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1. Executive Summary  

1.1 Invasive weed species have a large and negative impact on native ecosystems and agricultural 

production, in Australia and internationally. 

1.2 Early detection of new incursions of invasive weeds is essential for the effective management 

of those species and  many plants are difficult to detect with field surveys. 

1.3 Decision theory provides a useful framework for prioritizing surveillance activities and 

estimates of detection probability are key to determining optimal surveillance investment. 

1.4 A number of methods exist for estimating the probability that a single species will be detected 

during a survey of a site at which it is present. 

1.5 New modelling techniques, based on survival analysis, allow estimation of the average 

detection time of a plant species during a flora survey.  In this report, the average detection 

times of two Weeds of National Significance, Nassella neesiana and Nassella trichotoma, are 

estimated based on environmental and observer variables.  Detectability estimates can be used 

to determine the survey duration necessary to be reasonably certain of detecting the target 

species if it is present.  Detectability curves reveal that even under the favourable survey 

conditions, the duration necessary to be 80% certain that a survey of a site will return a 

detection if the species is present at that site is 55 minutes/ha for N. trichotoma and 35 

minutes/ha for N. neesiana. 

1.6 Methods for modelling species’ detectability are data-intensive and the construction of 

detection time models is unlikely to occur for many invasive species.  We introduce a general 

model of detectability for plants of Western (Basalt) Plains Grassland, where the average 

detection time of a species is modelled as a function of plant traits.  Such models may 

represent an efficient way to determine detectability estimates for a range of invasive weeds. 

1.7 Determining optimal surveillance investment for a single species on Australia’s border 

requires estimates of detection probability and probability of occupancy.  It also requires 

estimates of the costs associated with surveillance and management of an undetected 

incursion.  By collating such information, either through data collection or expert opinion, the 

Australian Government can improve its weed surveillance strategies. 

1.8 The Northern Australian Quarantine Strategy is responsible for conducting surveys for early 

signs of new pests along Australia’s northern coastline, but do not explicitly account for the 

uncertainty associate with imperfect detection of invasive species in their surveillance 

activities. 
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2. Introduction  

There is no denying the scale of the impact of exotic species on native ecosystems.  Worldwide 

biodiversity losses attributed to invasive exotic species are second only to the losses associated with 

land clearing and habitat destruction (Groves et al., 2001), and may soon surpass these to become the 

main cause of global ecological destruction (Clout and Veitch, 2002).  Invasive weed species pose a 

serious threat to native ecosystems (Hobbs and Humphries, 1995).  They out-compete native plant 

species and alter the structure and function of native vegetation communities.  In Australia, invasive 

weeds constitute one of the most serious threats to the natural environment and primary production 

and considerable budgets are allocated to weed management projects every year (Australian 

Government, 2007). 

The most effective method of weed management is to prevent the introduction and establishment of 

exotic species.  Where this is not possible, early detection and eradication of the species is critical 

(Australian Government, 2007).  By detecting weed species early, the chances of successful 

eradication are increased and the potential impacts on native systems and costs of management are 

reduced (Timmins and Braithwaite, 2002).  It is therefore important that those responsible for 

managing invasive weeds understand the factors influencing detection rates during surveys of native 

vegetation communities. 

There is a growing recognition that plants may not always be detected during a flora survey 

(Alexander et al., 1997; Shefferson et al., 2001; Kery and Gregg, 2003; Slade et al., 2003; Brown et 

al., 2004).  In order to design effective weed management strategies for known invasive weeds, it is 

necessary to have estimates of species’ detectability that can inform the development of survey effort 

protocols.  Aside from a few notable exceptions (See Brown et al. (2004); Cacho et al. (2006)), plant 

detectability studies have, to date, focussed on native species in natural environments, and reference to 

weed detectability has largely been made in relation to the interval between repeat surveys (Brown et 

al., 2004).  Here, using a method developed in temperate lowland grasslands of southern Australia (see 

Garrard et al. (2008)), we estimate the detectability of invasive grassland weed species, Nassella 

neesiana and Nassella trichotoma, and make recommendations for the survey effort required to detect 

those species if they are present at a site.  We also show how a general model of detection time, based 

on plant traits, can be developed to provide estimates of detectability where no species-specific 

detection model exists. 

Estimates of detection probability are necessary for the development of optimal surveillance strategies 

for invasive species.  The Northern Australia Quarantine Strategy (NAQS) is responsible, among other 

things, for conducting surveys for early signs of new pests along Australia’s northern coastline 

(Australian Government, 2008).  This project aims to develop a collaboration between ACERA, 

AEDA and NAQS practitioners aimed at incorporating new developments in optimal surveillance into 

NAQS activities and investigating options for addressing the uncertainty attributed to imperfect 

detectability where it exists. This report represents the first stage in the development of optimal survey 

methods under NAQS.  Here we provide a brief review of issues associated with the design of optimal 

survey strategies, focussing on the problem of imperfect detectability.  We review methods for data 

collection and estimation of detectability rates and provide two case studies that detail data collection 

and state-of-the-art modelling of detection rates for grassland species. We provide recommendations 

for the design of an optimal surveillance strategy under the NAQS and conclude with some general 

comments about surveillance, imperfect detection in other Australian Government bio-security 

programs. 
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3. Review of Strategies to Optimize Surveillance Investment 

 

As with many ecological problems, uncertainty is inherent in weed surveillance and management.  

Uncertainty exists, for example, in determining the likelihood of establishment of a weed species in a 

particular location, the impact of the weed on native and agricultural systems, the point at which a 

species can be declared eradicated from an area and the probability that the species will be detected at 

a site at which it is present (Cacho et al., 2006; Regan et al., 2006; Mehta et al., 2007; Hauser and 

McCarthy, 2008; Rout et al., 2009).  Because they offer a framework for explicitly incorporating 

uncertainty into the decision-making process, decision-theoretic methods are becoming prevalent in 

the ecological management literature (Possingham, 2001; Regan et al., 2005; Regan et al., 2006; Rout 

et al., 2009). 

3.1 Optimization frameworks and decision theory 

Recent applications of decision theory to invasive weed problems have demonstrated methods for 

determining optimal surveillance investment (Regan et al., 2006; Hauser and McCarthy, 2008; Rout et 

al., 2009)  This is the process of identifying the most efficient allocation of resources by choosing the 

surveillance strategy (portfolio) that minimises the expected cost of a strategy for which there are 

clearly defined objectives.  For example, optimal surveillance investment methods can be used to 

determine the survey effort required to assume eradication of a species at a site that minimizes the net 

cost of the strategy (Regan et al., 2006).  A key component in determining the optimal investment in 

surveillance is the detection probability of the target species, and thus optimal surveillance investment 

methods can provide a relatively simple framework for demonstrating how the uncertainty associated 

with imperfect detection may be incorporated into NAQS activities. 

Figures 1 and 2 demonstrate the basic theory behind determining the optimal investment in 

surveillance for an invasive species.  For any given survey strategy, or effort, there are associated 

surveillance and escape costs (Figure 1).  The cost of escape refers to any known agricultural costs, 

ecological costs and the cost of controlling undetected incursions (this may be mandated in the case of 

listed species), and the costs of survey are the costs associated with conducting surveillance activities, 

include personnel costs, travel costs, equipment and removal of any detected incursions.  The total cost 

of a strategy is the sum of the cost of surveillance and the cost of escape of undetected incursions, and 

the optimal surveillance strategy is the one that minimises the total cost (Figure 2).   

 

 

 

 

Figure 1.  The costs of surveillance and escape for an invasive weed species are summed to determine the total 

cost of a surveillance strategy. 
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Figure 2.  The total cost of an invasive species surveillance strategy (black, dotted line) is the sum of the cost of 

surveillance (blue line) and the costs associated with the escape of the species (red line).  The optimal 

investment in surveillance may be determined as the survey effort that minimises the total cost (star). 

 

3.2 Imperfect detection and its implications for survey design 

In any survey, there is a possibility that the observer will fail to detect a species that is present at a 

particular survey location. Such observations are known as false absences (or false negatives). The 

probability that a false absence will arise in a single survey is defined as: 

Pr(FA) = p(1 – d), 

where p is the probability that the species is present at the site and d is the probability that the species 

will be detected in a survey of that site. 

An understanding of the detection probability of a particular species is essential for the determination 

of the optimal surveillance strategy of that species.  Where the detection probability of a species under 

a given survey strategy is low, the likelihood of escape of that species is high, and, depending on the 

impacts of that escape, the costs associated with escape may be high.  Regan et al. (2006) 

demonstrated that as the probability of recording a false absence increases, the number of consecutive 

absent surveys necessary to confidently declare eradication of an invasive species at a site also 

increases.   

3.3 Estimating detectability 

There are now a number of studies demonstrating methods for estimating the probability that a species 

will be detected during a survey of a site at which it is present.  Mark-recapture (or capture-recapture) 

and N-mixture models have been used to estimate the probability of detecting an individual of a 

species.  These methods have been demonstrated for both animals and cryptic plant species and 
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require the collection of count data over multiple surveys (Boulinier et al., 1998; Kery and Gregg, 

2003; Royle, 2004). 

A number of studies have shown that it is possible to estimate species detection probabilities from 

presence-absence data using zero-inflated binomial (ZIB) models (Hall, 2000).  For example, Tyre et 

al (2003) found that estimates of single-visit detection probabilities for woodland bird species in the 

Mount Lofty Ranges, South Australia ranged from 0.3 to 0.9. Similarly, Wintle et al. (2005) used ZIB 

models to estimate the detectability of owls and arboreal mammals in the Eden region of south-eastern 

New South Wales. In this study, single-visit detection probability estimates ranged from 0.14 for the 

powerful owl to 0.55 for the sugar glider.  More recently, Garrard et al. (2008) presented a method for 

determining the average detection time of plant species during a flora survey, based on survival 

analysis techniques.  This method requires information on the elapsed time at which a species is 

detected for the first time during a survey.  

The methods described here enable the estimation of detectability for individual species or, in the case 

of N-mixture models, individuals within a population of a single species.  There are, however, a 

number reasons why it is unreasonable to expect that detection time models can be constructed for all 

or even many invasive species: data collection is onerous, as is, to a lesser extent, the modelling 

process itself, and it is unlikely that data collection could keep pace with the rate of new incursions of 

invasive species previously unknown in a native community.  To date, no methods exist for 

developing a model that could be used to estimate detection probabilities for multiple species.  In the 

following sections, we use the detection time model introduced by Garrard et al. (2008) to estimate the 

survey effort necessary to detect two highly invasive grassland weed species, and show how a general 

model of plant detectability can be used to estimate detection times for multiple species based on plant 

traits. 
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4. Case Study 1: Estimating detectability of invasive grass species, Nassella 

neesiana and Nassella trichotoma, in Western (Basalt) Plains Grassland 

 

Chilean needle-grass (Nassella neesiana) and serrated tussock (Nassella trichotoma) are considered to 

be two of the worst invasive weeds in Australia because of their invasiveness, potential to spread and 

economical and environmental impacts (CRC for Australian Weed Management, 2003; CRC for 

Australian Weed Management, 2003).  Both are listed as Weeds of National Significance (Weeds 

Australia, 2008).  Weed invasion by exotic perennial grasses, including Nassella species, is regarded 

as a significant threat to the surviving remnants of Western (Basalt) Plains Grassland (Department of 

Sustainability and Environment, 2003). 

4.1 Field Methods & Data Collection 

The data used in this analysis were collected during a multi-site, multi-observer field study undertaken 

in Western (Basalt) Plains Grassland during consecutive Spring seasons in 2006 and 2007.  In this 

study, multiple observers conducted flora surveys in 16 one-hectare plots in grasslands to the west and 

north of Melbourne.  Surveys were 90 minutes in duration
1
, during which time observers were asked 

to record the time at which they first saw each new species.  Observers searched each site in one of 

two ways: systematic searches were those where the observer followed some sort of repeated pattern 

when covering the full hectare, while observers conducting an unsystematic search were able to roam 

within the site as they pleased, using prior knowledge and intuition to determine search direction.  In 

both cases, observers were instructed to cover as much of the site as possible during the 90 minutes 

allocated for the survey.  Starting points for each observer were randomised around the perimeter of 

the site to avoid biases towards plants in specific locations, and the number of observers surveying 

each site at any one time minimised to avoid “copy cat” detections. 

In addition to the detection times themselves, a number of other variables that may affect detection 

times were recorded at the time of survey: observer experience is a binary variable, indicating whether 

or not the observer had experience in grassland surveys; time of day is a categorical variable 

representing survey start times in the morning, midday or afternoon; weather conditions were recorded 

as either sunny, sunny with cloudy periods, overcast or raining; and cover describes the percentage 

cover of Themeda triandra at each site.  Other variables recorded later include days since October 1
st
 

(date) and years since the site was last burnt (burn). 

4.2 Modelling Techniques 

Detection times for N. neesiana and N. trichotoma were modelled using the technique introduced by 

Garrard et al. (2008).  Using this method, based on survival modelling techniques (Cox and Oakes, 

1984; Parmar and Machin, 1995; Harrell, 2000), detection times are assumed to be exponentially 

distributed and the rate of detection, λ, is constant.  The average detection time, ��, is modelled as a 

function of observer and environmental variables, xn: 

�� �  �� � ��	
���	
	
���      (1) 

 

                                                      
1
 Appropriate survey duration was determined following discussions with grassland survey experts.  The 90 minutes 
allowed in these surveys was considered to be well above what was necessary to survey a 1 ha site.  
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The traditional likelihood for exponential survival analysis is: 

 ���|�� �  ������      (2) 

where λ is the constant hazard rate, t is the observed ‘failure’ time and δ is an indicator of the 

censorship (or lack thereof) of the observation: δ = 0 when the observation is censored and δ = 1 when 

the observation is not censored. 

These likelihoods can be expressed individually as: 

  ���|�� �  �����    0 < t < D  (3) 

    = Pr(T = t), 

���|�� �  ����     t > 0, t > D  (4) 

    = Pr(T > D), 

where D is the duration of the study and T is the true failure time. 

In order to account for the fact that the species may not eventually be detected at every site, these 

likelihoods have been modified to account for the probability that the species may be truly absent from 

a single observation at site, i, such that: 

            ���|��, �� � ��. �����    0 < t < D,  (5) 

    ���|�� , �� �  �� . ���� � �1 � ���  t > 0, t > D  (6) 

where p is the probability of occupancy of the species at site i.  To accommodate multiple observations 

at a site, the likelihoods become: 

�����|�� , �� �  �� ∏�� !���� !   ∑ #��� $ 1  (7) 

�����|�� , �� � �� ∏���� ! � 1 � ��  ∑ #��� � 0 = 0  (8) 

δik = 1 when the species is detected by observer k at site i and δik = 0 when not detected.  Observations 

for which no detection was recorded are considered to be censored.  All observations at sites where no 

detections were recorded will be censored (Eq. 8), as will those for which no time is recorded at sites 

where the species was detected by another observer (Eq. 7: δik = 0). 

In this study, the probability of occupancy, p, is assumed to be constant across sites and was modelled 

as such.  Under this modelling scenario, p is equivalent to the proportion of sites at which the species 

occurs.  It is also possible to model p as a function of site-level variables z using the logit link (Eq. 4: 

Agresti, 1996), however this method requires a relatively large number of sites and an in-depth 

knowledge of the factors that might affect occupancy and was not used in this study. 

�&'(����� � )� � *+�       (9) 
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Candidate explanatory variables are shown in Table 1.  As the length of time since a site has been 

burnt increases, there is likely to be a build up in the cover of Themeda in the absence of other 

biomass management regimes.  Table 2 reveals a positive correlation between these two variables and, 

as such, candidate models will not include both cover and burn.  The influence of interactions between 

Themeda cover and variables that may affect sunlight (weath and timeday) was tested, as the effect of 

sunlight reflecting off dense Themeda can affect perception.  An interaction between observer 

experience and search method was also investigated. 

Models were run in the statistical freeware program, WinBUGS.  The WinBUGS code for these 

models is shown in Appendix A.  In the absence of prior information about parameter estimates, 

uninformative Bayesian prior distributions were specified for ,, -. and �� , such that: 

 

, ~ 01&23�0, 0.0001� 
-. ~ 01&23�0, 0.0001� 
��  ~ 041(5�0, 1� 
 

Competing models were assessed using Deviance Information Criterion (DIC: Spiegelhalter et al., 

2002), and other evaluation methods commonly used when running models in WinBUGS (Best et al., 

1995).  DIC is a measure of model complexity and fit designed to allow comparison of hierarchical 

models (Spiegelhalter et al., 2002).  The internal consistency of the single-species exponential 

detection time model has been confirmed in a simulation study (Garrard et al., 2008). 

Estimates of the detection rate, λ, can be used construct a detectability curve for each species, which 

plots the probability of detecting the species, D, at a site where it is present against the time spent 

surveying the site, t: 

          6 �  1 � ����        (10) 

Sampling Hierarchy and Random Effects 

As with all ecological studies, there are some issues associated with the hierarchy of replication in this 

study (Hurlbert, 1984).  In the detection time models presented here, observations are assumed to be 

independent replicates, irrespective of site or observer, but it is possible that both site and observer 

may influence detection rates.  Survey design necessarily involves trade-offs between rigour, sampling 

effort and cost and resource constraints (Keith, 2000), and replication limitations are common in 

ecological studies (Oksanen, 2001).  If unaccounted for, replication issues can introduce bias in 

ecological models and reduce confidence in inference and prediction.  However, replication hierarchy 

can be addressed through the addition of random effect terms to fixed effects models (Buckley et al., 

2003; Gillies et al., 2006).  Random effect terms have the advantage that they do not use up as many 

degrees of freedom as fixed effects with many levels (Buckley et al., 2003).  Nonetheless, they do add 

to the number of parameters that must be estimated by the model, which may be a limiting factor 

where data is restricted. 

In order to investigate the influence of site and observer on detection times in this study, random effect 

terms for both variables were added to the nominal best 5 models for each species.  The influence of 

random effects was assessed qualitatively by monitoring the rank order of models and the significance 

of predictor variables.  If the addition of a random effect changes the rank order of models or the rank 

order of significance of the predictor variables, then the inference made from that model will be 

qualitatively different, and the random effect is assumed to be influential. 



Optimal surveillance and imperfect detection 

   

  
 

Australian Centre of Excellence for Risk Analysis Page 15 of 53 

 

Table 1.  Candidate observer and environmental variables for Nassella detection time models. 

Variable 

Name 
Description Rationale 

cover Continuous variable indicating the percentage 

cover of the dominant grass species, Themeda 

triandra. 

Species are naturally harder to detect where the 

surrounding vegetation density is high (Brown et al., 

2004).  Ecologically plausible response shape is linear 

and positive. 

burn Continuous variable indicating the time elapsed 

since the site was last burnt. 

Fire is important in reducing dominant grass cover and 

maintaining species diversity in Western (Basalt) Plains 

Grassland (Morgan, 1998; Department of 

Sustainability and Environment, 2003).  Plant detection 

rates can be different in years following burning (Slade 

et al., 2003).  Ecologically plausible response shape is 

linear and positive. 

date Continuous variable indicating the date on which 

the survey was undertaken. Date measured as the 

number of days after October 1
st

. 

Species detectability may be affected by intra-season 

temporal variation.  More complex response shapes 

are ecologically plausible.  date modelled as linear and 

quadratic variable. 

exper Binary variable indicating level of experience of 

each observer. Intermediate observers have 

experience in botanical surveys but do not possess 

thorough knowledge of grassland species; 

experienced observers are experienced in grassland 

surveys. 

Observer experience is shown to affect the detection 

probability of plant species (Kery and Gregg, 2003). 

search Binary variable for the search route used to cover 

the site.  Systematic or unrestricted. 

It is a common assumption that systematic surveys are 

the most effective search route (eg. Brown et al., 2004) 

however this doesn’t allow observers to prioritise 

favourable locations. 

timeday Categorical variable indicating time at which each 

survey started.  Morning (09:00-11;59), Midday 

(12:00-14:59), Afternoon (15:00- 17:59). 

Observers may show a preference for certain times of 

day. The angle and intensity of the sun varies over the 

course of the day, and may affect visibility. 

weath Categorical variable indicating the weather 

conditions at the time of survey. Categories are 

sunny, sunny with clouds, overcast and raining. 

Weather conditions may affect lighting and visibility of 

species. Adverse conditions may affect enthusiasm and 

concentration of the observer. 

year Binary variable indicating whether observation is 

from the 2006 or 2007 survey season. 

Visibility and detection of plants can vary between 

years (Slade et al., 2003). 

 
 

Table 2.  Correlation matrix for Nassella detection time candidate explanatory variables 

Variables cover date exper search timeday weath year burn 

cover 1        

date -0.13 1       

exper -0.056 -0.056 1      

search 0.0021 -0.088 -0.19 1     

timeday -0.0059 0.00022 0.050 -0.027 1    

weath 0.081 -0.085 0.048 -0.0018 -0.33 1   

year -0.34 -0.049 0.078 -0.052 0.0097 0.14 1  

burn 0.41 -0.066 -0.035 0.044 -0.054 0.11 -0.28 1 
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4.3 Results 

Serrated Tussock, Nassella trichotoma 

Modelling was undertaken with the probability of occupancy, p, assumed to be constant across sites.  

The best model is one that models the average detection time as a function of the experience of the 

observer (exper), the search method (search), days from October 1
st
 (days) and the year in which the 

survey was undertaken (yr) (See Table 3).  There is also substantial support for models that include an 

interaction between burn and the time of day, burn and the search method, and Themeda and the time 

of day, as well as the model that does not include the year in which the survey was undertaken.  Each 

of these models is within 2 DIC units of the best model. 

All models converged within 10,000 iterations and model statistics were calculated after a further 

100,000 iterations.  Examination of model evaluation tools in WinBUGS revealed smooth densities 

and acceptably low autocorrelation.  The model statistics show that the 95% credible intervals for each 

node exclude zero, and that the days from October 1
st
, experienced observers, unsystematic searches 

and year 2 all have a negative effect on average detection times (Table 4).  Node statistics for 

candidate models within 2 DIC units of the best model are presented in Appendix A. 

 

Table 3.  Differences in Deviance Information Criterion (∆DIC) between the best detection time model for N. 

trichotoma and other candidate models. Models with ∆DIC values greater than 10 are not shown as there is little 

support for models with DIC values more than 10 units greater than the best model (McCarthy, 2007). 

 Model ∆DIC 

1 �� ~ exp(α + exper + search + date + yr) 0 

2 �� ~ exp(α + exper + search + date + yr + cover) 1.08 

3 �� ~ exp(α + exper + search + date + yr + burn) 1.36 

4 �� ~ exp(α + exper + search + date) 1.68 

5 �� ~ exp(α + exper + search + date + yr + weather) 2.35 

6 �� ~ exp(α + search + date + yr) 2.99 

7 �� ~ exp(α + exper + search + date + yr + cover + cover*timeday) 3.26 

8 �� ~ exp(α + exper + search + date + yr + timeday) 3.33 

9 �� ~ exp(α + exper + search + date + yr + exper*search) 3.41 

10 �� ~ exp(α + exper + date + yr) 4.00 

11 �� ~ exp(α + exper + search + date + yr + cover + cover*weather) 4.26 

12 �� ~ exp(α + exper + search + yr) 7.74 

 
 

Table 4.  Node statistics for the best model detection time model for N. trichotoma (Model 1, Table 3) after 

100,000 iterations. 

Node Mean 2.50% 97.50% 

α 5.53 4.72 6.35 

days -0.034 -0.055 -0.013 

exper[2]* -0.49 -0.91 -0.059 

p 0.89 0.71 0.99 

search[2]** -0.54 -0.98 -0.11 

year[2]*** 0.41 0.0057 0.80 

* exper[2] is coefficient for experienced observers; exper[1] = 0 

**search[2] is coefficient for systematic surveys; search[1] = 0 

***year[2] is coefficient for 2007; year[1] = 0 
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Figure 3 shows the average estimated detection times for 

days past October 1
st
 (October 11

representative of the range of dates in which surveys were undertaken.  It should be noted here that 
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 increase.

 
Figure 3.  Average estimated detection times for 

conditions.  Best conditions for the species are when surveys are undertaken by an experienced observer using 

a systematic search method in 2006.  Worst conditions (intermediate observer, non

also correspond to the most commonly experienced conditions.  Note scale on y
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shows the average estimated detection times for N. trichotoma across dates ranging

(October 11
th
) to 60 days past October 1

st
 (November 30

th

representative of the range of dates in which surveys were undertaken.  It should be noted here that 

these results cannot be extrapolated to dates outside those in which surveys were conducted as part of 

this study.  It is unreasonable to assume that detection times will continue to decrease indefinitely as 

increase. 

Average estimated detection times for N. trichotoma across a range of days for best (a) and worst (b) 

conditions.  Best conditions for the species are when surveys are undertaken by an experienced observer using 

a systematic search method in 2006.  Worst conditions (intermediate observer, non-systemat

also correspond to the most commonly experienced conditions.  Note scale on y-axes.
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across dates ranging from 10 
th
).  These dates are 

representative of the range of dates in which surveys were undertaken.  It should be noted here that 

utside those in which surveys were conducted as part of 

this study.  It is unreasonable to assume that detection times will continue to decrease indefinitely as 

across a range of days for best (a) and worst (b) 

conditions.  Best conditions for the species are when surveys are undertaken by an experienced observer using 

systematic survey in 2007) 

axes. 

 

 



Optimal surveillance and imperfect de

  

 

Australian Centre of Excellence for Risk Analysis

Detectability curves for N. trichotoma

determine the survey effort necessary under best 

example, to achieve a level of certainty of 80% that you will detect 

site in Melbourne’s native grasslands under best conditions, you would 

53 minutes per hectare.  To achieve the same level of certainly under the worst conditions would 

require an increase in survey effor

 

Figure 4. Detectability curves for 

(30 days after the first of October).  Mean estimated values are shown in solid dots, while the open dots show 

the 95% credible intervals. 
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N. trichotoma are shown in Figure 4.  These curves allow the user to 

determine the survey effort necessary under best and worst conditions on the 31

example, to achieve a level of certainty of 80% that you will detect N. trichotoma 

site in Melbourne’s native grasslands under best conditions, you would need survey for approximately 

minutes per hectare.  To achieve the same level of certainly under the worst conditions would 

require an increase in survey effort of more than four times to 224 minutes per hectare.

Detectability curves for N. trichotoma under best (blue) and worst (red) conditions on October 31

(30 days after the first of October).  Mean estimated values are shown in solid dots, while the open dots show 
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.  These curves allow the user to 

and worst conditions on the 31
st
 of October.  For 

N. trichotoma if it is present in a 

need survey for approximately 

minutes per hectare.  To achieve the same level of certainly under the worst conditions would 

minutes per hectare. 

d worst (red) conditions on October 31
st

 

(30 days after the first of October).  Mean estimated values are shown in solid dots, while the open dots show 

 



Optimal surveillance and imperfect detection 

   

  
 

Australian Centre of Excellence for Risk Analysis Page 19 of 53 

Chilean Needle-grass, Nassella neesiana 

As with N. trichotoma modelling was undertaken with the probability of occupancy, p, assumed to be 

constant across sites.  The best model (See Table 5) is one where the average detection time is 

modelled as a function of observer experience, weather conditions at the time of survey and the year in 

which the survey was undertaken: 

�� ~ exp(α + exper + weather + yr) 

 

Table 5.  Differences in Deviance Information Criterion (∆DIC) between the best detection time model for N. 

neesiana and other candidate models.  Models with ∆DIC values greater than 10 are not shown as there is little 

support for models with DIC values more than 10 units greater than the best model (McCarthy, 2007). 

 Model ∆DIC 

1 �� ~ exp(α + exper + weather +  yr) 0 

2 �� ~ exp(α + exper + weather + yr + burn) 0.082 

3 �� ~ exp(α + exper + weather + yr + cover) 1.58 

4 �� ~ exp(α + exper + weather + yr + burn + search) 2.01 

5 �� ~ exp(α + exper + weather + yr + burn + date) 2.18 

6 �� ~ exp(α + exper + weather + yr + burn + weather*cover) 2.58 

7 �� ~ exp(α + exper + weather + yr + burn + timeday*cover) 3.23 

8 �� ~ exp(α + exper + weather + yr + burn + exper*search) 3.33 

9 �� ~ exp(α + exper + weather + yr + burn + timeday) 4.02 

10 �� ~ exp(α + exper + weather + yr + burn + timeday +days) 7.40 

11 �� ~ exp(α + exper + weather + yr + burn + timeday + days + search) 9.38 

 

The estimated values of the variable coefficients are shown in Table 6.  Like N. trichotoma, detection 

times are lower when the survey is undertaken by a more experienced observer.  Weather has a 

varying effect, however the most favourable weather conditions are overcast days (weather[3]).  It is 

clear that the estimates for rainy days (weather[4]) are highly variable.  This weather category had the 

lowest representation, and it is likely that further analysis is needed to confirm this relationship.  There 

is also considerable support for the models that include the time since the site was last burnt and the 

cover of Themeda triandra.  The difference in estimated average detection times for the best models 

for both Nassella  species modelled here are presented in Table 7. 

Table 6.  Node statistics for the best model detection time model for N. neesiana (Model 1, Table 5) after 100,00 

iterations. 

Node Mean 2.50% 97.50% 

a 4.87 4.43 5.36 

exper[2]* -1.15 -1.65 -0.65 

p 0.83 0.64 0.96 

weather[2]** 0.020 -0.40 0.83 

weather[3]** -0.45 -1.08 0.17 

weather[4]** 80.55 5.41 223.0 

year[2]*** 0.94 0.41 1.47 

* exper[2] is coefficient for experienced observers; exper[1] = 0 

**weather[2] is coefficient for sunny weather with clouds; weather[3] is coefficient for overcast weather; 

weather[4] is coefficient for rain; weather[1] = 0 

***year[2] is coefficient for 2007; year[1] = 0 
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The average estimated detection times for 

under otherwise favourable survey conditions (overcast day in 2006) 

seen that average detection times increase from around 25

observers to over 80 minutes per hectare for their less experienced counterpart

curves for N. neesiana  under favourable (experienced observer, overcast day 2006) and average 

(intermediate observer, sunny day, 2007) are presented in Figure 6.  To achieve a probability of 

detection of 0.80 requires around 44 minut

However, this figure increases significantly to over 500 minutes per hectare under the average 

conditions experienced at the time of survey.

Figure 5.  Average estimated detection times (

and intermediate observers under otherwise favourable (overcast day in 2006) survey conditions.

 

 

Figure 6.  Detectability curves for N. neesiana

level of survey effort (mins/ha), dots show the average probability of detecting the species if it is present at a site and 

dashes show the 95% credible intervals.
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The average estimated detection times for N. neesiana for experienced and intermediate observers

ourable survey conditions (overcast day in 2006) are shown in

on times increase from around 25 minutes per hectare for experienced 

observers to over 80 minutes per hectare for their less experienced counterparts.

under favourable (experienced observer, overcast day 2006) and average 

(intermediate observer, sunny day, 2007) are presented in Figure 6.  To achieve a probability of 

detection of 0.80 requires around 44 minutes per hectare under favourable survey conditions.  

However, this figure increases significantly to over 500 minutes per hectare under the average 

conditions experienced at the time of survey. 

 
Average estimated detection times (�) and 95% credible intervals (-) for N. neesiana 

and intermediate observers under otherwise favourable (overcast day in 2006) survey conditions.

N. neesiana under favourable (grey) and average (black) survey condit

level of survey effort (mins/ha), dots show the average probability of detecting the species if it is present at a site and 

dashes show the 95% credible intervals. 
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for experienced and intermediate observers 

are shown in Figure 5.  It can be 

per hectare for experienced 

s.  The detectability 

under favourable (experienced observer, overcast day 2006) and average 

(intermediate observer, sunny day, 2007) are presented in Figure 6.  To achieve a probability of 

es per hectare under favourable survey conditions.  

However, this figure increases significantly to over 500 minutes per hectare under the average 

N. neesiana for experienced 

and intermediate observers under otherwise favourable (overcast day in 2006) survey conditions. 

 
under favourable (grey) and average (black) survey conditions.  For a given 

level of survey effort (mins/ha), dots show the average probability of detecting the species if it is present at a site and 
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Site and Observer Influence 

The best 5 models for each species have DIC values within 2.5 units of each other, indicating that each 

model is essentially as good as the others (Tables 5.2 and 5.5).  The influence of site and observer 

were tested by adding random effects for both variables separately and together to the nominal best 5 

models for each species.  As expected, the addition of random effects resulted in a widening of the 

credibility intervals around estimates for individual predictors and average detection times.  With the 

exception of the 5
th
 best model for N. trichotoma, the addition of random effects did not affect the rank 

order of significance of individual predictors included in the models and, for N. neesiana, there was no 

real change in the rank order of the models according to DIC (See Appendix A).  There was, however, 

a clear change in the rank ordering of models when observer (and, to a lesser extent, site) was added as 

a random effect to N. trichotoma models (Appendix A), indicating that observer is potentially having a 

strong influence on detection rates for this species.  Having said this, the addition of random effects 

significantly increased the number of parameters that must be estimated by the model (from 8.6 to 

19.9 in this case).  There are less than 160 detection time observations available for each species - too 

few to support the estimation of almost 20 parameters – and a decision was made to proceed with the 

presentation of results without the inclusion of random effects.  This is likely to have some 

implications for model inference in that the overall variance of the model may be underestimated, 

leading to an overestimation of the significance of individual predictor variables (Rodriguez and 

Goldman, 1995; Okamura et al., 2008).  However, such trade-offs are common and necessary in 

ecological studies (Oksanen, 2001).  This issue may be avoided in future studies by increasing the 

ratio of detection time observations to the number of sites and/or observers. 

 

Table 7.  Comparison of estimates from models within 2 DIC units of the ‘best’ models for N. neesiana and N. trichotoma 

(See Tables 5.4 and 5.7).  The average time to detection for each species is presented under good and average survey 

conditions, along with the associated survey effort (minutes/hectare) required to achieve a probability of detection of 0.80 

and 0.95 given the species’ presence.  95% credible intervals are shown in brackets.  For N. neesiana, good conditions are 

experienced observer, overcast day, 2006, and average conditions are intermediate observer, sunny day, 2007.  For N. 

trichotoma, good conditions are experienced observer, unrestricted search route, 31
st

 October, 2006 and average 

conditions are intermediate observer, restricted search route, 31
st

 October, 2007.  Where Themeda cover is included, 

estimates are based on 35% cover.  Where the time since last burn is included, estimates are based on 2 years since the site 

was last burnt. 

 Time to Detection (mins/ha) Required Effort (mins/ha) 

Pr(detect) = 0.80 

Required Effort (mins/ha) 

Pr(detect) = 0.95 

Model Good cond’ns Ave. cond’ns Good cond’ns Ave. cond’ns Good cond’ns Ave. cond’ns 

N. neesiana        

Model 1 27.62 

(14.24, 49.72) 

347.9 

(191.0, 612.4) 

44.46 

(22.91, 80.02) 

559.9 

(307.4, 985.7) 

82.75 

(42.65, 148.9) 

1042.0 

(572.2, 

1835.0) 

Model 2 23.44 

(11.69, 43.40) 

404.4 

(210.3, 737.0) 

37.72 

(18.82, 69.85) 

650.9 

(338.5, 1186) 

70.21 

(35.03, 130.0) 

1212.0 

(630.1, 

2208.0) 

Model 3 26.58 

(13.48, 48.50) 

370.9 

(197.0, 666.8) 

42.79 

(21.70, 78.07) 

596.9 

(317.1, 1073) 

79.64 

(40.38, 145.3) 

1111 

(590.3, 

1998.0) 

N. trichotoma       

Model 1 33.21 

(20.76, 51.71) 

139.2 

(87.70, 214.3) 

53.46 

(33.42, 83.23) 

224.0 

(141.1, 344.9) 

99.50 

(62.21, 154.9) 

417.0 

(262.7, 641.9) 

Model 2 32.35 

(20.08, 50.54) 

143.2 

(90.08, 220.1) 

52.06 

(32.32, 81.35) 

230.5 

(145.0, 354.3) 

96.91 

(60.15, 151.4) 

429.1 

(269.9, 659.5) 

Model 3 32.67 

(20.35, 50.67) 

141.9 

(89.80, 218.9) 

52.58 

(32.75, 81.56) 

228.3 

(144.5, 352.2) 

97.87 

(60.96, 151.8) 

425.0 

(269.0, 655.6) 

Model 4 41.63 

(27.64, 61.35) 

114.2 

(72.4, 168.2) 

67.00 

(44.48, 98.74) 

183.9 

(124.6, 270.7) 

124.7 

(82.79, 183.8) 

342.3 

(231.9, 503.9) 
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4.4 Discussion of factors that affect Nassella detectability 

The results suggest that there are a number of factors that affect the detectability of Nassella species in 

native grassland communities around Melbourne.  The experience of the observer had a significant 

impact on detection times of both species: observers with experience in grassland surveys had much 

lower detection times than those without.  The year in which the survey was undertaken was also 

important for both species, indicating that there may be a significant amount of inter-annual variation 

in detectability of Nassella species.  A precautionary approach may be necessary to account for such 

variation until the exact causes are understood. 

The results also suggest that for N. trichotoma, the search method used to conduct the surveys and the 

date on which the surveys are undertaken can affect the probability of detecting the species.  

Observers who were unconstrained in their search method had lower detection times than those who 

were forced to follow a more systematic search route. In the past, studies investigating optimal weed 

surveillance strategies have assumed a systematic search pattern when estimating detection 

probabilities of target species (Brown et al., 2004; Cacho et al., 2006).  The assumption is that this is 

most efficient method for searching a site, as random searches could result in some areas being 

covered multiple times and others not at all.  However, the ability of a person to follow a truly random 

route without assistance from technology is doubtful.  In reality, it is more likely that observers use 

intuition or previously accumulated knowledge when conducting a survey.  For example, they may be 

attracted by different colours or appearance in the vegetation, or decide to walk towards an area of the 

site that is geographically different.  Such decisions may explain why an unconstrained search pattern 

could lead to lower initial detection times.  Where the aim of a study is to detect all individuals of a 

target species, systematic searches are appropriate, however the results of this study indicate that this 

is not necessarily the most efficient way to detect the presence of an invasive species in a native 

vegetation community and that, for some species, there is value in allowing observers some freedom 

in search route.   

Average detection times for N. trichotoma were also lower on dates in late November than in early 

October.  This may represent a change either in the appearance of the target species, or in the 

surrounding vegetation, or it may be explained by gradual improvement in each observer’s ability to 

detect the species over time.  Again, a precautionary approach may be needed until further research 

into the seasonal variation in detection times has been investigated. 

For N. neesiana, detection times were lowest on overcast days, with rainy days showing highest 

detection times by orders of magnitude.  The weather conditions at the time of survey may affect the 

visibility of species (for example, the confusing effect of sunlight on vegetation cover), or the ability 

of observers to operate at their most efficient.  There is some evidence that detection times for this 

species increased with time since the site was last burnt (Model 2, Table 5).  Burning is an accepted 

management technique in Western (Basalt) Plains Grasslands, considered necessary to prevent 

complete cover dominance by Themeda triandra and maintain species diversity (Morgan and Lunt, 

1999).  Burning may affect detection times by creating an opportunity for establishment of exotic 

species through the reduction in T. triandra canopy (Morgan, 1998) or increasing the ability of 

observers to see N. neesiana by reducing the aboveground biomass. 

Tables 3 & 5 indicate that for each species there are a number of models within 2 DIC units of the 

‘best’ model.  As a general rule, such a small difference in DIC would indicate a significant level of 

support for these models (McCarthy, 2007) and it is therefore important to consider the results of those 
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models.  In this study, these models are very similar to those recognised as the ‘best’ model for each 

species, and there is little difference in the average detection times estimated by different models 

(Table 7).  Differences are attributable to the addition or removal of a single variable, most of which 

have been discussed above.   

4.5 Estimating necessary survey effort 

We have estimated the average time of detection for invasive Nassella species in native grasslands.  

The average detection times for N. trichotoma under best conditions decreased from 66.95 minutes per 

hectare at the start of the survey season (early October) to 21.88 minutes per hectare in late November, 

and for N. neesiana, the average time to detection under the most favourable survey conditions was 

27.62 minutes.  Even under the average conditions experienced during the survey period, the predicted 

average detection times increase by orders of magnitude (Table 7).  These figures highlight the 

importance of considering the suitability of survey conditions for detecting target species in 

monitoring and impact assessment surveys.   

Detectability curves allow the user to determine the survey effort required to detect a species with 

known detectability characteristics with a pre-specified level of confidence.  These curves suggest that 

under the most favourable survey conditions, the survey duration required to achieve a probability of 

0.80 that N. neesiana will be detected if it is present is 44.46 minutes per hectare.  Estimates suggest 

that, for N. trichotoma, survey durations of at least 53 minutes per hectare are necessary to achieve the 

same level of confidence.   

These figures are below the standard search effort assumed in some studies of weed eradication (1 

hour 52 minutes to 7 hours per person per hectare: Panetta and Timmins, 2004), but well above that 

assumed as standard in surveys where the target species present in low numbers (12 minutes per 

person per hectare: Harris et al., 2001).  The important distinction of the methods presented in this 

paper is that the times recommended using the detection time model are those necessary to make the 

initial detection of the species at a site: any subsequent detections do are not modelled using this 

method.  It is clear that during demographic and eradication surveys, where there may be many 

individuals, the search effort required will be much greater.  The novel application of the methods 

demonstrated here is in determining appropriate survey effort when searching for new incursions of a 

target species in previously uninvaded sites or when monitoring for re-invasion in sites where some 

form of weed management action has taken place. 

4.6 Model Assumptions 

1. A key assumption of the exponential detection time models presented here is that detection 

times are distributed exponentially and that the rate of detection of a species is constant over 

the duration of the survey.  While the exponential distribution has limited application in 

survival studies where ‘aging’ is an issue, these limitations do not apply here.  For this 

assumption to be violated, the detection rate of the species would need to be dependent on the 

elapsed time of the survey.  There is little reason to believe that the instantaneous potential for 

a species to be detected in the next timestep should change with time, particularly over the 

short duration (90 minutes) of the surveys undertaken in this study.  However, simulations 

undertaken in a separate study suggest that the performance of the model is sensitive to 

violation of this assumption, and that where detection rates increase with time, estimates of 

mean detection time will be inflated (and vice versa) by the exponential detection time model. 
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2. All surveys undertaken at a site are considered to be replicate observations at that site, 

independent of year.  As such, it is assumed that community composition at individual sites is 

closed to emigration or immigration, and that no species becomes extinct or colonises a site 

from one year to the next.  Given the highly invasive nature of these species, it is possible that 

Nassella species were able to colonise uninvaded sites between surveys, especially where fire 

or other disturbance may have created an opportunity for establishment (Morgan, 1998; 

Colautti et al., 2006; Catford et al., 2009).  At only 2 of the sites surveyed was there evidence 

that this may have occurred (N. neesiana was detected at two sites in 2007 where it was not 

seen in 2006: see Table 5.1).  However, neither of these sites experienced disturbance between 

the two field seasons and, given the high rate of occupancy of this species, I believe it is more 

likely that the absence observations recorded in 2006 were false.  Likewise, the management 

difficulties associated with the persistent seed bank of Nassella species (CRC for Australian 

Weed Management, 2003; CRC for Australian Weed Management, 2003) mean that it is 

unlikely to have been successfully eradicated from sites within a single year. 
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5. Case Study 2:  A general (trait-based) model of detectability for Western 

(Basalt) Plains Grassland plants. 

 

The estimation of species’ detection times can be onerous and requires a relatively large dataset.  It is 

unrealistic to assume that species-specific detection time models can be built for all potentially 

invasive weed species across a range of native vegetation communities.  Further, invasive weed 

species may be unknown or new to an area, and it is unlikely that data collection would be able to 

keep pace with the rate of new invasions.  As such, we aim to investigate the potential for a general 

model of plant detectability, whereby the average detection time is modelled across species as a 

function of plant traits.  A successful general model could provide estimates of average detection time 

for plants with a specified set of traits in the event that no species-specific model exists. 

5.1 Modelling Methods 

In order to develop a general model of plant detectability for plants in Western (Basalt) Plains 

Grassland, it was necessary to modify the WinBUGS model such that the average time to detection, 

��78�, is modelled across species and as a function of plant traits.  This involved a simple modification 

of the likelihoods presented in Equation 2: 
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where pni is the probability of species n occurring at site i, λ is the detection rate, tnik is the detection 

time for species n recorded by observer k at site i, and δnik is an indicator of whether the species was 

detected by observer k at site i: δnik = 1 if detected and δnik = 0 if not detected.   

The rate of detection (λ) is modelled as a function of plant traits zj: 

 

     � � �
��@AB

� �C���	
�D�	
	
EDE�     (12) 

 

As in previous sections, models were run in WinBUGS and candidate models were assessed using 

DIC.  The WinBUGS code for the general exponential detection time model is presented in Appendix 

B. 

The effects of site and observer were investigated by adding random effects to the nominal best model 

in this study.  Site and observer random effects were included both individually and together.  As 

described in the previous section, the influence of random effects was assessed qualitatively by 

monitoring the significance of predictor variables.  If the addition of a random effect changed the rank 

order of significance of the predictor variables, then the inference made from that model will be 

qualitatively different, and the influence of the random effect cannot be overlooked. 
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5.2 Data 

Detection time data for the general model of plant detectability were sourced from the 2006 survey 

data collected for the single species models.  Because of the significant variation attributed to observer 

experience in detection time estimates for single species, the general model was built on a subset of 

this data that included only observations made by experienced observers.  To further reduce the impact 

of unmodelled variation in the data, such as that caused by false positive observations, only those 

species that were detected on at least two occasions by experienced observers were included.  Models 

were built on 81 species.  A further 10 species were withheld from the model building process as test 

species.  Candidate variables included traits that may influence the detectability of a plant (Table 8).  

Interactions between flower colour and flower size variables (fl.sz and infl.sz) were also tested. 

 

5.3 Model Evaluation 

Because of the explicit acknowledgement that the “truth” of censored observations in unknown, 

evaluation of time to event models is difficult (Hosmer Jnr. et al., 1999).  In the case of the general 

model of plant detection, it is possible to compare the observed proportion of detections of a species at 

any given time with the detectability curve for that species as estimated by the model.  The proportion 

of detections (PoD) made by time, t, for species n is calculated by: 

 F&69� � ∑7 B
GH�  ,     (13) 

where 0� is the proportion of detections made at each site by time t, and �̂9 is probability of occupancy 

of species n predicted by the detection time model.  Because �̂9 is estimated as a constant across sites, 

it is equivalent to the proportion of sites occupied by species n.  Where no estimate of �̂9  is available 

(for example, for species withheld from the model selection process), the proportion of sites at which 

the species was detected is used. 

5.4 Model Assumptions 

As with the single species detection time models presented in the previous section, the general 

detection time model is subject to the assumptions that detection times are exponentially distributed 

and that sites are closed to species extinction or establishment over the survey period.  The assumption 

of exponential detection times has been discussed in Section 4.6.  The detection data used in this 

analysis is a combination of detection times for individual species and, as was discussed for single 

species detection time models, it is reasonable to assume that detection times are exponentially 

distributed.  The detection time data used in the construction of the model were collected over the 

course of one month during the spring of 2006 and it was considered unlikely that species would 

appear or disappear from sites during this time. 
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Table 8.  Candidate plant trait variables used in the development of a general model of detection time for plant 

species in the Western (Basalt) Plains Grassland community. 

Candidate Variable Description 

Rarity (rare) Categorical variable assigning rarity according to Rabinowitz’s (1981) 

classification of plant rarity. 

Growth form (GF) Categorical variable assigning growth form, as described in (Cornelissen et al., 

2003). 

Lifeform (LF) Categorical variable assigning lifeform, as described in (Cornelissen et al., 2003). 

Plant height (pl.ht) Continuous variable; typical height of species in metres. 

Exotic (exotic) Binary variable; indicates whether species is exotic or not. 

Peak flowering (pk.fl) Continuous variable; number of months from peak flowering month at time of 

survey. 

Flower colour (fl.col) Categorical variable assigning flower colour. 

Flower size (fl.sz) Continuous variable for size of individual flowers in centimetres. 

Inflorescence (infl) Binary variable; indicates presence of inflorescence or not. 

Number of flowers (no.fl) Continuous variable indicating maximum number of flowers in inflorescence. 

no.fl = 1 if no inflorescence. 

Inflorescence size (infl.sz) Continuous variable.  fl.sz x no.fl. 

Leaf colour (lf.col) Categorical variable assigning leaf colour. 

Leaf length (lf.len) Continuous variable for length of leaves in centimetres. 

Leaf width (lf.wid) Continuous variable for width of leaves in centimetres. 

Leaf size (lf.sz) Continuous variable; lf.len x no.fl. 

Leaf shape (lf.shp) Categorical variable assigning leaf shape according to Victoria’s Flora 

Information System. 

Number similar species (no.sp) Continuous variable indicating number of species in the same genus that occur 

in grasslands. 

Spinescence (spines) Binary variable; indicates presence or spines or not. 

Trait data was compiled from a range of sources, including Groves (1965), Rabinowitz (1981),Carr and Horsfall (1995), 

Cornelissen et al. (2003), Meers (2006), Flora of Melbourne (Australian Plants Society Maroondah Inc., 2001), Flora of 

Victoria (Walsh and Entwisle, 1994; Walsh and Entwisle, 1996; Walsh and Entwisle, 1999) and Victoria’s Flora Information 

System. 
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5.5 Results 

The model with the lowest DIC value is the one that models detection time as a function of rarity, 

lifeform, leaf colour, the number of similar species, the peak flowering month, whether or not the 

species is exotic, and an interaction between flower colour and inflorescence size (See Table 9).  There 

is also significant support for the model that includes flower size instead of inflorescence size  

however investigation revealed very little difference between the predictions from the two models. 

The influence of site and observer on detection times was tested by adding random effects to the best 

nominal model in this study.  These random effects were found to have little qualitative effect on 

model inference and no significant effect on the average detection times predicted for 10 test grassland 

species (Appendix B) and, as such, results will be presented for the fixed effect model with no random 

effects for site or observer.  As discussed in the previous section, this may some implications for 

model inference in that the overall variance of the model may be underestimated, leading to an 

overestimation of the significance of individual predictor variables (Rodriguez and Goldman, 1995; 

Okamura et al., 2008) 

Table 9.  Differences in Deviance Information Criterion (∆DIC) between the best general detection time model 

and other candidate models.   

 Model ∆DIC 

1 �� ~ exp(α + rare + LF + lf.col + no.sp + pk.fl + exotic + fl.col*infl.sz) 0 

2 �� ~ exp(α + rare + LF + lf.col + no.sp + pk.fl + exotic + fl.col*fl.sz) 0.8 

3 �� ~ exp(α + rare + LF + no.sp + pk.fl + exotic + fl.col*infl.sz) 3.24 

4 �� ~ exp(α + rare + LF + lf.col + no.sp + pk.fl + exotic + fl.col*fl.sz + lf.shp) 3.77 

5 �� ~ exp(α + rare + LF + lf.col + no.sp + pk.fl + fl.col*infl.sz) 9.61 

6 �� ~ exp(α + rare + LF + lf.col + no.sp + exotic + fl.col*infl.sz) 14.82 

7 �� ~ exp(α + rare + lf.col + no.sp + pk.fl + exotic + fl.col*infl.sz) 20.22 

8 �� ~ exp(α + rare + LF + lf.col + pk.fl + exotic + fl.col*infl.sz) 27.25 

9 �� ~ exp(α + LF + lf.col + no.sp + pk.fl + exotic + fl.col*infl.sz) 27.94 

10 �� ~ exp(α + rare + LF + lf.col + no.sp + pk.fl + exotic) 34.61 

 

Node estimates for the best model are shown in Table 10.  These results suggest that detection times 

are high for species that are similar to a large number of other grassland species, and for species whose 

peak flowering month is far from the time of survey.  In addition, detection times tend to increase with 

increasing rarity of the plant, and are higher for native species than exotics.  Geophytes, or those 

species that experience annual reduction of shoots to underground storage organs, are detected more 

quickly than other lifeforms if they are present at the site.  This group of plants includes a number of 

the lily-like grassland species.  The results also suggest that the colour of both the flowers and leaves 

can have an impact on detectability of grassland plant species.  Plants with grey-green leaves appear to 

be easier to detect than those with blue-green, bright green or green leaves, species with brown or 

black flowers tend to have the lowest detection times.  Node estimates for the 2
nd

 best model are 

presented in Appendix B. 

Predicted average detection times for the 10 test species are shown in Table 11, and detectability 

curves predicted by the best model are compared to observed proportions of detections in Figure 7. 
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Table 10.  Node statistics for the best general model of detection time for Western (Basalt) Plains Grassland 

species after 40,000 iterations.  Negative values result in a decrease in the estimated average time to detection.  

 

Node Mean 95% Credible Interval 

Α 3.52 (2.39, 4.61) 

Lifeform 

- phanerophytes 

- chamaeophytes 

- hemicryptophytes 

- geophytes 

- therophytes 

 

0 

-0.85 

-0.67 

-1.59 

-0.69 

 

(0,0) 

(-2.04, 0.34) 

(-1.72, 0.50) 

(-2.67, -0.42) 

(-1.82, 0.46) 

Leaf colour 

- grey-green 

- blue-green 

- dark green 

- light/dull green 

- bright green 

- green 

 

0 

-0.67 

-0.0085 

-0.56 

-0.34 

-0.77 

 

(0,0) 

(-1.20, -0.15) 

(-0.58, 0.55) 

(-1.47, 0.35) 

(-0.74, 0.014) 

(-1.33, -0.25) 

Number of species 0.060 (0.036, 0.083) 

Peak flowering 0.34 (0.17, 0.51) 

Exotic 

- exotic 

- native 

 

0 

0.62 

 

(0,0) 

(0.29, 0.96) 

Flower colour: 

inflorescence size 

- cream 

- yellow 

- green 

- blue/purple 

- pink/red 

- brown/black 

 

 

0 

0.018 

0.0059 

-0.0089 

0.031 

-0.090 

 

 

(0,0) 

(-0.0095, 0.047) 

(-0.018, 0.035) 

(-0.030, 0.012) 

(0.013, 0.049) 

(-0.12, -0.062) 

Rarity* 

-LWL 

-LNL 

-LWS 

-LNS 

-SNS 

 

0 

0.21 

0.52 

0.95 

1.44 

 

- 

(-0.24, 0.69) 

(0.24, 0.80) 

(0.51, 1.34) 

(0.39, 2.56) 

*Rabinowitz rarity categories.  LWL: large geographic range, wide habitat specificity, large local population; 

LNL: large geographic range, narrow habitat specificity, large local population; LWS: large geographic range, 

wide habitat specificity, small local population; LNS: large geographic range, narrow habitat specificity, small 

local population; SNS: small geographic range, narrow habitat specificity, small local population. 
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Table 11.  Estimates of average detection time for test species.  Also shown is the minimum survey effort 

required to detect the species if it is present at a site with 80% and 95% certainty. 

Species 

Average Detection 

Time 95% 

Minimum Survey Effort Required to Detect 

Species if Present (mins/ha) 

 (mins/ha) C.I. 80% 90% 

*Anagalis arvense 26.62 (19.77, 35.18) 42.84 79.75 

*Bromus hordaceous 66.53 (39.57, 105.6) 107.1 199.3 

Burchardia umbellata 12.61 (3.845, 30.92) 20.30 37.78 

Dianella amoena 476.9 (146.0, 1207.0) 767.5 1428.7 

Linum marginale 26.47 (15.8, 41.7) 42.60 79.30 

*Nassella neesiana 16.71 (6.106, 37.73) 26.89 50.06 

*Nassella trichotoma 12.53 (5.589, 24.68) 20.17 37.54 

Pimelea spinescens 1499.0 (353.9, 4823.0) 2412.5 4490.6 

Plantago guadichaudii 291.6 (172.2, 468.1) 469.31 873.6 

*Rosa rubiginosa 72.69 (18.25, 198.7) 117.0 217. 8 
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Survey Duration (mins/ha) 

 

Figure 7a.  Comparison of detectability curves estimated by the best general detection time model and the 

observed proportion of detections for eight test species withheld from the model selection process.  Blue curves 

show the mean (�) and 95% credible intervals (-) of the posterior distributions estimated by the model.  Red dots 

represent the proportion of detections observed during field surveys after given survey durations (Eq. 13). 
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Survey Duration (mins/ha) 

 

Figure 7b.  Comparison of detectability curves estimated by the best general detection time model and the 

observed proportion of detections for eight species included in the model selection process.  Blue curves show 

the mean (�) and 95% credible intervals (-) of the posterior distributions estimated by the model.  Red dots 

represent the proportion of detections observed during field surveys after given survey durations (Eq. 13). 
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5.6 Discussion of the general model of detection time 

The best general model of detectability for plants in Western (Basalt) Plains Grassland is the one that 

models detection time as a function of rarity, lifeform, leaf colour, the number of similar species, the 

peak flowering month, whether or not the species is exotic, and an interaction between flower colour 

and inflorescence size.  There is also significant support for the model that includes flower size instead 

of inflorescence size (Table 9), however there is very little difference between the predictions from the 

two models. 

Many of these relationships are clearly ecologically sensible.  Species that are very abundant on a site 

will naturally be detected more quickly than those that are only present in small numbers.  Using 

Rabinowitz’s (1981) rarity categories, the general model predicts that those species with small, non-

dominant local populations have higher detection times than those with larger local population sizes.  

Rabinowitz’s (1981) categories provide a course way to classify species’ abundance by considering 

the geographical distribution, habitat specificity and the local population size of each species.  Actual 

abundance estimates from a subset of sites would further improve our understanding of the influence 

of abundance on detectability.  The model also predicts that those species with many similar species 

will have longer detection times than those who are more unique within the grassland community.  

Identifying a species with certainty can be complicated if there are a number of very similar ‘potential’ 

species.  In a situation where there are a number of similar species, an observer might wait to observe 

and compare particular characteristics before assigning a formal identification. 

The general model predicts that exotic species will be easier to detect than indigenous species in a 

native grassland.  This finding can be linked with the invasive species literature, where a number of 

theories are based around the idea that species that are functionally or phylogenetically novel or that 

possess traits previously unrepresented in an ecological community may be more likely to invade that 

community (Mack, 2003; Callaway and Ridenour, 2004; Catford et al., 2009).  A separate theory 

relating to propagule pressure suggests that the pool of species that become invasive is not a random 

sample; rather it is biased towards species that are selected for particular traits (Colautti et al., 2006).  

It is possible that the features that make a species novel (eg. lifeform) or more likely to be introduced 

(eg. showy flowers) may also make it more detectable.   

Optimal strategies for declaring eradication rely on estimates of cost-of-escape, eradication effort, and 

the probability of detection under a given survey effort.  Our results suggest that as the local 

population size of an invasive species declines under an eradication program, that species will, on 

average, take longer to detect during a survey.  This means that as an invasive species population is 

successfully managed, the survey effort required to detect any remaining individuals in further 

surveillance will increase.  The difficulties associated with declaring an invasive species eradicated at 

a site have been extensively discussed within the eradication and surveillance literature (Panetta and 

Timmins, 2004; Regan et al., 2006; Panetta, 2007; Rout et al., 2009).  By beginning to quantify the 

increase in survey effort necessary to detect smaller local population sizes, this research can aide those 

developing invasive species surveillance strategies.   

Other factors that affect the visibility of a plant species were also recognised as important 

determinants of detection time.  For example, plant with green or blue-green leaves tend to have lower 

detection times than those species with grey-green leaves and plants tend to be detected more quickly 

if surveys are undertaken at a time close to their peak flowering month.  This indicates that the 

presence of flowers, buds or fruit may increase the detectability of a plant, which is ecologically 
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sensible.  This concurs with the findings of Kery and Gregg (2003), and highlights the importance of 

seasonality in detectability studies (Burrows, 2004). 

The relationship between flower colour and detection times is less sensible.  This study found that 

species with red flowers have the longest detection times, while those with brown or black flowers are 

detected more quickly than other plants.  This relationship is difficult to explain, as brightly coloured 

flowers would be considered to make a species more detectable.  It is possible that this relationship 

may be driven by the local abundance of individual species: for example, Themeda triandra, a very 

common and abundant species, has brown/black flowers and many of the plant species with pink or 

red flowers are present at few sites in small populations.  The collection of more detailed local 

abundance data in the future may help to clarify this. 

Finally, the model predicts that geophytes –species whose aboveground parts annually die back to 

underground storage organs during non-growth periods – have lower detection times than species that 

do not die back.  In Victoria, this classification of plants includes many of the orchid and lily-like 

species (Parsons, 2000).  While no orchid species were detected in this study, other geophytes and 

species present in Western (Basalt) Plains Grassland include a number species with bold, noticeable 

flowers, which may explain the low predicted detection times.  Further, because they die back during 

the off-season, geophytes must necessarily regrow all or most above ground parts during the growth 

season.  It is possible that this fresh regrowth makes these species easier to detect during spring 

surveys than other species that may consist of a combination of old and new growth.  In addition, they 

tend to invest resources into flowering quickly and, as such, when they are visible above ground, 

flowers or reproductive organs are often present.  This finding highlights the importance of seasonality 

in detectability studies (Burrows, 2004).  Surveys for this study were undertaken in spring, the peak 

season for geophytes in Western (Basalt) Plains Grassland.  While geophytes have low detection times 

during this season, it is not likely that they will be so easy to detect during other seasons when they 

may be completely reduced to below-ground organs.  

Because of the explicit recognition that the true status of censored observations is unknown, 

evaluation of these detection time models is difficult.  High average detection times might indicate a 

species that has low rates of known false absence observations and is consistently difficult to detect, 

however a species with low observed detection times but a high rate of false absences will also have a 

high predicted average detection time.  Conversely, low average detection times will be predicted for 

species with low false absence rates and short observed detection times.  Therefore, without 

knowledge of the true false absence rate, it is impossible to evaluate the results of these models with 

any certainty.  Aside from a notable exception (Pimelea spinescens) the average detection times 

predicted by the general model are within a range that would be considered reasonable (Table 11) and 

the comparison of estimated detectability curves with observed detections suggest that the general 

detection time model is estimating reasonably well (Figure 7).  While the times predicted for Nassella  

species by the general model are optimistic, the 95% credible intervals include the values predicted by 

the species specific models under the most favourable conditions.  Similarly, the estimated detection 

time for Dianella amoena is within the range predicted by a single-species model under average 

survey conditions (Garrard et al. unpublished manuscript).  The predicted detection time for P. 

spinescens is clearly inflated, however a number of the trait values and classifications (lifeform, 

number of similar species, month of peak flowering and rarity) assigned to this species are extreme or 

poorly represented within the training dataset.  Similarly, the comparison of observed and predicted 

detections presented in Figure 7 reveals that the model is predicting longer detection times for some 

species than is evident in the observed data (eg. A. echinata, C. citreus).  As in any natural system, 
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there is considerable variation in the plant species found in the Western (Basalt) Plains Grassland 

community, and it is impossible to ensure that the features of all species are well represented in the 

model building and selection process.  Estimates of detection rates for species that possess a set of 

traits that is poorly represented in the training dataset may therefore be imprecise and caution should 

be used these cases. 

We have demonstrated a new method for modelling detection times across species within a native 

vegetation community, based on plant traits.  Estimates of average detection time from a general 

model of plant detectability can be used to determine the survey effort required to detect invasive 

species with a pre-specified level of certainty in the absence of species-specific detection time models.  

Reasonable estimates of the survey effort required to achieve a probability of detection of 80% given 

species presence as predicted by the general model of plant detectability range from 20 minutes per 

hectare (Nassella trichotoma) to over 400 minutes (Dianella amoena, Plantago guadichaudii).  Of the 

exotic species for which predictions were made, the highest recommended search effort to achieve this 

level of certainty was 117 minutes per hectare (Table 11).  While the model developed in this study is 

specific to species occurring in Western (Basalt) Plains Grassland, the methods presented are generally 

applicable and could be used to develop models of detection time in other native vegetation 

communities.  Data collection for future studies should place emphasis on the use of experienced 

observers to reduce variation associated with observer experience. 
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6. Detectability and the Northern Australian Quarantine Strategy 

The Northern Australia Quarantine Strategy (NAQS) was developed in 1989 to address the quarantine 

risks unique to the northern Australian coastline.  Implemented through the Australian Quarantine and 

Inspection Service (AQIS) and the Department of Agriculture, Forestry and Fisheries (DAFF), NAQS 

is responsible, among other things, for conducting surveys for early signs of new pests along 

Australia’s northern coastline (Australian Government, 2008).  NAQS weed surveillance activities are 

limited by resources, an extremely large surveillance area and the need to co-ordinate 

multidisciplinary survey teams with multiple objectives.  There is a general awareness of detection 

issues within NAQS, however the uncertainty attributed to imperfect detection is not currently 

incorporated into surveillance activities in an explicit way.  Decision thereotic and optimal 

surveillance investment methods present a useful framework for incorporating imperfect detectability 

into NAQS surveillance activities.  Here, we discuss the application of optimal surveillance 

investment practice to NAQS activities, with reference to a single species recently discovered on a 

remote island of the Torres Strait. 

6.1 The Problem 

Blechum pyramidatum is a herb species native to Mexico and northern South America.  It is known to 

occur outside its natural range in the United States of America (Florida, Hawaii, Guam), Pacific 

Islands (Fiji, Samoa), Micronesia and the Philippines, however it is not always invasive in regions 

where it has been introduced.  The lack of literature on this species suggests that it does not have 

serious invasive potential (Waterhouse, 2009: Pers. Comm.), however it has recently been listed on the 

NAQS Target List for Weeds (Australian Quarantine and Inspection Service, 2008). 

During routine NAQS surveillance on Saibai Island (Torres Strait) in 2008, a single patch of what was 

thought to be Browne’s blechum was discovered in a private garden.  Following positive identification 

of the species, NAQS officers returned to Saibai in early 2009 and removed the species from the site 

(Waterhouse, 2009: Pers. Comm.).  NAQS officers are now interested in determining the appropriate 

level of effort to invest in continuing surveillance for this species on Saibai and across other Torres 

Strait islands.  Focussing on this species provides a useful scope for investigating detectability and 

surveillance, however this scenario is not unique to this species and has more general relevance. 

6.2 An optimal survey strategy and its components 

The decision theory literature specifies number of steps for problem solving (Possingham, 2001).  It is 

vital that the management objectives and options be specified from the outset, and that the state of the 

system be understood.  Next, a conceptual model of the system should be constructed.  This step will 

commonly involve the specification of equations to describe the relationships between variables in the 

system.  It is important at this stage that any constraints or uncertainties surrounding variables be 

identified and incorporated into the model.   

In the context of optimal surveillance investment for an invasive pest, the management objective is to 

minimise the total cost associated with monitoring and management of the species, and the 

management options include surveillance of individual sites, and taking action (or not) to control any 

detected invasions.  For each series of actions there is a set of associated costs, for which values must 

be estimated (eg. Figure 8).  
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Figure 8.  A conceptual model of the decision-making framework showing end costs for a range of scenarios.  

At a site where the species is absent, surveillance will reveal no detections and no control action will be taken.  

Under this scenario, surveillance costs are the only costs associated with the surveillance strategy.  For sites 

where the species is present, surveillance may either result in detection of that species or no detection (false 

absence).  The end costs of these scenarios may be quite different. (Adapted after Hauser (pers comm)). 

 

Determining the likely outcome under a given surveillance strategy requires a probabilistic approach. 

In the example described in Figure 8, there are two possible outcomes for the site at which the species 

is present, each with its own set of costs.  Crucial to determining which outcome is likely to occur is 

an understanding of D, the probability of detecting the species at site at which it is present under a 

given surveillance strategy, s.  Under the simplest scenario, the probability of an escape, E, can be 

considered to be equal to the probability of observing a false absence (FA) during surveillance of a site 

at which the species is present.  This probability is related to D as shown in Equation 14. 

Es = FAs , 

FAs = p(1-Ds) ,        (14) 

where p is the probability that the species is present at the site. 

The probability of escape may also be modelled in a more complex equation based on an 

understanding of the potential for spread of the species: 

Es = FAs.y.z ,        (15) 

where y is the ability of the species to spread, and z is the probability that the species will establish in 

the receiving landscape. 

The total cost (Ct) of any given survey strategy, s may be determined as the sum of the total cost of 

surveillance (Cs) and the total cost of escape (Ce) multiplied by the probability of escape (E): 

   Cts  = Css + Ces.Es       (16) 
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Surveillance 

 

Control 

Action 

 

No Control 

Action 
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Identification of the optimal surveillance strategy for B. pyramidatum requires estimates of the cost of 

conducting surveillance activities, as well as any costs associated with the escape of the species if it is 

undetected during surveillance.  The sites of potential invasion in this case are isolated and accessible 

only by light aircraft or boat.  The costs associated with surveillance in this case are therefore likely to 

be quite high and survey effort restricted.  A formal risk assessment is currently in preparation by the 

Queensland Government, however the potential threat posed by this species to agricultural production 

and native ecosystems is thought to be quite low (Waterhouse, 2009: Pers. Comm.).  Estimation of the 

various costs associated with escape of an invasive species may pose a number of challenges.  Firstly, 

there is often uncertainty surrounding the precise impact of the species on native and agricultural 

systems (Byers et al., 2002); and secondly, there is difficulty in assigning measures of cost for 

different impacts in a single unit (Peterman and Anderson, 1999). 

Even the simplest case, determining the probability of escape of the invasive species (E) requires an 

estimate of the probability of occupancy (p) and detection probability (D: Equation 9).  Given how 

little is known about the species, it is unlikely that detailed probability of occupancy estimates are 

available.  In this case, course estimates may be determined based on known travel routes between 

nearby islands or by an assessment of suitable habitat.  There are currently no available estimates on 

detection rates or probabilities for Browne’s blechum.  A number of methods exist for estimating the 

value of D for individual species, one of which has been demonstrated in detail in Section 4 of this 

report (Garrard et al., 2008).  This method provides a way to estimate the probability that the species 

will be detected for a given survey effort where effort is measured in units of time.  Other methods 

exist for estimating a species’ detection probability in a single visit to a site (Slade et al., 2003; Tyre et 

al., 2003; Wintle et al., 2005).  Such estimates can be used to determine the probability of detection 

for a given number of visits to a site.   

Methods for estimating detection probabilities are data intensive and can be statistically complex.  

However, we have shown in Section 5 of this report that it is possible to construct a general model of 

detectability where detection time is modelled across species according to plant traits.  Models such as 

this may provide useful estimates of D for a given survey strategy where no species-specific model 

exists.  Where models of detectability are absent or impossible to construct, expert opinion may be 

used to specify ‘realistic’ estimates of D (Martin et al., 2005).  Estimates of the spreading ability and 

likely establishment of the weed in receiving landscapes may also assist in determining the probability 

of escape of the species. 

Finally, it is necessary to determine the range of possible survey strategies for which costs should be 

estimated.  Currently, inhabited islands in the Torres Strait are surveyed annually for a period of 

between 2 and 6 hours each (Waterhouse, B. pers. comm.).  Surveys are focussed on areas in an 

immediately surrounding communities and settlements.  Options for varying surveillance effort 

include altering the frequency & duration of surveys on each island.  The isolated nature of the of the 

islands mean that the increase in surveillance costs associated with increasing the frequency of surveys 

is likely to be greater than that associated with increasing duration. 

6.3 Conclusions and Recommendations 

Optimal surveillance investment methods provide a useful framework for incorporating concepts of 

detectability into the surveillance strategies of the NAQS.  In this report, we have highlighted a 

number of variables that are necessary to determine the optimal surveillance strategy for detecting new 

incursions of invasive species in northern Australia, focussing specifically on Browne’s blechum.  
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There is currently insufficient information to incorporate detectability into NAQS activities in a robust 

way.  In order to develop optimal surveillance strategies, NAQS must compile information on the 

impact of the invasive species, cost of surveillance, likelihood of presence of the species and the 

probability that the species will be detected under a range of surveillance strategies.  We have 

discussed a number of methods by which these variables might be estimated.  Here, we make a 

number of specific recommendations relating to the information required to design optimal 

surveillance strategies in northern Australia.  While Browne’s blechum provided an opportunity to 

describe specific issues, the problems identified in this case study are not unique to this species and the 

recommendations made will be general in nature. 

Surveillance costs, impact and suitable habitat for potentially invasive species 

The impact of invasive species and the suitable habitat for that species are likely to be identified in 

during the risk assessment process.  Estimation of these parameters, including the estimated cost of 

escape of the species, should become standard requirements in risk assessments undertaken by NAQS, 

DAFF or other government bodies if they are not already.  Similarly, NAQS will have good 

information on the cost of surveillance within the regions for which they are responsible.  It is 

important that the limitations to surveillance are recognised and that the full range of possible 

surveillance strategies, including the area/sites to be surveyed and the frequency and duration of 

surveys, is clearly identified. 

Detectability of invasive species 

We have demonstrated two novel methods for estimating the probability that a plant species will be 

detected for a given amount of survey effort.  Single species models can be used to identify the survey 

conditions that are most (or least) desirable when conducting surveillance for a particular species.  

However, these models require the collection of detection time information for the species in question 

and are therefore only applicable to species that are established in Australia.  The scenarios most 

commonly faced by NAQS are the detection of new incursions of known and unknown invasive 

species.  Estimating the detectability of an unknown species is not possible; however a general model 

of detection time could be used to determine the survey effort required to detect a species with a 

known set of traits in a range of habitats.  We recommend that DAFF and NAQS consider building 

general models of detection time for plant species in habitats that are of particular interest or 

importance.  Construction of these models requires:  

1. Detection time data for species within each habitat type 

- This data can be collected in a multi-site, multi-observer study as in this report.  

Observers should record the time at which they first see each species within a 

designated area.  Attention should be paid to the duration of the surveys undertaken in 

the data collection process: allowing too short a time will result in a high proportion 

of censored observations and imprecise estimates.   

- It is important that the starting point of each observer is randomly located to avoid 

bias towards species located close to a common starting point. 

- Observers should be of the same experience level as those who will be conducting 

surveillance activities. 

2. Plant trait information on species within each habitat type 
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- Traits of interest are those that might influence the probability that the species is 

detected during the survey, including attributes relating to the appearance or 

abundance of the species. 

3. Modelling programs and statistical code 

- The WinBUGS code for the general model of plant detection time is provided in 

Appendix B.  As with any statistical modelling software, it is important that the 

limitations and assumptions of the program and the model itself are understood by the 

user. 

Estimates of detection time from the general, trait-based, models introduced in this study can only be 

made within the vegetation community from which the model was constructed.   Ultimately, such 

models may be constructed for all vegetation communities, however NAQS/DAFF may wish to 

prioritise ecosystems according to the likelihood of incursion (ie. gardens), potential for early 

detection (ie. frontier ecosystems) or threat (ie. agricultural systems).  Although these models of 

detectability cannot be used to estimate the survey time necessary to detect unknown invasive species, 

they can provide some useful information relating to the detection of unknown species incursions.  By 

estimating the average detection times for each species within the community, these models can 

provide information on the range of survey efforts required to detect species within that community 

with reasonable certainty.  Such estimates may be used to inform a minimum survey effort 

requirement within a specified vegetation community.   
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7. Conclusions and Recommendations  

 

It is now widely accepted that a species may not be detected during a survey of a site at which it is 

present.  Failure to detect an invasive weed species in a native ecosystem may incur serious 

environmental and financial costs, and it is therefore important that the detectability of invasive 

species in native ecosystems is understood.  In this study we have demonstrated a novel method for 

determining the average survey time needed to detect weed species and have constructed detection 

time models for two Weeds of National Significance in native grasslands.  We have also identified the 

survey conditions which maximise the probability of detecting these species.  In addition, we have 

demonstrated how detectability curves can be used to estimate the minimum survey effort necessary to 

detect these invasive weeds if they are present at a site.  Such information could easily be included as 

recommended survey practices in management strategies and policy.  We recommend that detection 

time models be constructed for other invasive species of great concern. 

The development of single species models of detection time is data-intensive and it is unlikely that 

they will be built for many invasive species.  In this report, we have demonstrated that general models 

can be used to generate estimates of average detection time and required survey effort for invasive 

species where no species-specific model exists.  Such models have the potential to be of great use to 

government agencies responsible for managing invasive species and, if proven to be robust across a 

range of vegetation types, represent an efficient way to determine detectability estimates for a range of 

invasive weeds.  The general models introduced in this study are specific to individual native 

vegetation communities and future effort should be invested in constructing general models of 

detection times for a range of native vegetation types. 

The uncertainty associated with imperfect detection is not explicitly addressed in the design of 

surveillance activities of the Northern Australian Quarantine Strategy.  Decision theoretic approaches 

provide a way for land-managers to incorporate imperfect species detectability, the a priori probability 

that the species is present, the cost of surveillance, and the cost of escape and management of the 

species into the design of an optimal surveillance strategy.  Estimation of these costs and probabilities 

may not always be straight-forward, and expert opinion or prior estimates from similar scenarios 

should be used in the absence of relevant data.  In this report, we have demonstrated methods for 

estimating the detectability of invasive weeds at the individual level and more generally across species 

within a vegetation community. We recommend that DAFF/NAQS construct general models of plant 

detection time in vegetation communities of particular interest or importance.  Future collaborative 

research might focus on more detailed investigation of plant detection times for priority weed species. 
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9. Appendices 

 

9.1 Appendix A:  WinBUGS code and node estimates for competing Nassella models 

 

WinBUGS Code 
 

***************************************************** 
 
model 
{ 
 
for (i in 1:16)    # number of sites 
{ 
    procc[i] <- p       # probability of occupancy is constant across sites 
} 
 
for(i in 1:16){ 
    for(k in offset[i]:(offset[i+1] -1)) { 
      dd[k] <- step(50-tcen[k])   
    } 
    d[i] <- step(sum(dd[offset[i]:(offset[i+1] -1)]) - 0.5) # d[i] indicates whether species was seen at site i 
    } 
 
  for(i in 1:16){ 
    for(k in offset[i]:(offset[i+1] -1)) { #k is number of observations across all sites 

#offset notation allows handling of uneven datasets  - see WinBUGS User 
#Manual (Spiegelhalter et al., 2003)>Section “Tricks: Advanced Use of the 
#BUGS  Language> Handling unbalanced datasets 

    pp1[k] <- lambda[k]*exp(-lambda[k]*ft[k])       # likelihood if seen at the site (by anyone) and by the observer 
    pp2[k] <- exp(-lambda[k]*tcen[k])       # likelihood if seen at the site (by anyone), but not by the observer - censored 
    pp[k] <- dd[k]*pp1[k] + (1-dd[k])*pp2[k] 
    pn[k] <- exp(-lambda[k]*tcen[k])     # likelihood if not seen (by anyone) 
    lambda[k] <- 1/mu[k]   # lambda is detection rate 
     
    # average detection time (mu) modelled as function of explanatory variables     
    mu[k] <- exp(alpha + exper[obsr[k]] + yr[year[k]] +weather[weath[k]] + burn*fire[k])  
    } 
    psite[i] <- d[i] * procc[i] * prod(pp[offset[i]:(offset[i+1] -1)]) + (1-d[i]) * (procc[i]*prod(pn[offset[i]:(offset[i+1] -1)]) + 1 - procc[i]) 
          # likelihood at the site level 
    Y[i] <- 1    # ones trick 
    Y[i] ~ dbern(psite[i]) 
  } 
 
 
# Estimating average detection time under favourable conditions 
predmu[1] <- exp(alpha + exper[2] + yr[1] +weather[3] + burn*2) 
 
 
# Specify prior distributions 
p ~ dunif(0, 1)   # uninformative uniform distribution 
exper[1] <- 0 
exper[2] ~ dnorm(0, 0.0001) # uninformative normal distribution 
alpha ~ dnorm(0.0, 0.0001) 
yr[1] <- 0 
yr[2] ~ dnorm(0.0, 0.0001) 
weather[1] <- 0 
weather[2] ~ dnorm(0.0, 0.0001) 
weather[3] ~ dnorm(0.0, 0.0001) 
weather[4] ~ dnorm(0.0, 0.0001) 
burn ~ dnorm(0.0, 0.0001) 
 
} 
 
# Specify initial values 
Inits 
list(alpha = 0, yr = c(NA,0), p = 0.5, weather = c(NA,0,0,0), burn = 0, exper = c(NA,0)) 
 
 
# Enter data: detection time (ft[]), censored time (tcen[]), explanatory variables (year[], weath[], fire[], obsr[]), offset[]) 
Data 
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ft[] tcen[] year[] weath[] fire[] obsr[] #observation level variables [k] 
999 90 1 1 2.5 1 
28 0 1 2 2.5 1 
999 90 1 2 2.5 2 
999 90 2 1 0.5 1 
84 0 2 1 0.5 2 
999 90 2 2 0.5 2 
999 90 2 2 0.5 1 
61 0 2 2 0.5 2 
13 0 1 2 2.5 1 
2 0 1 2 2.5 1 
9 0 1 1 2.5 2 
999 90 2 1 3.5 1 
25 0 2 1 3.5 2 
999 90 2 2 3.5 2 
52 0 2 2 3.5 1 
0 0 2 2 3.5 2 
999 90 1 1 2.5 1 
999 90 1 2 2.5 1 
14 0 1 3 2.5 2 
999 90 2 1 3.5 1 
21 0 2 1 3.5 2 
999 90 2 3 3.5 2 
999 90 2 3 3.5 1 
999 90 2 3 3.5 2 
999 90 1 4 0.5 1 
999 90 1 4 0.5 2 
. . . . . . 
. . . . . . 
. . . . . .  
ft[k] tcen[k] year[k] weath[k] fire[k] obsr[k] 
END 
 
offset[] # offset variable must be length i +1 
1 
9 
17 
25 
37 
45 
55 
65 
76 
85 
95 
105 
116 
128 
137 
149 
158 
END 

 

**************************************** 
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Effect of Adding Site and Observer Random Effects to the Best Models for each Nassella species. 

 
Table A1.  The rank order (according to DIC), difference in DIC (∆DIC) and effective number of estimated 

parameters (pD) for the 5 best models for each species with no random effects, site effect, observer effect and 

site and observer effects.  The influence of site and observer is assessed qualitatively by comparing the rank 

order of models with and without random effects.  Where there is a clear change in the rank order of models, 

the random effect is influential.  The difference in DIC between the top model and all other models (∆DIC) can 

be used to assess whether the change in rank order of models is clear.  For example, while there are minor 

changes in the rank order of models for N. neesiana under different random effects modelling scenarios, there 

is very little alteration in ∆DIC, and so no clear influence of site or observer can be concluded.  For N. 

trichotoma, observer and, to a lesser degree, site are influencing detection times, however this is accompanied 

by a significant increase in estimated parameters compared to the models run without random effects. 

Species/ 

Best 5 Models
1
 

No Random 

Effects 

Site 

Effect 

Observer 

Effect 

Site & Observer 

Effect 

Rank ∆DIC
2
/ 

pD 
Rank 

∆DIC
2
/ 

pD 
Rank 

∆DIC
2
/ 

pD 
Rank 

∆DIC
2
/ 

pD 

Nassella neesiana         

Model 1 1   0.00/5.7 1 0.00/14.6 1 0.00/8.2 1 0.00/18.3 

Model 2 2   0.08/6.6 3 1.85/15.4 2 0.40/9.8 3 1.19/19.7 

Model 3 3   1.58/6.7 2 1.23/15.7 3 1.40/9.2 2 0.51/20.2 

Model 4 4   2.01/7.6 5 3.32/16.1 4 2.03/10.8 5 2.93/20.7 

Model 5 5   2.18/7.6 4 2.89/16.3 5 2.65/10.9 4 2.03/20.6 

Nassella 

trichotoma 
        

Model 1 1 0.00/5.7 4 3.43/15.8 2 7.68/15.7 4 2.93/26.7 

Model 2 2 1.08/6.5 2 0.16/16.7 4 9.68/16.7 2 0.48/27.4 

Model 3 3 1.36/6.5 1 0.00/16.7 3 8.59/16.9 3 0.53/27.5 

Model 4 4 1.68/4.6 3 2.36/15.0 5 13.27/14.9 5 6.15/25.9 

Model 5 5 2.35/8.6 5 7.63/18.5 1 0.00/19.9 1 0.00/30.2 

1
 As presented in Tables 5.2 and 5.5 

2
 ∆DIC is measured as the difference in DIC of that model relative to the number 1 ranked model for a given 

random effect column. 
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9.2 Appendix B.  WinBUGS code and node estimates for competing general detection time 

models 

 

WinBUGS code 

 

*********************** 
model 
{ 
 
for (n in 1:81)   # 81 species 
{ 
 
for (i in 1:14)   # 14 sites surveyed by expert observers 
{ 
     
    procc[n,i] <- p[n]     # probability of occupancy is constant across sites but varies with species 
     
} 
 
for(i in 1:14){ 
    for(k in offset[i]:(offset[i+1] -1)) {   # ‘k’ is observation level variable 
      dd[n,k] <- step(50-tcen[n,k])                                # dd[k] = 0 if observation k censored 
    } 
    d[n,i] <- step(sum(dd[n,offset[i]:(offset[i+1] -1)]) - 0.5 
    } 
 
  for(i in 1:14){ 
    for(k in offset[i]:(offset[i+1] -1)) { 
    pp1[n,k] <- lambda[n,k]*exp(-lambda[n,k]*ft[n,k])           # likelihood if seen at the site (by anyone) and by the observer 
    pp2[n,k] <- exp(-lambda[n,k]*tcen[n,k])                # likelihood if seen at the site (by anyone), but not by the 

# observer - censored 
    pp[n,k] <- dd[n,k]*pp1[n,k] + (1-dd[n,k])*pp2[n,k] 
 
    pn[n,k] <- exp(-lambda[n,k]*tcen[n,k])                      # likelihood if not seen (by anyone) 
    lambda[n,k] <- 1/mu[n,k] 
    mu[n,k] <- exp(alpha + beta[exotic[n]] + gamma[LF[n]] + theta[1]*pk.fl[n] + theta[2]*no.spp[n] + leaf[lf.col[n]] +        
    flower[fl.col[n]]*infl.sz[n] + rare[rarity[n]])   #+ group[clump[n]] + shape[lf.shp[n]]  #average detection time, mu 
    } 
    psite[n,i] <- d[n,i] * procc[n,i] * prod(pp[n,offset[i]:(offset[i+1] -1)]) + (1-d[n,i]) * (procc[n,i]*prod(pn[n,offset[i]:(offset[i+1] -1)]) + 1 
- procc[n,i])       # likelihood at the site level 
     
    Y[n,i] <- 1       # ones trick  
    Y[n,i] ~ dbern(psite[n,i]) 
  } 
  } 
 
# predicting to a new species 
pred.them <- exp(alpha + beta[2] + gamma[3] + theta[1]*1 + theta[2]*1 + leaf[6] + flower[6]*20 + rare[1]) 
 
# specify prior distributions 
for(n in 1:81){ 
p[n]~ dunif(0, 1)    # uninformative uniform distribution 
} 
alpha ~ dnorm(0.0, 0.0001) # uninformative normal distribution 
beta[1] <- 0 
beta[2] ~ dnorm(0.0,0.0001) 
theta[1] ~ dnorm(0.0,0.0001) 
theta[2] ~ dnorm(0.0,0.0001) 
gamma[1] <- 0 
gamma[2] ~dnorm(0.0, 0.0001) 
gamma[3] ~dnorm(0.0, 0.0001) 
gamma[4] ~dnorm(0.0, 0.0001) 
gamma[5] ~dnorm(0.0, 0.0001) 
leaf[1] <- 0 
leaf[2] ~dnorm(0.0, 0.0001) 
leaf[3] ~dnorm(0.0, 0.0001) 
leaf[4] ~dnorm(0.0, 0.0001) 
leaf[5] ~dnorm(0.0, 0.0001) 
leaf[6] ~dnorm(0.0, 0.0001) 
flower[1] <- 0 
flower[2] ~dnorm(0.0, 0.0001) 
flower[3] ~dnorm(0.0, 0.0001) 
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flower[4] ~dnorm(0.0, 0.0001) 
flower[5] ~dnorm(0.0, 0.0001) 
flower[6] ~dnorm(0.0, 0.0001) 
rare[1] <- 0 
rare[2] ~dnorm(0.0, 0.0001) 
rare[3] ~dnorm(0.0, 0.0001) 
rare[4] ~dnorm(0.0, 0.0001) 
rare[5] ~dnorm(0.0, 0.0001) 
 
} 
 
# specify initial values 
Inits 
list(beta = c(NA,0), flower = c(NA,0,0,0,0,0), rare = c(NA,0,0,0,0), leaf = c(NA,0,0,0,0,0), gamma = c(NA,0,0,0,0), theta = c(0,0), 
alpha = 0, p = 
c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0
.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,
0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5)) 
 
# specify data 
Data 
# Data needs to contain explanatory variables …[k], detect time: ft[k], censored time: tcen[k], and offset[i+1] 
 

***************************************** 
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Testing the influence of site and observer via the addition of random effects to the general model 

of detection time 

 
The addition of random effects to the nominal best model has a significant impact on the DIC value of 

the model (Table B1), however there is no qualitative change in the rank order of predictors included 

in the model (Table B2), and estimates of average detection time predicted by fixed and mixed effects 

models for the 10 test species are not statistically different (Table B3).  Even without the inclusion of 

random effects, the general model of detection time is a large model with many parameters to be 

estimated.  The addition of the random effects results in a complex model that is cumbersome to run 

and fitting mixed effects models for all combinations of predictor variables would not be a trivial task.  

Because the addition of random effects results in no qualitative change in model inference, model 

results and predictions will be discussed without the inclusion of random effects in this study. 

 
Table B1.  Differences in DIC (∆DIC) between the best fixed effect general detection time model and mixed 

effects models with random effects included for site (re_site), observer (re_obsr) and both variables.  The final 

column shows the effective number of parameters (pD) estimated by the model. 

 Model ∆DIC pD 

1 �� ~ exp(α + rare + LF + lf.col + no.sp + pk.fl + exotic + fl.col*infl.sz) 0.00 76.04 

2 �� ~ exp(α + rare + LF + lf.col + no.sp + pk.fl + exotic + fl.col*infl.sz + re_obsr) -40.18 80.90 

3 �� ~ exp(α + rare + LF + lf.col + no.sp + pk.fl + exotic + fl.col*infl.sz + re_site) -56.69 87.30 

4 �� ~ exp(α + rare + LF + lf.col + no.sp + pk.fl + exotic + fl.col*infl.sz + re_obsr + re_site) -79.96 90.23 

 

 
Table B2.  Rank order of the significance of predictors included in the best general detection time model with 

and without site and observer random effects.  Numbers in brackets indicate the model number as in Table 6.6.  

Predictors with a higher absolute value are assumed to have a greater influence over detection times. Where 

variables are categorical, rank is determined by the largest absolute value for a category coefficient.  Asterisks 

indicate a small change in the rank order of categories within a single variable. See Appendix 6.2 for all node 

estimates for mixed effects models. 

Predictor Variable 

Rank Order of Predictor 

Fixed 

Effect (1) 

Observer Random 

Effect (2) 

Site Random 

Effect (3) 

Observer & Site 

Random Effects (4) 

Lifeform 1 1* 1 1 

Rarity 2 2 2 2 

Leaf colour 3 3 3* 3* 

Native/exotic 4 4 4 4 

Peak flowering 5 5 5 5 

Inflorescence size/colour 6 6 6 6 

Number similar species 7 7 7 7 

 

 

Table B3.  Average detection times for the 10 test species as predicted by the best general detection time model without 

(1) and with (2-4) random effects for site and observer.  Numbers in brackets indicate the model as described in Table 6.6.  

95% credibility intervals are shown in brackets. 

Species 
Predicted Average Detection Time (mins/ha) 

Fixed Effects (1) Mixed Effects (2) Mixed Effects (3) Mixed Effects (4) 

*Anagalis arvense 26.62 (19.77, 35.18) 29.74 (15.71, 28.02) 21.16 (13.48, 31.2) 27.33 (12.89, 63.98) 

*Bromus hordaceous 66.53 (39.57, 105.6) 68.01 (31.34, 134.5) 58.23 (31.49, 99.51) 74.44 (30.52, 182.9) 

Burchardia umbellata 12.61 (3.85, 30.92) 13.07 (3.64, 34.49) 9.34 (2.70, 23.77) 9.89 (2.43, 29.08) 

Dianella amoena 476.9 (146.0, 1207.0) 493.7 (127.9, 1366.0) 548.0 (152.6, 1414.0) 725.6 (168.1, 2261.0) 

Linum marginale 26.47 (15.8, 41.7) 27.61 (12.99, 53.93) 20.33 (10.76, 34.49) 24.35 (9.91, 60.37) 

*Nassella neesiana 16.71 (6.12, 37.73) 21.08 (6.45, 52.89) 14.30 (4.64, 33.87) 19.53 (4.76, 59.89) 

*Nassella trichotoma 12.53 (5.59, 24.68) 14.73 (5.39, 32.98) 10.15 (4.02, 21.16) 13.27 (3.97, 37.57) 

Pimelea spinescens 1499.0 (353.9, 4823.0) 1819.0 (363.5, 5650.0) 1619.0 (337.1, 4804.0) 2347.0 (408.3, 8141.0) 

Plantago guadichaudii 291.6 (172.2, 468.1) 332.1 (147.0, 681.1) 250.3 (134.0, 428.9) 340.0 (138.6, 814.9) 

*Rosa rubiginosa 72.69 (18.25, 198.7) 122.4 (20.21, 359.1) 89.24 (18.35, 245.4) 173.3 (22.35, 772.5) 
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Node estimates for competing candidate models within 2 DIC units of the best general detection 

time model 

 

Table 9.4.  Node statistics for the best general model of detection time for Western (Basalt) Plains Grassland 

species.  Negative values result in a decrease in the estimated average time to detection.  

 

Node Mean 95% Credible Interval 

Α 3.75 (2.60, 4.95) 

Lifeform 

- phanerophytes 

- chamaeophytes 

- hemicryptophytes 

- geophytes 

- therophytes 

 

0 

-1.12 

-0.87 

-1.75 

-0.89 

 

(0,0) 

(-2.38, 0.11) 

(-2.01, 0.25) 

(-2.90, -0.61) 

(-2.06, 0.24) 

Leaf colour 

- grey-green 

- blue-green 

- dark green 

- light/dull green 

- bright green 

- green 

 

0 

-0.77 

-0.060 

-0.64 

-0.39 

-0.83 

 

(0,0) 

(-1.30, -0.23) 

(-0.64, 0.52) 

(-1.55, 0.31) 

(-0.78, 0.018) 

(-1.39, -0.27) 

Number of species 0.057 (0.034, 0.079) 

Peak flowering 0.36 (0.17, 0.53) 

Exotic 

- exotic 

- native 

 

0 

0.65 

 

(0,0) 

(0.30, 0.98) 

Flower colour: 

flower size 

- cream 

- yellow 

- green 

- blue/purple 

- pink/red 

- brown/black 

 

 

0 

0.019 

0.0076 

-0.0078 

0.033 

-0.090 

 

 

(0,0) 

(-0.043, 0.082) 

(-0.016, 0.037) 

(-0.031, 0.016) 

(0.013, 0.054) 

(-0.12, -0.062) 

Rarity* 

-LWL 

-LNL 

-LWS 

-LNS 

-SNS 

 

0 

0.19 

0.55 

0.96 

1.45 

 

- 

(-0.26, 0.69) 

(0.27, 0.84) 

(0.59, 1.35) 

(0.35, 2.59) 

*Rabinowitz rarity categories.  LWL: large geographic range, wide habitat specificity, large local population; 

LNL: large geographic range, narrow habitat specificity, large local population; LWS: large geographic range, 

wide habitat specificity, small local population; LNS: large geographic range, narrow habitat specificity, small 

local population; SNS: small geographic range, narrow habitat specificity, small local population. 
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