  It is possible that health outcomes are 

discounted differently by participants because they elicit a more visceral response 

than either monetary or environmental outcomes (Hardisty and Weber, 2009).‘ 

 

We found no difference in discount rates between gains and losses, in either monetary 

or environmental domains.  This is inconsistent with previous studies, which have 

generally found that discount rates are higher for losses than for gains (Chapman, 

1996), for both monetary and environmental outcomes (Hardisty and Weber, 2009).   

Our results were also inconsistent with previous findings in that we found no evidence 

of the magnitude effect (that larger outcomes are discounted at a lower rate), and for 

monetary outcomes we found the opposite.  The unique framing of our study is likely 

to have influenced these results.  But interpretation requires caution. It is also likely 

that our small sample size prevented us from detecting differences if present. 
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Feedback from participants indicated that the questionnaire was cognitively and 

emotionally difficult to perform.  This may have contributed to the relatively high rate 

of excluded responses, although this could potentially be mitigated by providing 

further written and verbal explanation of the questions.  Some participants said they 

felt pressure to provide ‗the right‘ answers, which may mean their responses were not 

a true indication of their preferences.  This reaction could be avoided by delivering the 

questionnaire in a more anonymous setting, for example as an online survey. 
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A 5.0  How can we incorporate time preference in multi-attribute 

decision-support? 
 

 

The consequences of vertebrate pests include losses to agricultural production and 

elevated extinction risks for native flora and fauna. McLeod (2004) estimated these 

consequences for 12 pests, three of which are summarised in Table A5.1 below.  

Impacts on agricultural production were estimated using annual financial loss.  Impact 

on biodiversity was inferred from the number of affected species listed in threat 

abatement plans or under the Commonwealth Environment Protection and 

Biodiversity Conservation Act 1999.   

 

The time horizons over which agricultural losses and biodiversity impacts are 

typically considered vary.  Impacts on agricultural production are often characterised 

over relatively short time horizons, say 30 years, because predictions into the distant 

future may be irrelevant due to changes in technology, market demand or 

environmental conditions.  The conventions of risk assessment in conservation 

biology countenance the probability of extinction up to 100 years into the future 

(IUCN 2001).   

 

Imagine you‘re asked to allocate a $10M pest control budget for foxes, goats and cats 

on the basis of the information presented in Table A5.1.  You wish to allocate the 

budget proportional to the magnitude of harm caused by each pest.  (Let‘s say that the 

technical feasibility and cost-effectiveness of control actions for the three pests are 

equivalent).   

 

Table A5.1. Estimated agricultural and environmental consequences of three 

vertebrate pests in the absence of any management intervention. Agricultural losses 

are aggregated over 30 years (in real dollars).  Environmental impacts are estimated 

over a century. (Adapted from McLeod 2004). 
 

 Agricultural losses Number of native species extinctions 

Foxes $525 M 34 

Goats $126.9 M 13 

Cats nil 37 
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The overall harm of a pest needs to combine consequences described in different units 

(i.e. financial loss and species loss for the example explored here).  Foxes clearly 

cause more harm than goats, but the magnitude of the difference depends on your 

judgment (on behalf of broader society) of the relative importance of agricultural and 

environmental impacts.  Likewise, the relative and absolute budget allocated to goat 

and cat control depends on how much emphasis is placed on species loss versus 

agricultural losses. Multiple attributes that are preferentially independent can be 

combined using the additive utility model (Keeney and Raiffa 1976), 

 

( ) ( ) ( )yvwxvwy,xv yyxx += ,      (A5.1) 

 

where vx and vy are single attribute utility functions scaled from 0 to 1, and wx and wy 

are attribute weights scaled between 0 and 1 and summing to 1.  For our purposes, v(x, 

y) describes disutility, and we assume that vx and vy are linear functions between the 

best and worst values of X and Y.  

 

Assigning weights is cognitively and emotionally difficult (Luce et al. 1999). The 

range of within-attribute consequences is critical to the normative interpretation of 

weights as the point of indifference, or exchange rate between any two attributes 

(Fischer 1995).  Decision-makers frequently fail to understand range sensitivity, 

leading to arbitrary or meaningless weights (Keeney 2002). The cognitive and 

emotional demands of the task are made near impossible if consequences are 

described over different time scales, or if time preference varies across attributes. 

 

The overwhelming response of decision analysts to the problem of time has been to 

ignore it.  The results of the literature search reported in section A3 included the 

finding that not one of twenty multi-criteria analyses specified the time frame of 

impacts, or used any form of discounting (Fig. A3.3). In contrast, benefit-cost 

analyses routinely include discounting.  Using our hypothetical budget allocation 

decision for pest control, here we illustrate the importance of this oversight and 

suggest a remedy. 

 

 



  

 

 
 

  26  

A 5.1 The problem of weighting when time is ignored  

A decision-maker using multi-criteria methods may be presented with the estimated 

consequences in Table A5.1 and asked to assign weights to agricultural loss and 

species loss. Common practice is for no provision of contextual information 

specifying the time horizon of estimates (Fig A3.3).  Let‘s say after consideration of 

the information in Table A5.1 weights of 0.8 to agricultural loss and 0.2 to species 

loss are assigned. 

 

Under the additive model the disutility of the three pests are foxes = 0.98, goats = 

0.19 and cats = 0.20, leading to budget allocations of 

 

Fox control  $10M × [0.98/(0.98 + 0.19 + 0.20)] = $7.15M,  

Goat control  $10M × [0.19/(0.98 + 0.19 + 0.20)] = $1.39M, and 

Cat control     $10M × [0.20/(0.98 + 0.19 + 0.20)] = $1.46M. 

 

How can we interpret these weights? The range of consequences for agricultural loss 

is $525M – nil = $525M, and for species loss is 37 – 13 = 24 species.  Normatively, 

the four-fold weighting assigned to agricultural loss implies indifference between a 

loss of $525M and 4 × 24  = 96 species extinctions, or a $5.47M loss per species 

extinction.  Let‘s say this point of indifference represents the true value judgment of 

the decision-maker.  However, we note that the validity of this interpretation rests 

critically on an assumption that in assigning weights, the decision-maker interpreted 

consequences as having no time delay. 

 

Now let‘s say the information regarding the timing of estimated consequences is made 

available to the decision-maker. That is, agricultural impacts of foxes and goats are an 

aggregate of a per annum $17.5M and $4.23M loss, respectively (in real terms) over 

30 years.  Environmental impacts are expected number of species extinctions over 100 

years; and let‘s say that the timing of extinctions is uniformly distributed over the 100 

years (as for agricultural losses over 30 years).     

 

We don‘t know the decision-maker‘s time preference (and hence discount rates) for 

the two attributes, but let‘s explore the implications of a number of scenarios.  One 
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scenario is to say that a real exponential discount rate of 5% for agricultural losses 

over 30 years is appropriate, broadly consistent with market interest rates.  The 100 

year time horizon for environmental impacts may invoke a hyperbolic discount rate, 

with k = 5%.  The discounted (net present value) consequences under this scenario are 

shown in Table A5.2.   

 
Table A5.2. Net present value of agricultural and environmental consequences of three 

vertebrate pests. Agricultural losses shown in Table A5.1 are discounted 

exponentially at a rate of 5% over 30 years.  Species losses are discounted using a 

hyperbolic function with k = 5% over 100 years. 
 

 Agricultural losses Number of native species extinctions 

Foxes $269 M 12.0 

Goats $65 M 4.6 

Cats nil 13.1 

 
 

Note that the effect of discounting has been to reduce the range of consequences for 

the two attributes to $269M for agricultural losses and 8.5 for species loss.  If we 

(naively) retain weights of 0.8 for agricultural losses and 0.2 for species loss, there is 

a change in the implied point of indifference from $5.47M per species to $7.91M per 

species.  That is, the effect of naïve weighting under this scenario is to overvalue 

species loss and undervalue agricultural loss, leading to misallocation of resources for 

pest control.  Summary results of this discounting scenario together with four others 

are reported in Table A5.3. 
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Table A5.3. Five discounting scenarios and their implied point of indifference for 

weights of 0.8 and 0.2 assigned to agricultural and species loss, respectively.  See text 

for details of Scenario C. 
 

      Discounting scenario 

Range of net present value 
Point of 

indifference 
Agricultural 

loss ($M) 

Number of native  

species extinctions 

A.  Agriculture: 3% exponential, 30yr 

      Environment: 5% exponential, 100yr 
343.0 5 

$ 18.0 M 

per species 

B.  Agriculture: 5% exponential, 30yr 

      Environment: 5% exponential, 100yr 
269.0 5 

$ 14.12M  

per species 

C.  Agriculture: 5% exponential, 30yr 

      Environment: 5% hyperbolic, 100yr 
269.0 9 

$ 7.91M  

per species 

D.  Agriculture: 6% exponential, 30yr 

      Environment: 3% hyperbolic, 100yr 
240.9 11 

$ 5.47M  

per species 

E.  Agriculture: 7% exponential, 30yr 

      Environment: 1% hyperbolic, 100yr 
217.2 17 

$ 3.28 M  

per species 

 
 

The points of indifference shown in Table A5.3 report a perverse trend.  Scenario D is 

coincidentally equivalent to the ‗true‘ value judgment of a point of indifference of 

$5.47M per species loss. Greater concern for future species loss (lower discount rates 

for environment) and less concern for future agricultural losses (higher discount rates 

for agriculture) seem to imply a lesser monetary point of indifference (Scenario E). 

That is, if the decision-maker had to decide between a loss to agriculture of $3.28M or 

loss of one species, she would choose randomly. Environmental impact counts for 

relatively little.  

 

Scenarios A - C imply the exact opposite. Under scenario A, the decision-maker is 

indifferent to a choice of an $18M loss to agriculture or the loss of one species.  The 

environmental impact appears to be much more important, despite discount rates for 

species loss being relatively large and rates for agriculture relatively small. These 

counter-intuitive outcomes arise because of failure to adjust weights in response to 

reduced ranges in attribute-specific consequences associated with discounting.  
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A 5.2 Remedying the problem 

Fischer (1995) presents the arithmetic needed to adjust weights with a change in the 

range of attributes. Let‘s say a decision-maker assigns weights γx and γy to relatively 

large ranges of both attributes, bounded by best values denoted X* and Y*, and worst 

values, denoted X
0
 and Y

0
.  The additive utility model is 

 

( ) ( ) ( )yVγxVγy,xV yyxx += .      (A5.2) 

 

Discounting leads to a smaller range.  Let‘s denote the bounds of the smaller range x* 

and y*, and x
0
 and y

0
.  The adjusted weights, λx and λy are, 

 

( ) ( )[ ]
( ) ( )[ ] ( ) ( )[ ]00

0

-+-

-

yVy*VγxVx*Vγ

xVx*Vγ
=λ

yyyxxx

xxx

x
, and   (A5.3) 

 

( ) ( )[ ]
( ) ( )[ ] ( ) ( )[ ]00

0

-+-

-

yVy*VγxVx*Vγ

yVy*Vγ
=λ

yyyxxx

yyy

y .    (A5.4) 

 

Note that the adjusted weights depend on the large range weights, γx and γy, and on 

( ) ( )0- xVx*V xx  and ( ) ( )0- yVy*V yy , the (large range) utility differences between best 

and worst outcomes on attributes X and Y for the small range context.  

 

Table A5.4 uses these equations A5.3 and A5.4 to calculate adjusted weights for 

discounted consequences under each of the five time preference scenarios.  The effect 

of the adjustment is to preserve the ‗true‘ value judgment of a point of indifference of 

a $5.47M loss to agriculture per species loss.  Notice that the adjusted weights for 

species loss (intuitively) increase as future losses are increasingly emphasised 

(through lower discount rates).   

 

The budget allocations for the three pests under each of the five discounting scenarios 

is presented in Table A5.5.  Results emphasise the resource implications of naïve 

weighting, with the budget allocated to cat control ranging from $0.55M under 

Scenario A (where future environmental impacts are unimportant) to $2.04M under 

Scenario E (where future environmental impacts are of relatively high importance). 
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Table A5.4. Adjusted weights for five discounting scenarios. 
  

      Discounting scenario 

Adjusted weight 
Point of 

indifference 
Agricultural 

loss ($M) 

Number of native  

species extinctions 

A.  Agriculture: 3% exponential, 30yr 

      Environment: 5% exponential, 100yr 
0.93 0.07 

$ 5.47 M 

per species 

B.  Agriculture: 5% exponential, 30yr 

      Environment: 5% exponential, 100yr 
0.91 0.09 

$ 5.47 M 

per species 

C.  Agriculture: 5% exponential, 30yr 

      Environment: 5% hyperbolic, 100yr 
0.85 0.15 

$ 5.47 M 

per species 

D.  Agriculture: 6% exponential, 30yr 

      Environment: 3% hyperbolic, 100yr 
0.80 0.20 

$ 5.47 M 

per species 

E.  Agriculture: 7% exponential, 30yr 

      Environment: 1% hyperbolic, 100yr 
0.71 0.29 

$ 5.47 M 

per species 

 
 

 
Table A5.5. Budget allocations for five discounting scenarios.  Note that allocations 

for Scenario D are identical to the case where time preference is ignored.  See text for 

details. 
 

Pest 
Scenario A Scenario B Scenario C Scenario E 

disutility budget disutility budget disutility budget disutility budget 

foxes 0.99 $7.73M 0.99 $7.62M 0.98 $7.31M 0.96 $6.76M 

goats 0.22 $1.72M 0.22 $1.69M 0.21 $1.57M 0.17 $1.20M 

cats 0.07 $0.55M 0.09 $0.69M 0.15 $1.12M 0.29 $2.04M 

 

 

The computations for adjusting weights are not difficult.  They could be 

retrospectively applied to the twenty multi-criteria case studies reported in section A3 

for which time preference was completely ignored.  Failure to meaningfully address 

time in multi-attribute decision-support probably reflects a pervasive naivety among 

analysts on the normative meaning and interpretation of weights (Keeney 2002). 

 

Adjustment is not necessary when weights are elicited using consequences that 

describe net present value. Of course this requires specification of the form and 

magnitude of discounting for each criterion or attribute, a challenge which is common 

to conventional benefit-cost analyses. There is no professional consensus on what 
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discount rate should be used (Harrison 2010). A review of the literature (Portney and 

Weyant 1999) concludes that ‗those looking for guidance on the choice of a discount 

rate could find justification for a rate at or near zero, as high as 20% and any and all 

values in between.‘  Lack of consensus on an appropriate rate for market and non-

market consequences is not an excuse for ignoring time preference altogether. Rather, 

it suggests the need for further empirical research along the lines of the work 

presented in section A4 of this report. 
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Appendix A2 Time preference survey 

 

 

BIOSECURITY SURVEY 

     

Thank you for participating in this research project. This questionnaire will ask you to make judgements 

about the relative importance of different impacts of pests in Australia.  

 

This questionnaire is not a test of your knowledge; rather it is an investigation of your preferences.  
 

 It is requested that you read all the background information before completing each question. 

 

 The survey consists of 3 questions. It should take no longer than 30 minutes to complete. 

 

 

This is one of two questionnaires in this research project. In order to match up and compare the responses to 

each questionnaire, we need you to write your name below. 

 

However, this data will be de-identified, that is, your name and any identifying information will be removed 

from your responses, and stored using an anonymous ID number only.  

 

Your responses to this questionnaire will be stored separately from this form.   

 

No identifying information will be kept with any of your responses.   

 

Group results may be published in academic journals and presented at conferences but, again, no 

individuals will be identified. 

 

 

Your name:       ___________________________________________________________ 

 

 

Your signature:  ___________________________________________________________ 

 

Signing above implies that you have read the information on this page and agree that your responses 

to this survey may be used in this study. 

 

Feel free to ask for clarification about the survey questions or the research aims during the exercise.  If you 

have any further questions please contact either the researcher Tracy Rout (tmrout@unimelb.edu.au) or her 

supervisor Dr Terry Walshe (twalshe@unimelb.edu.au). 

 

 

This research has been approved by the Human Ethics Committee of the University of 

Melbourne (Application No. 0709557.8).  If you have any complaints or queries that 

the have not been answered to your satisfaction, you may contact the Executive 

Officer, Human Research Ethics, The University of Melbourne, ph: 8344 2073; fax 

9347 6739. 

Biosecurity and environmental management 

mailto:gpech@ugrad.unimelb.edu.au
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 Pest species identified as biosecurity threats vary in the magnitude and type of impacts they are likely to 

present in the Australian environment. Pest species impact on attributes such as agriculture, biodiversity, 

and human health. 

 

 Impacts can occur over different time frames for different pest species. Some pest species will establish and 

spread quickly and have immediate impacts, whereas others will take longer to establish and spread and for 

their impacts to be felt. 

 

 In addition, the benefits of different programmes to manage invasive species can be realised over different 

time frames. Some programmes may be able to achieve beneficial outcomes immediately, while others will 

take longer to achieve beneficial outcomes. 

 

 Resources to mitigate the impact of pests are limited, and implementing any one management programme is 

likely to present tradeoffs, where decision makers must prioritise strategies according to the outcomes they 

consider to be most important. 

 

 This survey aims to investigate how tradeoffs are affected by the time frame of impacts and benefits. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Questionnaire continues next page… 

Biosecurity and environmental management 
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As an invasive pest manager, you have a windfall in your management budget and can choose to fund one 

extra invasive pest management programme. You must choose between two programmes of equal cost, that 

both mitigate the impact of a pest on agriculture. 

 

By mitigating this impact, these programmes will increase the productivity of the grains industry. This benefit 

will occur either immediately or after a delay.  

 

 

1 a) Which programme would you choose to fund? (Please tick the box next to Programme A or B) 

 Benefit to grains industry if funded 

($ gained) 

Benefit will occur Tick 

box 

Programme A 5 million Immediately  

Programme B 55 million In 20 years  

 

1 b) Which programme would you choose to fund? (Please tick the box next to Programme A or B) 

 Benefit to grains industry if funded 

($ gained) 

Benefit will occur Tick 

box 

Programme A 5 million Immediately  

Programme B 4 million In 20 years  

 

1 c) Which programme would you choose to fund? (Please tick the box next to Programme A or B) 

 Benefit to grains industry if funded 

($ gained) 

Benefit will occur Tick 

box 

Programme A 5 million Immediately  

Programme B 50 million In 20 years  

 

Questionnaire continues next page… 

 

You will need to indicate which of the two programmes you would choose to fund (Programme A 

or Programme B) in each of the 12 choice questions below. 

Question 1 
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1 d) Which programme would you choose to fund? (Please tick the box next to Programme A or B) 

 Benefit to grains industry if funded 

($ gained) 

Benefit will occur Tick 

box 

Programme A 5 million Immediately  

Programme B 6 million In 20 years  

 

1 e) Which programme would you choose to fund? (Please tick the box next to Programme A or B) 

 Benefit to grains industry if funded 

($ gained) 

Benefit will occur Tick 

box 

Programme A 5 million Immediately  

Programme B 45 million In 20 years  

 

1 f) Which programme would you choose to fund? (Please tick the box next to Programme A or B) 

 Benefit to grains industry if funded 

($ gained) 

Benefit will occur Tick 

box 

Programme A 5 million Immediately  

Programme B 10 million In 20 years  

 

1 g) Which programme would you choose to fund? (Please tick the box next to Programme A or B) 

 Benefit to grains industry if funded 

($ gained) 

Benefit will occur Tick 

box 

Programme A 5 million Immediately  

Programme B 40 million In 20 years  

 

1 h) Which programme would you choose to fund? (Please tick the box next to Programme A or B) 

 Benefit to grains industry if funded 

($ gained) 

Benefit will occur Tick 

box 

Programme A 5 million Immediately  

Programme B 15 million In 20 years  

 

Questionnaire continues next page… 



  

 

 
 

  44  

Page 5 of 9 

 

1 i) Which programme would you choose to fund? (Please tick the box next to Programme A or B) 

 Benefit to grains industry if funded 

($ gained) 

Benefit will occur Tick 

box 

Programme A 5 million Immediately  

Programme B 35 million In 20 years  

 

1 j) Which programme would you choose to fund? (Please tick the box next to Programme A or B) 

 Benefit to grains industry if funded 

($ gained) 

Benefit will occur Tick 

box 

Programme A 5 million Immediately  

Programme B 20 million In 20 years  

 

1 k) Which programme would you choose to fund? (Please tick the box next to Programme A or B) 

 Benefit to grains industry if funded 

($ gained) 

Benefit will occur Tick 

box 

Programme A 5 million Immediately  

Programme B 30 million In 20 years  

 

1 l) Which programme would you choose to fund? (Please tick the box next to Programme A or B) 

 Benefit to grains industry if funded 

($ gained) 

Benefit will occur Tick 

box 

Programme A 5 million Immediately  

Programme B 25 million In 20 years  

 

 

Questionnaire continues next page… 
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In this question you must again choose to fund one extra invasive pest management programme. You must 

choose between two programmes of equal cost, that both mitigate the impact of a pest on biodiversity.  

 

By mitigating this impact, these programmes will significantly increase (by > 10%) the population numbers of 

native species. This benefit will occur either immediately or after a delay. 

 

 

2 a) Which programme would you choose to fund? (Please tick the box next to Programme A or B) 

 Benefit to biodiversity if funded 

(# native species to increase) 

Benefit will occur Tick 

box 

Programme A 10 Immediately  

Programme B 110 In 20 years  

 

2 b) Which programme would you choose to fund? (Please tick the box next to Programme A or B) 

 Benefit to biodiversity if funded 

(# native species to increase) 

Benefit will occur Tick 

box 

Programme A 10 Immediately  

Programme B 8 In 20 years  

 

2 c) Which programme would you choose to fund? (Please tick the box next to Programme A or B) 

 Benefit to biodiversity if funded 

(# native species to increase) 

Benefit will occur Tick 

box 

Programme A 10 Immediately  

Programme B 100 In 20 years  

 

 

Questionnaire continues next page… 

Question 2 

You will need to indicate which of the two programmes you would choose to fund (Programme A 

or Programme B) in each of the 12 choice questions below. 
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2 d) Which programme would you choose to fund? (Please tick the box next to Programme A or B) 

 Benefit to biodiversity if funded 

(# native species to increase) 

Benefit will occur Tick 

box 

Programme A 10 Immediately  

Programme B 12 In 20 years  

 

2 e) Which programme would you choose to fund? (Please tick the box next to Programme A or B) 

 Benefit to biodiversity if funded 

(# native species to increase) 

Benefit will occur Tick 

box 

Programme A 10 Immediately  

Programme B 90 In 20 years  

 

2 f) Which programme would you choose to fund? (Please tick the box next to Programme A or B) 

 Benefit to biodiversity if funded 

(# native species to increase) 

Benefit will occur Tick 

box 

Programme A 10 Immediately  

Programme B 20 In 20 years  

 

2 g) Which programme would you choose to fund? (Please tick the box next to Programme A or B) 

 Benefit to biodiversity if funded 

(# native species to increase) 

Benefit will occur Tick 

box 

Programme A 10 Immediately  

Programme B 80 In 20 years  

 

2 h) Which programme would you choose to fund? (Please tick the box next to Programme A or B) 

 Benefit to biodiversity if funded 

(# native species to increase) 

Benefit will occur Tick 

box 

Programme A 10 Immediately  

Programme B 30 In 20 years  

 

Questionnaire continues next page…
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Page 8 of 9 

 

2 i) Which programme would you choose to fund? (Please tick the box next to Programme A or B) 

 Benefit to biodiversity if funded 

(# native species to increase) 

Benefit will occur Tick 

box 

Programme A 10 Immediately  

Programme B 70 In 20 years  

 

2 j) Which programme would you choose to fund? (Please tick the box next to Programme A or B) 

 Benefit to biodiversity if funded 

(# native species to increase) 

Benefit will occur Tick 

box 

Programme A 10 Immediately  

Programme B 40 In 20 years  

 

2 k) Which programme would you choose to fund? (Please tick the box next to Programme A or B) 

 Benefit to biodiversity if funded 

(# native species to increase) 

Benefit will occur Tick 

box 

Programme A 10 Immediately  

Programme B 60 In 20 years  

 

2 l) Which programme would you choose to fund? (Please tick the box next to Programme A or B) 

 Benefit to biodiversity if funded 

(# native species to increase) 

Benefit will occur Tick 

box 

Programme A 10 Immediately  

Programme B 50 In 20 years  

 

 

 

 

Questionnaire continues next page… 
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Page 9 of 9 

 

 

The table below shows two invasive pest management programmes that have benefits for: 

 agriculture, increasing the productivity of the grains industry, and 

 biodiversity, significantly increasing (by >10%) population numbers of native species. 

Assume these benefits occur without delay, soon after the programmes are implemented. 

 

Your first task is to RANK the two programmes in order of priority for funding, with a rank of 1 indicating 

the most favourable programme, and 2 the least favourable. Write your ranks in the allocated boxes below. 

 

If, for example, you choose Programme A as your number 1 programme, then the increase in gains to the 

grains industry from $4 million to $55 million matters more to you than the change in number of increasing 

native species from 8 to 110 species.  

If you judge these programmes to be equally favourable, you can rank them both as 1. 

 

 Benefit to grains industry 

 ($ gained) 

Benefit to biodiversity 

(# native species to increase) 

 
RANK WEIGHT 

Programme A $55 million 8    

Programme B $4 million 110    

 

 

For instance, if you consider the estimated benefit to be half as important as the number 1 ranked programme, 

give it a weight of 50. The weights you give must be whole numbers less than or equal to 100, but they do not 

have to add up to any particular value.  

Note that if you ranked the programmes as equally favourable, their weights must also be equal. 

 

- This is the end of the questionnaire - 

Thankyou for your participation

Question 3 

Your next task is to quantify the rankings by assigning weights to the programmes. To do this, 

begin by assigning a WEIGHT of 100 to the programme you ranked 1. You must then judge 

the importance of the remaining programme relative to a weight of 100 for the number 1 

ranked programme. Write your weights in the allocated boxes above. 
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Part B 

Value of information analysis as a decision support 

tool for biosecurity 

 

 

 

 



  

 

 
 

  50  

B 1.0  Introduction 

 

Invasive species managers operate in unpredictable and imperfectly observable systems and often 

make decisions in the face of considerable uncertainty (Parma et al., 1998).  For example, they may 

be uncertain about the spatial extent of an invasion, about the efficacy of treatment options, or about 

various life history characteristics of the species. 

 

In some cases, managers have the option of reducing uncertainty by investing in monitoring or 

experimentation.  However, this often means diverting resources away from on-ground control 

actions, or delaying actions until the results of research are known.  It is therefore important for 

managers to assess the benefits and costs of collecting this additional information.  Some 

uncertainties, although scientifically interesting to resolve, may not actually affect decision-making.  

Managers must determine whether investing in collecting additional information will lead to a better 

management outcome, and if so, how much better? 

 

These questions can be answered using a method known as value of information (VOI) analysis 

(Raiffa and Schlaifer, 1961).  VOI analysis was developed within the theory of information 

economics and has been applied to decision problems in such diverse fields as medicine (Groot 

Koerkamp et al., 2008; Singh et al., 2008), health risk management (Yokota and Thompson, 2004a, 

b), and resource exploration (Eidsvik et al., 2008).  It has been recommended particularly as a 

decision support tool for complex problems with high stakes and large uncertainties (Yokota and 

Thompson, 2004b). 

 

To be more specific, VOI analysis is useful in situations where: 

 a decision must be made, for example, choosing between candidate management actions, 

 there is uncertainty in elements of this decision, and 

 information can be collected to resolve all or part of this uncertainty. 

VOI analysis assesses the benefit of collecting this information, considering the context of the 

decision to be made. 
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Assume a manager must choose between several possible management actions, and this choice is 

affected by an uncertain variable.  The simplest type of VOI calculation is the expected value of 

perfect information (EVPI) (Howard, 1966).  This calculates the expected improvement in the 

outcome of the decision if all uncertainty could be resolved.  The equation for the EVPI is: 

])(),([max)()],(max[EVPI
SsAaSs Aa

dssfsaudssfsau , (B1.1) 

where f(s) is the probability of the uncertain variable taking value s, and u(a, s) is the utility (or 

‗goodness‘) of taking action a when the uncertain variable has value s.  

 

The first half of this equation calculates the expected utility with perfect information, assuming that 

if the decision-maker knew the value s of the uncertain variable, they would choose the action with 

the highest utility for that particular value.  This utility is then multiplied by the probability that the 

true value is s, and summed for all possible values of s.  The second half of the equation describes 

the scenario under uncertainty, assuming the decision-maker will take the action with the highest 

expected utility across all possible values of the uncertain variable.  In this way, the equation finds 

the difference in expected utility between the best decision given perfect information, and the best 

decision under uncertainty.  That is, the calculation answers the question, ‗what is the difference in 

the expected outcome of the decision under certainty and uncertainty?‘.  If the utilities are measured 

in dollars, then the output of this calculation is the absolute maximum that should be spent on 

research or monitoring to improve knowledge about this uncertain variable. 

 

In this report we demonstrate how VOI analysis could be used for practical decision-making in 

biosecurity, focusing on the common post-border decision problem of choosing whether to eradicate 

or contain an invasion.  Throughout this report, we use the value of perfect information to find the 

maximum amount to invest in reducing uncertainty.  We show how the analysis can be tailored to a 

specific management problem, illustrated with a case study of red imported fire ants in south-east 

Queensland. 
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B 2.0  Prototype for a post-border biosecurity decision 

 

Here we develop a prototype VOI analysis for deciding whether to eradicate or contain an existing 

infestation.  We consider the decision as a one-off, irrevocable allocation of resources to either 

eradication or containment.  The expected costs and benefits of either action are a function of the 

extent of the infestation.  From analysis of these costs and benefits we can determine a threshold 

extent, above which it is optimal to contain, and below which it is optimal to eradicate.  Uncertainty 

in the extent of the infestation induces uncertainty about the optimal decision.  In the circumstances 

we consider, we have the option to learn the extent of infestation precisely before committing our 

resources.  We calculate the expected improvement in management from obtaining that information, 

allowing us to determine whether it is worth the cost. 

 

B 2.1 The decision model 

Let x be the extent of a circular infestation in hectares.  If we choose the ―contain‖ action, we will 

incur an expense that is proportional to the perimeter of infestation, and we will seek to contain the 

infestation at that extent for the indefinite future.  The cost would be spread over the time frame of 

interest: this might be a fixed time horizon, or else might be viewed as the net present value of 

annual payments made over an infinite time horizon, either way, the cost is finite.  Thus, the cost of 

containment (Fig. B2.1a) is 

1( ) 2Cost C c x , (B2.1) 

where c1 is the long-term cost of containment per 100m of perimeter. 

 

If we choose the ―eradicate‖ action, we incur a large, immediate expense that is proportional to the 

areal extent of infestation.  If the eradication succeeds, the infestation is removed and there are no 

further costs.  If the eradication fails, then the containment cost is incurred and we assume for the 

sake of simplicity that the infestation remains at the original extent in perpetuity.  The probability of 

failure is an increasing function of the extent of infestation, taking a sigmoid shape (Fig. B2.1b), 

)(1

1
)failure(

axme
p , (B2.2) 

where a is the area at which the probability of failure is 50%, and m measures how steep the failure 

curve is near the inflection point.  Then, the expected cost of eradication (Fig. B2.1a) is 

1
2 )

2
( )

1
m x a

c x
Cost E c x

e
, (B2.3) 
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where c2 is the cost of eradication per hectare, and the second term is the cost of containment times 

the probability of failure to eradicate. 
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Fig. B2.1.  Costs of management actions as a function of extent of infestation.  (a)  Costs of 

eradication and containment, where the cost of containment (c1) is $1000 per 100m of perimeter and 

the cost of eradication (c2) is $100 per hectare.  The total costs of containment and eradication are 

equal when the extent of infestation is 753 ha.  (b) Probability of failure to eradicate as a function of 

extent of infestation, where the half-effectiveness area (a) is 1000 ha, and the efficiency slope (m) is 

0.005. 
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In addition to the costs of management, we need to consider the losses associated with the long-term 

presence of the infestation (due to loss of production, social amenity, etc.).  It is reasonable that these 

losses are proportional to the extent of infestation.  If the ―contain‖ action is taken, the long-term 

extent of infestation is the current extent of infestation, x.  If the ―eradication‖ action is taken, the 

long-term extent of infestation is 0 if eradication succeeds, and x if eradication fails.  Therefore, the 

expected loss, as a function of the initial extent of infestation, is 

neradicatio if
1

tcontainmen if

)(

3

3

axme

xc

xc

Loss , (B2.4) 

where c3 is loss per hectare of infestation (Fig. B2.2a).   

 

The combined losses and costs, T, can be found by summing equations B2.1, B2.3, and B2.4, 

neradicatio if
1

2

tcontainmen if2

)(

31
2

31

axme

xcxc
xc

xcxc

T . (B2.5) 

The objective to minimize the combined losses and costs gives rise to a threshold extent of 

infestation, x*, below which it is optimal to attempt eradication, and above which it is optimal to 

commit to long-term containment (Fig. B2.2b): 

1 3
1 3 2 *

2 * *
*: 2 * * *

1
m x a

c x c x
x c x c x c x

e
. (B2.6) 
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Fig. B2.2. Production and amenity losses (a) combined with management costs (b), as a function of 

initial extent of infestation, for two management actions.  The production and amenity loss rate (c3) 

is $500 per hectare.  The decision threshold occurs at 1321 ha; if the extent of infestation is less than 

this, the best course of action is eradication, otherwise, the best course of action is long-term 

containment.  At this level of infestation, the cost of eradication is $239,000 and the cost of 

containment is $129,000, but eradication is expected to reduce the production and amenity losses 

more than containment. 

 

 

B 2.2 Binary uncertainty 

Now, suppose that we are uncertain about the extent of infestation, x.  This uncertainty about the 

state of the system may induce uncertainty about which action to take.  Further, let us suppose that 

we could undertake a survey that would allow us to reduce this uncertainty before we had to make 

the decision (and suppose that the survey could be conducted fast enough so there were no 

consequences associated with delaying action, other than the cost of the survey).  How much would 

this survey be worth to us? 

 

First, by way of a simple illustration of the value of perfect information, imagine that our uncertainty 

is binary, that is, the extent is either 750 ha (small) or is 1750 ha (large) (Figure B2.3).   
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Fig B2.3.  A decision tree illustrating the choice between eradication and containment for the 

scenario with binary uncertainty in the extent of the infestation.  The costs of eradication, 

containment, and impact are greater for large infestations, as given by eqs. B2.1, B2.3 and B2.4.  The 

probability that eradication will fail is also greater for large infestations, as given by eq. B2.2. 

 

 

A standard analysis of the expected value of information (eq. B2.1) using the parameters given in 

Figs. B2.1 - B2.3, gives the total costs and losses shown in Table B2.1. 

 

With a prior belief of 0.4 that the extent is ―small‖, the best action to take in the face of uncertainty is 

to eradicate, because the expected total loss is $776.9K vs. $802.8K.  If we could resolve that 

uncertainty ahead of time, we would eradicate if the extent is small (expected loss = $180.1K), and 

contain if the extent is large (expected loss = $1.023 M).  Averaging over the prior beliefs that we 

would discover those states of nature, the expected total loss, provided we can resolve uncertainty 

first, is $686.0K.  Thus, by reducing uncertainty, we decrease our expected loss by $90,890.  So the 

expected value of perfect information is $90,890, and we should be willing to pay up to that amount 

for the survey that would let us know the extent of the infestation. 
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Table B2.1.  Expected value of perfect information with binary uncertainty in the extent of 

infestation.  The entries are the combined costs and losses associated with each action and the extent 

of the infestation.  The parameters for the cost and loss functions are those given in Figs. B2.1 - 

B2.3. 

 ―Small‖ extent  

(750 ha) 

―Large‖ extent 

(1750 ha) 

Weighted average 

 Belief = 0.4 Belief = 0.6  

Action: Contain $472,080 $1,023,300 $802,810 

Action: Eradicate $180,130 $1,174,800 $776,920 

Best $180,130 $1,023,300 $686,030 

EVPI   $  90,890 

 

 

B 2.3 Continuous uncertainty 

Next, consider a more realistic situation, and suppose instead that our uncertainty about the extent of 

infestation is continuous, and can be expressed by a probability distribution, f(x), defined for 0  x < 

.  For example, our prior belief that the extent is x might be described by a lognormal distribution 

with mean  and standard deviation ,   

2

2

ln

2

2

1 1 ln

2

x
x

f x e
xx

, (B2.7) 

where (z) is the standard normal probability density function. 

 

The expected cost (EC) of taking the ―contain‖ action is found by integrating the total loss (eq. B2.5) 

over the range of possible extents, weighted by our prior belief in the extent, that is, 

dxxfxcxc

dxxfxTEC
x

0
31 )(2

)()contain"|"()contain"("
. (B2.8) 

The expected cost of taking the ―eradicate‖ action is found in a similar manner, 

dxxf
e

xcxc
xc

dxxfxTEC

axm

x

0 )(
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)()eradicate"|"()eradicate"("

. (B2.9) 
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The best action in the face of uncertainty is the minimum of equations B2.8 and B2.9, that is, the 

action that minimizes the expected total loss.  The expected total loss in the face of uncertainty, ECu, 

is 

])()contain"|"(,)()eradicate"|"(min[ dxxfxTdxxfxTEC
xx

u . (B2.10) 

If we can resolve uncertainty about the extent first, before making the decision, then we would take 

the ―eradicate‖ action if we find out that x is less than x*, and the ―contain‖ action if we find out that 

x is greater than x*.  Thus, prior to collecting that information, the expected cost of the decision 

under certainty, ECc, is 

*
31
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e
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xc

dxxfxdxxfxTEC

, (B2.11) 

and the expected value of information is the difference between the expected cost under uncertainty 

and the expected cost under certainty, 

cu ECECEVPI . (B2.12) 

 

Consider the set of parameters given above, for which x* = 1321 ha.  Suppose that our belief about 

the extent of infestation can be characterized as a lognormal distribution with  = ln 1000 and  = 

0.3 (Fig. B2.3).  When the uncertainty about the extent takes a continuous distribution, the 

probability that the extent of infestation is less than the decision threshold is 0.823 (Fig. B2.4).  In 

the face of uncertainty, the expected total loss of taking the ―contain‖ action is $636,154, and the 

expected total loss of taking the ―eradication‖ action is $481,526, so the best course of action is 

eradication, reflecting the weight of evidence that the extent is lower than the decision threshold.  

But there is a 17.3% risk of making the wrong decision.  If the extent of infestation can be 

determined before the decision is made, the expected total loss is $465,663.  Thus, the expected 

value of information is $15,863, which is the maximum we should spend reducing uncertainty in the 

extent of the invasion. 
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Fig. B2.4.  Uncertainty in the extent of infestation, expressed as a log-normal distribution with mean 

 = ln(1000) and standard deviation  = 0.3.  The probability that the extent is less than the threshold 

(x*) is 0.823. 
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B 3.0  Tailoring the analysis to a specific management problem 

 

We now illustrate how our prototype VOI analysis can be applied to a specific management 

situation, using an example of red imported fire ant management in south-east Queensland.  Red 

imported fire ants (Solenopsis invicta, hereafter ‗fire ants‘) were first detected in Brisbane in early 

2001 (Moloney and Vanderwoude, 2002).  Since that time they have been the subject of a major 

eradication campaign, managed by the Biosecurity Queensland Control Centre (BQCC) (Moloney 

and Vanderwoude, 2002).  One of the world‘s 100 worst invaders (Lowe et al. 2000), fire ants 

damage agricultural crops, injure livestock, and affect human health and ecosystems (Moloney and 

Vanderwoude, 2002).  They are a significant pest in the United States, where over 7 billion dollars is 

spent on control each year (Pimentel et al. 2007). 

 

In the early stages of the Brisbane eradication campaign, fire ants were present at high density within 

a relatively small area.  While eradication efforts successfully reduced population density, occasional 

long distance dispersal has led to a very large area (approximately 95,000 ha) being occupied at a 

low density (Telford and Wylie, in preparation).  Reflecting these changed circumstances, the focus 

of management has shifted from intensive surveillance and treatment of a small area, to methods 

better suited to eradication over a larger area. 

 

This new approach has been informed by quantitative models of fire ant spread under alternative 

surveillance and control strategies (Schmidt et al. 2010; Spring 2008; Spring et al. 2009, 2010a, 

2010b).  One of the main findings of modelling research is that if eradication is to be a viable option, 

new methods will be required to search larger areas at lower cost.  Remote sensing technology, 

which uses an infra-red camera from a helicopter, was identified as a candidate method and 

recommended for further evaluation.  Modelling work indicates there is a threshold level of 

sensitivity of remote sensing, below which eradication is unlikely to be feasible.  

 

Other cost-effective strategies for containment and eradication are also being considered.  One 

potential strategy is extensive broadbaiting, in which poisoned bait is applied over general areas of 

infestation.  BQCC is currently conducting trials to further evaluate the efficacy of broadbaiting and 

thereby determine its cost-effectiveness as a containment or eradication method. 
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To show how VOI analysis can answer practical management questions, we calculate the value of 

learning about these uncertain variables: the sensitivity of remote sensing and the efficacy of baiting.  

VOI analysis can tell us how much effort should be expended on research and evaluation of these 

methods, and if it may be more cost-effective to simply implement these methods despite 

uncertainty.  As in our prototype analysis, we also consider uncertainty about the current spatial 

extent of the invasion.  We intend this VOI analysis to complement recent work by Ward and 

Kompas (2010), who consider a cost-benefit analysis for fire ant management, and calculate the VOI 

for resolving uncertainty in the predicted benefits of management. 

 

Although we have attempted to capture the key elements of the fire ant decision problem, our model 

of fire ant dynamics and management is highly simplified.  For this reason the analysis we present 

here is intended to be an illustration of the decision problem, and not to provide decision support for 

management.  In the discussion section we outline the steps needed to develop this analysis into a 

practical decision support tool. 

 

 

B 3.1 Fire ant treatment methods 

Several different actions are employed to detect and kill fire ant nests (Table B3.1).   

Two kill methods are used: broadbaiting (―baiting‖), and nest injection, in which poison is applied 

directly into detected fire ant nests.  Baits contain poison and an attractant, so they are taken back to 

undetected nests by fire ant workers (Moloney and Vanderwoude, 2002).  Baits can be distributed on 

foot, from all-terrain vehicles, or from the air (Moloney and Vanderwoude, 2002).  Experience in 

North America indicates that baiting is between 80 and 95% effective (Barr et al., 2005), although its 

efficacy for fire ants in Queensland is uncertain.  To be conservative we have used the lower bound 

of 80% efficacy as the point estimate in our model (Table B3.1).  Nest injection is believed to be 

fully effective in killing fire ant nests (Table B3.1), but can only be applied after a nest is detected. 

 

The most effective detection method is surveying with odour detection dogs, which have close to a 

100% nest detection rate (Telford and Wylie, in preparation).  To date, 8 dogs have been tested and 

are routinely used to survey for fire ants (Telford and Wylie, in preparation).  This surveillance 

method is also the most expensive (Table B3.2), because two handlers must accompany the dog, and 

relatively few hectares can be searched per day.  Visual surveillance, where trained BQCC field staff 

form an evenly-spaced line and move forward uniformly to scan an area for fire ant nests, has an 
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80% nest detection rate (Telford and Wylie, in preparation).  Although it is less effective than canine 

surveillance, visual surveillance is cheaper per hectare surveyed (Table B3.2). 

 

Remote sensing involves capturing images of a landscape with an infra-red camera from a 

helicopter, and analysing the images to map the location of fire ant nests (Vogt, 2004). Testing in 

North America has found this method capable of detecting up to 79% of fire ant nests within an area 

(Vogt and Wallet, 2008). The technology is currently being developed for application in south-east 

Queensland, and its efficacy in this setting is currently unknown (Table B3.1).  Because large areas 

can be covered quickly and easily with remote sensing, it is expected to be substantially cheaper per 

hectare than on-ground surveillance methods when a large area is searched (Table B3.2). 

 

Table B3.1. Efficacy of fire ant nest detection and kill methods 

Kill method Estimated efficacy  = p(killing nest) 

Nest injection 1 (Grant Telford, pers. comm.) 

Baiting Currently uncertain, best estimate is 0.8 (Barr et al., 2005) 

Detection method Estimated sensitivity  = p(detecting nest | present) 

Canine surveys 0.99 (Telford and Wylie, in preparation) 

Visual surveys 0.8 (Telford and Wylie, in preparation) 

Remote sensing Currently unknown 
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Table B3.2. Costs of fire ant nest detection and kill methods 

Parameter Cost per ha Source 

 

Cost of tracking with dogs + 

nest injection (/ ha) 

 

 

$600 

 

Approximate, D. Spring pers. comm. 

Cost of visual surveys + nest 

injection (/ ha) 

 

$366.34 (Telford and Wylie, in preparation) 

Cost of remote sensing + nest 

injection (/ ha) 

 

$223.17 

 

$40 (Telford and Wylie, in preparation) + the cost 

of injection (estimated as half the cost of visual 

surveys + nest injection) 

Cost of baiting (/ ha) 

 

$70 D. Spring pers. comm. 

 

 

B 3.2 The decision model 

We frame the decision in the same way as the previous section, that is, broadly as a choice between 

eradication and containment of fire ants.  Let x be the extent of the fire ant infestation in hectares, 

which for simplicity we assume to be roughly circular.  If eradication is chosen, a one-off treatment 

will be applied across the entire extent x, which may or may not be successful in eradicating fire 

ants.  If containment is chosen, treatment will be applied annually to a ring of width b around the 

outside of the infestation (Fig. B3.1), which we assume will successfully contain the infestation to 

area x. 

 

 

Fig. B3.1. Diagram showing the infestation area x (outlined in bold), and the area in which 

containment actions are applied (shaded in grey) defined by buffer width b. 
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The annual cost of containment is then 2bbxc , where c is the per hectare cost of the 

treatment applied.  Containment will be applied every year from now (t = 0) indefinitely into the 

future (t = ∞). Using standard exponential discounting, the net present cost of containment is 

therefore 

0

2

)1(
)(

t
tj

bbxc
CCost  (B3.1) 

where j is the annual discount rate.  Throughout this section we use a discount rate of j = 5%.  

Eradication is a one-off management expenditure, but if eradication fails we assume containment 

must then be enacted.  The cost of eradication is therefore 

)())success(1()( CCostpcxECost  (B3.2) 

where p(success) is the probability that eradication will be successful.  

 

The probability that eradication will be successful, and that containment will eliminate all nests 

within the treatment buffer, depends on the combination of detection and kill actions used as part of 

the eradication or containment strategy.  A strategy may comprise a number of dog surveys, visual 

surveys, remote sensing surveys and rounds of baiting.  Assuming these actions are independent, the 

probability an individual nest will survive treatment is: 

baitremotevisualdogs n

bait

n

remote

n

visual

n

dogsp )1()1()1()1()survive(  (B3.3) 

where y is the sensitivity of detection method y, ny is the number of surveys with method y, bait is 

the probability the nest will be killed with bait, and nbait is the number of rounds of bait applied. 

 

We assume the nests have a uniform density  across the extent, which means the total number of 

nests is given by x.  The probability all nests within the treatment area will be killed is then: 

zpp ))survive(1()success(  (B3.4) 

where z is the treatment area, which is 

neradicatio if

tcontainmen if2

x

bbx
z . (B3.5) 

Throughout this analysis we assume a fire ant density in the treated area of 1 nest / ha. 
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Along with the cost of managing fire ants, there will be losses incurred as a result of fire ant 

presence.  We assume this impact is proportional to the area occupied.  If containment is chosen, the 

long-term extent of the infestation will remain at the current extent x.  If eradication is chosen, the 

long-term extent of the infestation will be zero if eradication is successful, and x if eradication fails.  

The expected loss caused by the long-term presence of fire ants is therefore given by: 

neradicatio if
)1(

)success(1(

tcontainmen if
)1(

0
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t
t
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t
t
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j

xc
p

j

xc

Loss  (B3.6) 

where ci is the per hectare annual cost of impact, and j is the annual discount rate. For simplicity, we 

assume that the impact losses and costs of management are discounted at the same exponential rate. 

 

A recent cost-benefit analysis estimated the potential loss due to the long-term presence of fire ants 

in south-east Queensland to be as much as $43 billion (Antony et al., 2009).  We simplified the 

method applied in that analysis (see Appendix B1) to derive an annual cost of fire ant impact of 

$1031.48 / ha.  As in Antony et al. (2009), this includes the costs of ongoing private treatment of fire 

ant infested areas, the health care costs associated with fire ant stings, and the impact of fire ants on 

ecosystem services. 

 

The combined total cost and loss of each action, T, can thus be found by summing equations B3.1, 

B3.2 and B3.6: 
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T . (B3.7) 

If all model parameters are certain, the most cost-effective management strategy is the one with the 

lowest total cost, as given by eqn. B3.7 above.  We will now examine how different management 

strategies perform under uncertainty in three model parameters: the extent of the infestation, the 

sensitivity of remote sensing, and the efficacy of baiting.  We use value of information analysis to 

calculate the expected improvement in the outcome of decisions from resolving those uncertainties. 
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B 3.3 Uncertainty in the extent of the infestation 

We investigate one uncertain parameter at a time, starting with the extent of the infestation, which is 

estimated as 95,000 ha (Telford and Wylie, in preparation).  To confine our uncertainty to a single 

variable, we consider only management strategies involving detection and kill methods with a 

known efficacy. 

 

We compare two management strategies:  

 a containment strategy applied to a buffer around the perimeter of the infestation, involving 2 

canine surveys and 2 visual surveys per year and injection of detected nests with poison, and 

 an eradication strategy applied over the entire extent of the infestation, involving 2 canine 

surveys and 1 visual survey, and injection of detected nests with poison. 

These strategies were chosen to provide an interesting conceptual model, and are not based on 

current practice—the predominant treatment currently applied within the eradication project is a 

combination of visual surveys and baiting (C. Jennings, pers. comm.).  For the containment strategy, 

the intensive combination of canine and visual surveys is necessary to give a high probability of 

eliminating all nests within the containment buffer (Fig B3.2), consistent with the model assumption 

that containment is successful in maintaining the infestation at its current extent. 

 

Given the cost estimates in Table B3.2, the containment strategy will cost $1932.68 per hectare per 

year, while the eradication strategy will cost $1566.34 per hectare over a larger area.  However, the 

total cost of each strategy includes the cost of management as well as the costs of fire ant impact (eq. 

B3.7).  The most cost-effective strategy to take depends on the extent of the infestation (Fig. B3.3). 

Eradication is optimal for an infestation size of up to 135,849 ha, while containment is optimal if the 

infestation is any larger (Fig. B3.3). 

 

Given that the extent of the infestation affects which strategy is the most cost-effective, we next 

consider how uncertainty about the extent affects decision-making. 
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Fig B3.2. The probability of killing all fire ant nests within the treated area under different 

management strategies, and for different infestation extents.  The treatment area is either the 

containment buffer (containment), or the entire extent (eradication).  The probabilities are calculated 

with eq. B3.4, using the parameter estimates in Table B3.1. 

 

 

 

Fig. B3.3. The total expected cost of different management strategies for different extents of the fire 

ant infestation, calculated with eq. B3.7. 
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To calculate the value of resolving uncertainty about the extent, we first describe this uncertainty 

with a lognormal distribution: 

2

2

2

)(ln

22

1
)(

x

e
x

xf . (B3.8) 

We use a mean  = ln(96000) and standard deviation  =  0.1 to give a distribution where the most 

likely value (mode) is approximately x = 95,000 ha (Fig. B3.4).  

 

 

 

Fig. B3.4. The lognormal probability distribution (eq. B3.8) expressing uncertainty in the extent of 

the RIFA infestation. The mean  =  ln(96000), and the standard deviation  =  0.1. 

 

 

The expected cost of each management strategy can be found by integrating the total cost (eq. B3.7) 

across the range of possible extents, weighted by our prior belief that each is the true extent (eq. 

B3.8): 
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To be consistent with Antony et al. (2009), the largest possible extent we consider is xmax = 2.7 

million ha. 
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The best strategy in the face of uncertainty is the strategy that minimises the total expected cost 

given the prior distribution for the uncertain variable.  That is, if Fig. B3.4 represents our belief 

about the likelihood of different infestation sizes, we should choose the strategy with the lowest 

expected cost across these possible extents.  Taking this best strategy, the expected cost under 

uncertainty is: 

)neradicatio(),tcontainmen(min ECECECu , (B3.10) 

where the expected costs are given by eq. B3.9.  The best strategy under uncertainty is eradication, 

with an expected cost of $2.1391 billion. 

 

If we could find out what the true extent was before making our decision, we would choose the 

strategy with the lowest expected cost for that particular extent.  That means we would choose 

eradication if we knew the extent was up to x* = 135,849 ha, and containment if we knew the extent 

was more than 135,849 ha.  Prior to collecting information about the extent, the expected cost of the 

decision is: 

dxxfxTdxxfxTEC
x

x

x

c

max

*

*

0
)()tcontainmen|()()neradicatio|( , (B3.11) 

which is also equal to $2.1391 billion. 

 

The expected value of perfect information about the extent is the difference between the expected 

cost under uncertainty and the expected cost under certainty, i.e. 

cu ECECxEVPI )( , (B3.12) 

which in this case is only $3856.90.  While perfect information about the extent of the infestation is 

not likely to be possible, this puts an upper limit on the amount that should be spent acquiring 

information about the extent. 

 

Why is information about the extent worth so little, when our analysis shows the choice of strategy 

depends on the extent?  According to our prior belief distribution (Fig. B3.4), it is quite unlikely that 

the infestation is large enough for containment to be the most cost-effective strategy.  Thus, even 

though the extent is uncertain, the choice of strategy is not, which means resolving uncertainty will 

not improve the outcome of the decision substantially.
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B 3.4 Uncertainty in the sensitivity of remote sensing 

We now explore the value of learning about the sensitivity of remote sensing, another uncertain 

parameter in this model.  To do this we compare three possible management strategies.  In addition 

to the containment and eradication strategies considered previously, we add a new eradication 

strategy with 2 canine surveys and 2 remote sensing surveys, where detected nests are injected with 

poison.  Given the cost estimates in Table B3.2, this new strategy will cost $1646.34 per hectare 

(compared to $1932.68/ha/yr for containment, and $1566.34/ha for the original eradication strategy).  

Again, these three management strategies are chosen for illustrative purposes and do not reflect 

current or intended future practice. 

 

The total expected cost calculations show that the cost-effectiveness of including remote sensing in 

an eradication strategy depends on its sensitivity (Fig. B3.5).  The eradication strategy with remote 

sensing is optimal if the sensitivity of remote sensing is greater than 0.56.  Otherwise, the original 

eradication strategy is more cost-effective.  Note that these calculations are for an infestation extent 

of x = 95,000 ha.   

 

 

 

Fig. B3.5.  The total expected cost of different management strategies for different values of the 

sensitivity of remote sensing, calculated with eq. B3.7. 
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Previous analyses of remote sensing found that eradication using this technology is feasible at much 

lower levels of sensitivity than 0.56 (Spring et al. 2009, 2010a, 2010b).  Although feasibility and 

cost-effectiveness are not equivalent measures, differences in the fire ant models may have led to 

differences in the results of these analyses.  In particular, this analysis has several simplifying 

assumptions, for example, that fire ant nests are uniformly distributed across the infestation extent. 

 

To calculate the expected value of information, we start by describing our uncertainty in the 

sensitivity of remote sensing, using a beta distribution:  

)β,α(

)δ1(δ
)δ(

1β1α

B
f remoteremote

remote , (B3.13) 

where  and  are shape parameters, and B( , ) is the beta function: 

1

0

1β1α )1()β,α( duuuB . (B3.14) 

The beta distribution is defined on the interval (0,1) and is thus a suitable and commonly-used 

distribution for describing probabilities.  To reflect the ongoing development of remote sensing 

technology and the subsequent high level of uncertainty involved, we use an uninformative prior 

distribution with shape parameters  = 1 and  = 1, (Fig. B3.6). 

 

 

Fig. B3.6. The beta probability distribution (eq. B3.13) expressing uncertainty in the sensitivity of 

remote sensing. The shape parameters  = 1 and  = 1, equivalent to a uniform distribution over the 

interval [0,1]. 
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Again, the expected cost of each management strategy can be found by integrating the total cost (eq. 

B3.7) across the range of the uncertain variable, weighted by our prior belief that each value is the 

true value (eq. B3.13): 
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  (B3.15) 

 

The best strategy in the face of uncertainty is the strategy that minimises the total expected cost, 

given the prior probability distribution, i.e. 

sensing) remote w/ erad(),neradicatio(),tcontainmen(min ECECECECu . (B3.16) 

In this case the best strategy under uncertainty is the original eradication strategy, with an expected 

cost of $1.7896 billion. 

 

Under certainty, we would choose eradication with remote sensing if the sensitivity of remote 

sensing is greater than *

remote = 0.56, and the original eradication strategy if the sensitivity is 0.56 or 

lower. The expected cost of the decision under certainty is: 
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which equals $1.6296 billion. 

 

The expected value of perfect information is the difference between the expected cost under 

uncertainty and the expected cost under certainty: 

curemote ECECEVPI )δ( , (B3.18) 

which is $159.96 million.  The value of perfect information is substantial in this case because we 

assume so little is known about the sensitivity of remote sensing, and this assumed ignorance is 

likely to affect the outcome of the decision, especially given the large difference in the expected cost 

of the two eradication strategies when the sensitivity of remote sensing is high (Figure B3.5). 
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B 3.5 Uncertainty in bait efficacy 

The third uncertain parameter in this model is the efficacy of baiting undetected fire ant nests.  To 

calculate the value of learning about this parameter we again compare the original containment and 

eradication strategies with a new eradication strategy, this time involving 2 canine surveys (where 

found nests are injected with poison) and 4 rounds of baiting.  This new eradication strategy will cost 

$1480 per hectare, compared to $1932.68/ha/yr for containment, and $1566.34/ha for the original 

eradication strategy.  Again, these three management strategies are chosen purely for illustrative 

purposes. 

 

The eradication strategy with baiting is the most cost-effective strategy if the efficacy of baiting is 

0.33 or greater (Fig. B3.7).  For values below this, the original eradication strategy is optimal.  This 

outcome is consistent with the findings of previous modelling which found that ―aggressive 

containment‖ using extensive baiting can be an effective eradication strategy when combined with 

high-sensitivity visual surveillance (Spring et al. 2010b).  Note again that these calculations are for 

an infestation extent of x = 95,000 ha. 

 

We again use a beta distribution to describe uncertainty in this probability: 

)β,α(

)λ1(λ
)λ(

1β1

B
f baitbait

bait . (B3.19) 

Our intuition about the efficacy of baiting is stronger than that of remote sensing, but still be 

substantially uncertain.  We use shape parameters  = 5 and  = 2 to give an asymmetric distribution 

with a mode ((  – 1)/(  +  – 2)) of 0.8 (Fig. B3.8), which is the current best estimate of bait 

efficacy. 
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Fig. B3.7. The total expected cost of different management strategies for different values of the 

efficacy of baiting, calculated with eq. B3.7. 

 

 

 

Fig. B3.8. The beta probability distribution (eq. B3.19) expressing uncertainty in the efficacy of 

baiting. The shape parameters  = 5 and = 2. 
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The expected cost of each management strategy is found by integrating the total cost (eq. B3.7) 

across the range of the uncertain variable, weighted by our prior belief that each value is the true 

value (eq. B3.19): 
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Again, the best strategy in the face of uncertainty is the strategy that minimises the total expected 

loss given the prior probability distribution, which makes the expected cost under uncertainty: 

bait) w/ erad(),neradicatio(),tcontainmen(min ECECECECu . (B3.21) 

The best strategy under uncertainty is eradication with baiting, which has an expected cost of 

$478.44 million. 

 

Under certainty, we would choose the original eradication strategy if the bait efficacy is less than 

*λ bait = 0.33, and eradication with baiting if the bait efficacy is 0.33 or greater. The expected cost of 

the decision under certainty is: 
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which equals $475.88 million. 

 

The expected value of perfect information is the difference between the expected cost under 

uncertainty and the expected cost under certainty: 

cubait ECECEVPI )λ( , (B3.23) 

which is $2,558,500.  Again the value of information is quite substantial here because there is a large 

difference in the expected cost of the two eradication strategies when bait efficacy is high.  However, 

the value of information is not as large as for the sensitivity of remote sensing, because our prior 

distribution for the efficacy of baiting is more informative. 
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B 4.0  Discussion and future directions 

 

This report provides an introduction to value of information analysis, in particular the expected value 

of perfect information, and describes how this analysis can be useful for biosecurity decision-

making.  VOI analysis enables managers to identify which uncertainties affect the outcome of 

management decisions, thus allowing them to prioritise investment in research and monitoring.  An 

EVPI calculation requires: 

 clearly defined alternative actions 

 a description of uncertainty, whether as discrete probabilities or a continuous probability 

distribution, and 

 predictions of how alternative actions perform under different possible values of the 

uncertain variable. 

Predictions and their associated uncertainties should use the best available techniques in modelling 

and elicitation of expert judgment (Spiers-Bridge et al., 2010)  The output of this calculation, the 

expected value of perfect information, is the amount by which resolving all uncertainty is expected 

to improve the decision outcome.  This provides managers with an upper limit on the amount that 

should be spent on research or monitoring to reduce their uncertainty. 

 

While our models capture the basic elements of the ―eradicate or contain‖ decision problem, further 

work is needed to increase their realism.  We employed a simple model of pest distribution and 

spread involving uniform occupancy over a circular area. There is an obvious need for more 

sophisticated estimates of costs and benefits when pest distributions are distinctly patchy. We have 

identified one important element of the decision that is not yet accounted for: reducing uncertainty 

through research or monitoring takes time and delays decisions, and this delay has an opportunity 

cost. 

 

While our fire ant case study demonstrates the flexibility of VOI analysis, we stress again that it is 

primarily a conceptual model and embodies strong simplifying assumptions about fire ant biology.  

Those simplifying assumptions may have a substantial effect on the choice of management strategy 

and on decisions regarding research and monitoring to reduce uncertainty.  However, our model 

could provide a basis for the development of a practical decision support tool, provided there is 

further work to:  
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 refine the fire ant decision problem, identifying realistic alternative management strategies 

and key uncertainties, 

 elicit realistic probability distributions for key uncertain parameters, and 

 use the best available science to inform spatially explicit predictions of management success. 

These steps are essential to develop a practical value of information analysis for fire ants that makes 

use of current science and knowledge, and is consistent with the needs of managers. 

 

In this report we have focused on the expected value of perfect information (EVPI), which gives an 

upper bound on the value of any reduction in uncertainty.  Other types of VOI calculations can deal 

with more nuanced measures of information value.  For example, when a decision involves multiple 

sources of uncertainty, the expected value of partial information can be used to assess the relative 

importance of resolving the uncertainty from each source.  For two uncertain variables x and y, the 

EVPI about variable x is: 
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)(])|(),,([maxEVPXI

Yy XxAa
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dxdyyxfyxau

dxxfdyxyfyxau

, (B4.1) 

where u(a, x, y) is the utility of action a given x and y, f(y | x) is the prior conditional probability of y 

given x, f(x) is the prior probability of x and f(x, y) is the prior joint distribution of x and y.   

 

This equation has a similar form to the EVPI equation, in that it calculates the difference in expected 

utility between the best decision with perfect information about variable x (given uncertainty in 

variable y), and the best decision given uncertainty in both x and y.  In section B3 of this report we 

performed three separate EVPI calculations for three uncertain variables, each considering different 

candidate management options.  By simultaneously incorporating the uncertainty around multiple 

variables, the expected value of partial information gives a more accurate measure of the relative 

importance of resolving uncertainty in each variable, and would enable simultaneous consideration 

of all possible management options.  However, the need for joint probability distributions of the 

uncertain parameters creates an added complexity, both in specifying these distributions and in 

performing the subsequent calculations.  The complexity of these calculations is beyond the scope of 

this report. 

 

Obtaining perfect information is impossible for many systems, thus the decision-maker must instead 

rely on imperfect sample information that reduces but does not eliminate uncertainty.  Failure to 

recognise sampling error associated with underpowered studies leads to overconfidence and the 
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misallocation of resources (Burgman, 2005). The expected value of sample information (EVSI) is 

calculated as: 

])(),([max)(])|(),([maxEVSI
SsAaTt SsAa

dssfsaudtthdstspsau ,(B4.2) 

where t is the possible sample information that could be collected about the uncertain variable s, p(s | 

t) is the posterior probability of s given sample information t, and h(t) is the predictive density of t.  

It is also possible to calculate the expected value of partial sample information to assess the relative 

merit of reducing uncertainty from different sources.  Although the value of sample information is a 

more realistic measure for real systems, the elements of this calculation can be difficult to define and 

the calculation itself difficult to solve, limiting its application. 

 

In summary, although VOI analysis is an established and extensively used decision support tool, it is 

not currently widely applied within the field of biosecuity management.  This report provides a first 

step in increasing the use of VOI analysis for biosecurity decision support, demonstrating its 

potential utility, and outlining several directions for future research and application.  

 

 

 

 



  

 

 
 

  79  

B Literature Cited 

Antony, G., Scanlan, J., Francis, A., Kloessing, K., Nguyen, Y., 2009. Revised Benefits and Costs of 

Eradicating the Red Imported Fire Ant. Queensland Department of Primary Industries and 

Fisheries, Brisbane. 

Barr, C.L., Davis, T., Flanders, K., Smith, W., Hooper-Bui, L., Koehler, P., Vail, K., Gardner, W., 

Drees, B.M., Fuchs, T.W., 2005. Broadcast Baits for Fire Ant Control. Texas Imported Fire 

Ant Research & Management Project. 

Burgman, M.A. 2005. Risks and decisions for conservation and environmental management. 

Cambridge University Press. 488 pp. 

Eidsvik, J., Bhattacharjya, D., Mukerji, T., 2008. Value of information of seismic amplitude and 

CSEM resistivity. Geophysics 73, R59-R69. 

Groot Koerkamp, B., Nikken, J.J., Oei, E.H., Stijnen, T., Ginai, A.Z., Hunink, M.G.M., 2008. Value 

of Information Analysis Used to Determine the Necessity of Additional Research: MR 

Imaging in Acute Knee Trauma as an Example. Radiology 246, 420-425. 

Howard, R.A., 1966. Information value theory. IEEE Transactions on Systems Science and 

Cybernetics SSC-2, 22-26. 

Moloney, S., Vanderwoude, C., 2002. Red Imported Fire Ants: a threat to eastern Australia's 

wildlife? Ecological Management and Restoration 3, 167-175. 

Parma, A.M., Amarasekare, P., Mangel, M., Moore, J., Murdoch, W.W., Noonburg, E., Pascual, 

M.A., Possingham, H.P., Shea, K., Wilcox, C., Yu, D., 1998. What can adaptive management 

do for our fish, forests, food and biodiversity? Integrative Biology: Issues, News and Reviews 

1, 16-26. 

Raiffa, H., Schlaifer, R.O., 1961. Applied Statistical Decision Theory. Division of Research, 

Graduate School of Business Administration, Harvard University, Cambridge, Massachusetts. 

Schmidt, D. D. Spring, R. Mac Nally, J.R. Thomson, B. Brook, O. Cacho, M. McKenzie. 2010.  

Finding needles (or ants) in haystacks: predicting locations of invasive organisms to inform 

eradication and containment.  Ecological Applications 20: 1217- 1227. 

Singh, S., Nosyk, B., Sun, H., Christenson, J.M., Innes, G., Anis, A.H., 2008. Value of information 

of a clinical prediction rule: informing the efficient use of healthcare and health research 

resources. International Journal of Technology Assessment in Health Care 24, 112-119. 

Speirs-Bridge, A., Fidler, F., McBride, M., Flander, L., Cumming, G. and Burgman, M. 2010. 

Reducing overconfidence in the interval judgments of experts. Risk Analysis, 30, 512 – 523. 



  

 

 
 

  80  

Spring, D. 2008. Statistical Model of Red Imported Fire Ant Spread in Brisbane, Australia. Report to 

Biosecurity Queensland Control Centre. 

Spring, D., Schmidt, D., Cacho, O., 2009. Revised Statistical Model of Red Imported Fire Ant 

Spread in Brisbane, Australia. Report to Biosecurity Queensland Control Centre. 

Spring, D., Cacho, O., Jennings, C., 2010a. Red Imported Fire Ant Simulation Model, Invasion 

Scenarios. Report to Biosecurity Queensland Control Centre. 

Spring, D., Cacho, O., Jennings, C., 2010b. The Use of Spread Models to Inform Eradication 

Programs: Application to Red Imported Fire Ant. Australian Centre for Biosecurity and 

Environmental Economics Discussion Paper. 

Telford, G.A., Wylie, R., in preparation. Valuing efficacy of eradication techniques and assessing 

their cost against benefit in achieving an acceptable likelihood of success. Biosecurity 

Queensland Control Centre, Queensland Department of Employment, Economic Development 

and Innovation, Brisbane, Queensland. 

Vogt, J.T., 2004. Quantifying Imported Fire Ant (Hymenoptera: Formicidae) Mounds with Airborne 

Digital Imagery. Environmental Entomology 33, 1045-1051. 

Ward, M., Kompas, T., 2010. The value of information in biosecurity risk-benefit assessment: an 

application to red imported fire ants, Environmental Economics Research Hub Research 

Reports. Australian National University, Canberra. 

Yokota, F., Thompson, K.M., 2004a. Value of information analysis in environmental health risk 

management decisions: Past, present, and future. Risk Analysis 24, 635-650. 

Yokota, F., Thompson, K.M., 2004b. Value of information literature analysis: a review of 

applications in health risk management. Medical Decision Making 24, 287-298. 

 

 



  

 

 
 

  81  

Appendix B1  Calculating the per hectare cost of fire ant impact 

 

The analysis by Antony et al. (2009) is dynamic, predicting the increase in impacts of fire ants as 

they would spread over time if left unmanaged.  We adapted this analysis to obtain a static per-

hectare cost of fire ant impact. 

 

Antony et al. (2009) assumed that 60% of affected households in 2008 would pay to treat fire ants on 

their property, and that 100% of affected agricultural land, parks and recreational land, and schools 

would be treated.  Out of the total land mass of 2,624,828 ha considered by the analysis, 

approximately 130,000 ha was residential land in 2008, 793,241 ha was agricultural land, 

approximately 14,000 ha was parkland, and 7152 ha was school land (Antony et al., 2009).  This 

means that approximately 5% of the land considered was residential, and 31% was either 

agricultural, parkland or school land. 

 

We assume that the area occupied by fire ants under the containment strategy is covered by each 

land type at these proportions, and that the fire ants will be at an intermediate density within the 

containment area, i.e. 5 nests per hectare.  The annual per-hectare cost of treatment at this density is 

$298.50 (Antony et al. 2009).  The average per hectare treatment cost is therefore: 

Treatment cost = 0.6*0.05*298.5 + 1*0.31*298.5 = $101.49 /ha/year. 

 

Antony et al. assume that untreated dwellings (40% of total residential land) incur health care costs 

due to fire ant stings, and that these costs are equal to half the cost of treating the dwellings.  Given 

an intermediate density of fire ants, the average per hectare health care cost is therefore: 

Health care cost = 0.4*0.05*0.5*298.5 = $2.99 /ha/year. 

 

The ecosystem service loss for an intermediate (―common‖) density of fire ants is $927 (Table 4, 

Antony et al. (2009)). Thus, the total per-hectare cost of impact is: 

ci = 101.49 + 2.99 + 927 = $1031.48 /ha/year. 

 

 


