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Executive Summary

Invasive plant pests and diseases pose a significant threat to Australia in terms
of agricultural production losses, loss of market access, environmental damage,
and loss of amenity. Australian governments invest in the mitigation of these
risks through improved border management, early detection surveillance, and
effective contingency plans for containment and eradication. Effective
deployment of resources for early detection surveillance will pre-emptively
lower Australia’s potential liability for incursion costs.

The significant resources consumed during emergency response to major pests
can be reduced by a more informed understanding of the relationship between
pests, the incursion environment and surveillance information. Modelling can
guide policy makers on the appropriate course of action for response
management, including technical feasibility and the cost benefit of eradication
or containment. It is, however, extremely challenging to develop a generic
decision support tool for plant pests and diseases given their tremendous
diversity (spanning insects, bacteria, viruses, fungi, molluscs, and nematodes).
Species-specific models may offer high biological and ecological fidelity and
allow pest-specific policy questions to be posed, but may not be readily
extended to other pests. Generalised models may cover a broad range of pests
but be unable to adequately represent biological and ecological subtleties, and
support policy specific to individual pests.

The mandate of CEBRA project 170606 ‘Developing models for the spread and
management of National Priority Plant Pests’, was to develop a flexible
modelling framework that would allow decision support tools to be constructed
cost efficently for a wide range of plant pests and pathogens. The chosen
approach was to redevelop the Commonwealth’s Australian Animal DISease
Model (AADIS), to simulate the spread and control of plant pests, on both a
regional and national scale. The new model is called APPDIS - the Australian
Plant Pest and DISease model.

APPDIS can represent a pest population as a point incursion or an established
population at specified locations. The pest population waxes and wanes over

time based on configurable criteria such as temperature, rainfall, elevation,



vegetation, land use, and wind. Spread is modelled through steady diffusion
into adjoining areas (for example, through natural dispersal), and/or sporadic
longer-range jumps (for example, via human-mediated hitchhiking). Detection
of a plant pest may occur through general surveillance, early detection
surveillance (based on an established trapping grid), or delimiting surveillance.
A multi-part treatment program progressively reduces a pest population and is
followed by post-treatment surveillance that will either conclude that the pest
has been eradicated, or trigger further treatment. All control and eradication
activities are dynamically constrained by the available resources, and costed

for the purposes of relative comparisons of control strategies.

The APPDIS modelling platform is a flexible decision support framework to
assist policy makers evaluate strategies for the detection and
control/eradication of economic and environmental pests, with respect to
efficacy and cost. As per the AADIS model, incursions, detection, surveillance,
treatment, and proof of freedom are all graphically visualised as they occur.
The model may thus also be useful for communicating incursion dynamics and

policy concepts in a classroom setting.

Two case studies are provided to illustrate the flexibility of the model: a
regional-scale study of the control/eradication of an established tramp ant
population, and a national-scale study of the detection and eradication of an
exotic fruit fly, after a point incursion.
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1 Introduction

1.1 Project overview

In 2016, Australian governments identified and endorsed 42 groups
of plant pests as National Priority Plant Pests (NPPP), in order to
focus attention on major threats posed to agriculture, environment
and amenity. Biosecurity activities to manage the risk associated
with NPPP include improved border management, early detection
surveillance, and effective contingency plans for containment and

eradication.

The considerable resources consumed by early detection
surveillance and emergency response, can be reduced by a more
informed understanding of the relationship between pest ecology,
the incursion environment, surveillance information, and control
methods. These spatiotemporal relationships can, however, be
complex and difficult to understand without the aid of computer-

based models.

The mandate of CEBRA project 170606 ‘Developing models for the
spread and management of National Priority Plant Pests’, was to
develop a flexible modelling framework that would allow cost
efficient decision support tools to be constructed for a wide range of
plant pests and pathogens. The chosen approach was to redevelop
the Commonwealth’s Australian Animal DISease Model (AADIS)
(Bradhurst et al., 2015; 2016), to simulate the spread and control of
plant pests, on both a regional and national scale. The AADIS model,
was originally created to assist with the development of emergency
animal disease policy. It allows relative comparisons to be made (in

terms of efficacy and cost), between candidate strategies for the
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detection of, control of, and proof of freedom from, animal disease.
This report describes the redevelopment of the AADIS model as
APPDIS (the Australian Plant Pest and Disease model), a decision
support tool to help guide policy on early detection surveillance and
response management strategies for plant pests.

Effective early detection surveillance can pre-emptively lower
Australia’s potential liability for incursion costs. Modelling
approaches need to consider the likely points where a pest can
establish and the early stages of spread in relation to surveillance
intensity and extent. Scenarios need to consider the likely success
of response activities at the initial detection in order to identify the
value of surveillance. The APPDIS model allows a plant pest
incursion to be simulated anywhere in Australia at any point in time.
Once established, a pest population spreads over time and space
according to environmental suitability, via both natural and assisted
spread pathways. The simulated initial detection of a plant pest may
arise from early detection surveillance (based on a national trapping
grid), or general surveillance. APPDIS allows useful experimentation
on the cost effectiveness of a trapping grid design (via configurable
trap locations, spacings, lure types, costs, and
sensitivity/specificity), and the implications of early versus late
detection.

Containment and eradication of a plant pest relies upon adequate
delimitation of an incursion. It can be challenging to estimate the
extent of a pest in relation to presence and absence data,
particularly for pests with broad host ranges, complex spread
pathways and poor detectability. There are options to either increase
surveillance to better understand the extent of the incursion or to
increase treatment intensity and extent in order to cover

uncertainty. Even for well-studied pests, there can be gaps in the



understanding of ecology, surveillance efficacy, and control
strategies. The significance of uncertainty is often not appreciated
until viewed in the context of a control and containment program.
Spatiotemporal models can be useful for testing scenarios with
complex relationships that are subject to a great deal of uncertainty.
APPDIS allows useful experimentation on the cost effectiveness of
delimiting surveillance and post-treatment surveillance (via
configurable trap spacings, lure types, costs, and
sensitivity/specificity), and treatment (via configurable treatment
efficacy and cost). All control actions simulated by APPDIS have
user-defined durations, costs, and resource requirements. This
allows useful investigation into the impact of resource shortfalls on
the efficacy and cost of managing an incursion.

Case studies on an established invasive ant and an exotic fruit fly
incursion are provided to illustrate the detailed modelling process
needed to develop a reasonable plant pest model. The invasive ant
case study is a regional-scale simulation of an established plant pest
population and looks at the feasibility and cost of eradication. The
exotic fruit fly case study is a national-scale simulation of pest point
introductions at various locations around Australia, and looks at the
likely time to detection, and feasiblity and cost of control. The case
studies demonstrate a range of population growth, spread,
surveillance, and treatment options available in APPDIS. It is
important to note that the purpose of this project is the
development of a modelling framework for future use by plant
health specialists in the study of specific plant pests. As such, the
case studies are for illustrative and explorative purposes rather than
making a definitive statement on the pests in question.

There will of course be challenges in the adoption of the APPDIS
model as a plant health decision support tool. The model will need



to be separately configured and validated for each plant pest under
study. This will require personnel versed in pest ecology, plant
health policy, and the APPDIS modelling platform (including the
assembly of supporting data, parameterisation, designing and
running incursion scenarios, and statistical interpretation of

simulation results).

This project aligns with the strategic objectives of the Department of
Agriculture and Water Resources to safeguard Australia’s animal and
plant health status in order to maintain overseas markets and
protect the economy and environment from the impact of exotic
pests and diseases, through the implementation of emergency
response arrangements (Department of Agriculture and Water
Resources, 2019a; 2019b).

1.2 Report overview

Section 1 introduces the project.

Section 2 provides context for the project with a brief review of plant
pest modelling.

Section 3 presents the APPDIS conceptual model. This includes how
a study area is defined, how the abundance of a pest population is
represented, how the pest population spreads via jump-diffusion
processes, and how populations are detected, treated and deemed
absent.

Section 4 outlines the software implementation of the conceptual

model.

Sections 5 and 6 describe a regional-scale case study on the spread,

and control of an established tramp ant population near Cairns.



Section 7 describes a national-scale case study on the spread and
control of an exotic fruit fly after a point introduction at the port of

Cairns.

Section 8 provides an overall discussion on the project findings
including model limitations, applicability of the model to other plant
pests, and possible future work.

1.3 Project workshops

A project launch workshop was held on the 29™ August 2017 at the
Department of Agriculture in Canberra. The workshop was attended
by plant health specialists from the Department of Agriculture
(Biosecurity Plant and the Office of the Chief Plant Protection
Officer), the Australian Bureau of Agricultural and Resource
Economics (ABARES), and the NSW Department of Primary
Industries. Advice and consensus was sought from the participants
on the project charter and plans. The workshop report is provided as
Appendix B.

A second project workshop was held on the 21 June 2019 at the
Department of Agriculture in Canberra. The workshop was attended
by plant health specialists from the Department of Agriculture
(representing agricultural and environmental biosecurity), ABARES,
and the Biosecurity Analytics Centre.. The APPDIS model prototype
was demonstrated via the two case studies and feedback sought
from the participants on the usefulness of the model as a decision
support tool for NPPP. The workshop report is provided as Appendix
C.



2 Modelling approaches for plant pests

Emergency response planning for exotic pests can be challenging
when there is limited understanding of their ecology, and/or the pest

is absent or rare.

Theoretical models allow policy makers to explore a variety of
incursion scenarios and the effectiveness of different surveillance
and treatment strategies. Models can be broadly classified as
ecological (simulating species distribution and/or spread), control
(simulating surveillance and treatment mechanisms), or a

combination of both.

In this section we describe how a useful NPPP model should include
a means of specifying the initial pest population; a means of
representing population dynamics over time and space; and a
means of applying policy-based surveillance, control and eradication
measures to the population, in order to assess efficacy, resource
requirements and cost.

2.1 Species distribution models

Species distribution models (SDMs) have been widely used for
modelling the static distribution of native and exotic plant pests
across a large geographic space. Correlative SDMs, such as MaxEnt
(Phillips, Anderson & Schapire, 2006), relate spatially explicit
environmental data to pest occurrence records (Aurambout et al.,
2009; De Meyer et al., 2010). While MaxEnt is limited in its use of
climate variables (important in determining species distributions
(Yang et al., 2013; Deutsch et al., 2008)), the model estimates the
relative contribution of each environmental variable to an



occurrence record. Although SDMs may be limited by coarse input
data, outputs can help explain large changes in potential habitats of
pests (Sultana et al., 2017). These models are restricted to using
presence-only data to tune model parameters, which is a
considerable limitation given that critical exotic pests are rarely
detected.

Mechanistic SDMs such as CLIMEX are similar to correlative SDMs,
but use a physiological setting to fit the environmental niche of the
pest to occurrence records (De Villiers et al., 2015; Sutherst,
Murdiyarso & Widayati, 1999). These models are more biologically
rational, but they are harder to parameterise. While the climate data
backing CLIMEX is more refined than MaxEnt, the lack of other
environmental parameters in CLIMEX is a considerable limitation
(Kriticos et al.,, 2003). Mechanistic SDMs can also require
microclimate datasets which are difficult to obtain for a broad range
of pests.

SDMs are a useful starting point for understanding the extent of the
area that is at risk and, to a lesser extent, the areas that may have
relatively high or low establishment and growth potentials if the pest
were introduced there. However, incursions are dynamic processes
and to effectively prepare for them, there is a need to explore where
the pest may arrive and how it will spread.

2.2 Population dynamics models

Population dynamics models can represent the incursion
characteristics that need to be managed over time. DYMEX (Parry,
Aurambout & Kriticos, 2011) is one example that uses the life cycle
of a pest to drive population dynamics (Sutherst, Maywald & Russell,
2000). Another is the Generic Pest Forecast System (GPFS) (Hong et



al., 2015) which represents multiple processes in population
dynamics such as growth rate as a function of temperature, and
mortality independently driven by cold stress, heat stress, and soil
moisture. Population dynamics models like GPFS and DYMEX are
generally not spatially enabled due to higher demand for
computational resources. GPFS has been used in a large-scale
spatially explicit model (Magarey et al., 2015), but DYMEX has only
been used at small spatial scales (Whish et al., 2015). Large-scale
spatial models are needed to understand population behaviour
across heterogeneous landscapes (such as national-level
simulations) (Lopes, Spataro & Arditi, 2010).

Underlying these sophisticated modelling systems are some basic
mathematical models to represent population growth and spread.
The logistic growth function (Kingsland, 1982) can be implemented
cell-wise in a spatial model (Kehlenbeck et al., 2012; Law, Murrell &
Dieckmann, 2003). The logistic function requires three parameters:
an initial population, a carrying capacity (which can vary spatially
with environments (Roughgarden, 1975)), and a growth rate
(typically varying with temperature). While the logistic function is
simple and has been criticised for not explicitly representing
biological processes and assuming homogenous growth rates
between individuals (Kingsland, 1982), it is still frequently used.

A number of spatial models have been developed to project
population growth over large geographical areas such as stage
structured and impulsive differential equation models. Stage
structured models can simulate population dynamics for discrete
life-stages, where dispersal and reproduction vary with
environmental/host variables (Crespo-Perez et al., 2011). Impulsive
population models better represent population dynamics (Xiao,
Cheng & Qin, 2006), but require considerable expertise to use them.



2.3 Control models

Control models consider the interaction of surveillance and potential
eradication and response strategies in response to detecting an

incursion.

Surveillance models need to relate the resources that are applied to
finding an invading pest to the probability of detecting the pest
given the state of the population at that surveillance point.
Sensitivity of detection is an elementary driver of surveillance value
and yet can difficult to calculate. Lure concentration and distance
from trap have been used together to model trapping efficiency
(Branco et al., 2006). The effect of trap distance and lure
concentration on capture rates can be determined theoretically, but
spatial environmental variation can have an impact on capture rates
(Manoukis, Hall & Geib, 2014; Renton et al., 2017).

Most treatment models are built for managing established pests and
often rely on some threshold to initialise a management strategy.
Treatment models for eradication and containment however need to
account for the probability of sub-detectable populations in carrying
an incursion forward. Models that combine surveillance and
treatment typically have been used to estimate total control
program cost (Bogich, Liebhold & Shea, 2008; Gerber, Beger,
McCarthy & Possingham, 2005; Field et al.,, 2004; Hauser &
McCarthy, 2009; Holden, Nyrop & Ellner, 2016). Costs could relate to
early detection traps (set up, maintenance, or sample collection),
delimiting surveillance traps (set up, maintenance, or sample
collection), or the treatment process (treatment substance
preparation, application of treatment, and post treatment
surveillance). While the ultimate benefit is eradication of the pest,
the quantified benefit is the minimisation of costs. Combined control
models have been used extensively to determine the optimal
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trapping density (Epanchin-Niell et al., 2014; Bogich, Liebhold &
Shea, 2008). However, these specialised models rarely consider the
complete incursion scenario, instead exploring an isolated

management scenario.

Models for incursion management, like all models, will be
simplifications of real systems. For example, models that
characterise spread as an increasing uniform circle with radius, r,
that grows with time (Epanchin-Niell et al., 2014; Bogich, Liebhold &
Shea, 2008), will be unrealistic in heterogeneous environments.
Similarly, pest populations might be represented to grow logistically
with constant growth rate (Epanchin-Niell et al.,, 2014), when in
reality, growth rate may be influenced by environmental variables
such as temperature. Other models may disregard population
dynamics entirely, instead enhancing the incursion model by
determining the probability of pest arrival coupled with a probability
of detection at each time step (Hauser & McCarthy, 2009; Holden,
Nyrop & Ellner, 2016). Models should preferably be kept as simple
as possible to answer the questions that they are built to address.
However, for incursion management, it is often difficult to
understand the relationships between components until they can be
seen interacting with each other in a rich spatiotemporal

environment.

2.4 Useful features for an NPPP model

Invasive exotic pests such as those on the list of National Priority
Plant Pests often lack robust data on incursion likelihood, population
dynamics and spread pathways, surveillance strategies, and
effectiveness of treatments. Models that simulate specific
components of the incursion-eradication process may need to

simplify, or make assumptions on, the non-modelled components.
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For example, a surveillance optimisation model for a specific pest
might simplify the underlying spread mechanism by assuming a
constant growth rate (Branco et al., 2006). Customisable models
that simulate many aspects of an incursion can allow simplications
and assumptions to be assessed. This is especially useful when
minimal information is available on the pest under study.

Invasive pest populations may spread over multiple scales. For
example, natural dispersal may result in short-range diffusive
spread while wind vectors and/or human-mediated dispersal may
result in longer-range sporadic jumps (Renton et al., 2017). Most
invasive pest spread models will require at least two spread scales
(Figure 1). The spread pathways in a model should be highly
configurable as the frequency, direction, and distance of pest

movements will be species-specific.

Habitat
suitability
. Seed cell
O Spread cell
Diffusion
O — Jump
{? | _ ED] Early detection trap

Figure 1. Spread pathways from a seed cell in a spatial and fully dynamic model.

Early detection trapping grids or surveillance strategies already
exist for some high priority pests and so an NPPP model should be
able to incorporate baseline activities prior to a detection.

Selectively relocating traps and running simulations should be
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facilitated by the model structure, allowing the user to trial several
trap network patterns. In addition to specific surveillance carried out
by trap networks, general surveillance detections by members of
the public should also be incorporated into the model framework as
it has been shown to be an important aspect of early detection
(Cacho et al., 2010; Hester & Cacho, 2017; Wilson et al., 2004).

Once an emergency pest has been detected, additional surveillance
is implemented to delimit the population. Surveillance strategies are
determined by the pest in question and the detection scenario. As
such, an NPPP model’s surveillance component should be flexible
and not tied to specific pests or policies.

Treatment strategies within the modelling platform need to be
customisable for different chemical or cultural treatments and
associated with resources to implement the strategy. Both the
effectiveness of the treatment and the structure of the
implementation need to be manipulated within the model to explore
the plausible outcomes. Treatment strategies and responses are
highly dependent on the uncertainty surrounding the incursion
scenario and industry / government politics which can lead to a
quite complex decision-making process.

In summary, National Priority Plant Pests are an ecologically diverse
group comprising insects, bacteria, viruses, fungi, molluscs, and
nematodes, and in some cases are vector-borne. The pests all have
potential to inflict serious economic and/or environmental harm to
Australia. There are limited opportunities for early detection and
control/eradication policies to be informed from first-hand
experience. There is a need for a generalised plant pest decision
support tool that is flexible (not tied to a specific pest), scalable
(operable regionally and nationally), accounts for heterogeneity in

the host environment, and allows relative comparisons of strategies

12



for early detection surveillance, delimiting surveillance, treatment,
and post-treatment surveillance, with respect to efficacy, resource
usage and cost. Importantly, a generalised plant pest model should
be extensible to a range of pests via user configurable parameters,
i.e., not requiring specialised mathematical reformulation and/or

computer programming.

3 Conceptual model

In this section we describe the key components of the APPDIS model
from a conceptual point of view, i.e., focusing on high level design

decisions rather than implementation specifics.

The APPDIS plant pest model is stochastic discrete-event simulation
based on a geographic automata (Torrens and Benenson, 2005;
Laffan et al., 2007). The study area of interest is represented by a
grid delineated by equidistant lines of latitude and longitude. The
modelling unit of interest is a cell within the grid. Each cell has
environmental attributes (e.g., elevation, average weekly
temperature, annual rainfall, human population density, vegetation
index, land use category, average weekly wind speed, etc.), that
determine the suitability of the cell for a plant pest of interest. The
initial presence of a plant pest may be explicitly set on a cell-by-cell
basis, or estimated by the model according to configurable
environmental criteria. The abundance of a plant pest in a cell
depends on the time that the population has been present and on
the environmental suitability of the cell.

The problem of modelling the abundance and spread of a plant pest
in a gridded environment is reduced to two separate sub-problems:
within-cell abundance and between-cell spread. The within-cell
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abundance of a pest is modelled with an equation-based approach
and the between-cell spread of a pest is modelled with a stochastic
agent-based approach. In this sense, APPDIS can be thought of as a
hybrid agent-based model where each (cell) agent may have an
embedded mathematical sub-model representing a pest population.

3.1 Within-cell abundance and spread

3.1.1 Logistic growth model

The population density of a pest within a cell over time is estimated
with a logistic growth function, representing how the population
initially grows exponentially, and then the growth rate decreases as
the population approaches the carrying capacity of the cell. The
carrying capacity of a cell is the theoretical maximum number of
individuals that the cell can sustain. Cell carrying capacities can
vary across the model grid, driven by environmental variables (such
as temperature, elevation, land use and vegetation), that influence

pest numbers.

The logistic growth model is given by Equation 1.

K (Egn. 1)

d(t|=
LS l}eR[

1+
D,

where

d(t) = pest population density on day t

D, = initial pest population density (on day t=0)

K = normalised carrying capacity of the cell

R = pest population growth rate parameter on day t
The normalised carrying capacity K of a cell is derived from user-
defined cell suitability data specific to the pest being modelled.
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3.1.2 Logistic growth rate

The slope of a logistic growth curve is determined by the growth
rate parameter R. If the initial population density and a subsequent
population density at a fixed point in time are known, a constant
population growth rate R can be estimated using Equation 2.

| D, (Egn. 2)
n —_—

+In[K—D,|— In[K—D,|

R=

—X

where

R = population growth rate
Do = normalised population density on day 0
Dx = normalised population density on day x

K = normalised carrying capacity of the cell

Figure 2 illustrates how the slope of the logistic growth increases
with the growth rate.

Growth Rate
= 0.05

F'n:npulatin:-_n Density _

Figure 2. Logistic growth curves across a range of growth rates R.



Case study 1 (Sections 5 and 6) provides an example of APPDIS
utilising a constant logistic growth rate.

The population growth rate R, however, is unlikely to be a static
value, and actual population values may not be available from
empirical studies. Alternatively, R can be estimated from published
laboratory data on pest development and mortality in response to
temperature. Case study 2 (Section 7) provides an example of
APPDIS utilising temperature dependent logistic growth, and the
derivation of growth rate parameters. This approach allows colder
temperatures to be associated with negative growth rates and thus
trigger seasonal declines of a population.

3.2 Between-cell spread

As the within-cell population of a pest increases or decreases over
time (per the configured logistic growth function), the rising or
falling ‘dispersal pressure’ within the infested cell affects the
probability of between-cell spread. The steady short-range spread of
a plant pest between adjoining cells is modelled by a diffusion
pathway. The sporadic longer-range spread of a plant pest between
cells is modelled by one or more jump pathways.

3.2.1 Diffusive spread between adjoining cells

The progressive spread of a plant pest from an infested cell into an
adjoining naive cell is modelled with a stochastic diffusion process
based on the following factors:

e the source cell's pest population density

e the source cell's environmental conditions (e.g., wind and/or

temperature criteria) (optional)

e the environmental suitability of the destination cell
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e the elevation gradient between the source and destination
cells (optional)

The probability of a diffusion event occurring on any given day is
given by Equation 3.

| dle| Eqn. 3
pyltl= 1 -1 -P;S,w w,w,|" (Eqn. 3)

where

p4(t) = probability of diffusion occurring on day t

P« = baseline daily probability of diffusion occurring
(configurable per land use category)

Sq = normalised suitability of the destination cell

wg = distance weight between the source and destination cells
w: = temperature weight of the source cell (optional)
w. = elevation weight of the source cell (optional)

d(t) = normalised population density of source cell on day t

The distance weight wy is derived from the distance between the
centroids of the source infested cell and the candidate adjoining
cell. It simply represents the decreased probability of diffusion into
the north-west, south-west, north-east and south-east neighbours
(wg = 0.7071), as opposed to the north, south, west and east
neighbours (wys = 1.0). (Note that the diffusion pathway can
optionally be configured to include non-adjoining cells, in which case
the distance weight is calculated from a spatial kernel based on the
centroids of the source and destination cells, with either linear or
exponential decay.)

The (optional) temperature weight w: is derived from the
relationship between the average weekly temperature t for the cell
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and four configured temperature thresholds for pest activity: min,
optimal_lower, optimal _upper and max.

w: = 0 (for t < min)

w; = linear increase from 0 to 1 (for min < t < optimal_lower)

w: = 1 (for optimal_lower < t < optimal_upper)

w; = linear decrease 1 to O (for optimal_upper < t < max)

w: = 0 (for t > max)
The (optional) elevation weight we is derived from the gradient
between the centroids of the source infested cell and the candidate
destination cell. It allows the wuser to increase/decrease the
probability of diffusion uphill/downhill (per 100 metre difference in

elevation).

3.2.2 Jumps between cells

The sporadic longer-range spread of a plant pest from an infested
cell into naive cells is modelled with a stochastic jump process

based on the following factors:
e the source cell's pest population density

e the source cell's environmental conditions (e.g., wind,

temperature) (optional)
e the environmental suitability of the destination cell
e the human population density of the source cell (optional)
e the land use of the source cell (optional)

e the land use of the destination cell (optional)

waterways in the source and destination cells (optional)

The probability of a jump event occurring on any given day is given
by Equation 4.
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p,lt)= 1 -[1-PHS,w[" (Eqn. 4)

where

p;(t) = probability of a jump occurring on day t

P, = baseline daily probability of a jump occurring

Hs = normalised human population density of source cell (optional)
Sq¢ = normalised suitability of the destination cell

w: = temperature weight of the source cell (optional)

d(t) = normalised population density of source cell on day t

The jump direction may be random, influenced by the land use
category of the source and destination cells, or influenced by the
weekly prevailing wind direction.

3.2.3 Network-based spread between cells

The spread of plant pests arising from directed movements within
production system-specific networks is an important potential
pathway for the spread of plant pests and diseases. For example, a
plant wholesaler might routinely and exclusively transport products
within an established nework of plant retailers. This type of directed
spatiotemporal spread can be handled by the underlying AADIS
architecture. For example, the animal disease model simulates
consignments from various farm types to saleyards, mixing of
animals at the saleyard, and onward batching to farms, abattoirs or
export. This style of spread is very industry specific and was not part
of the initial model development which focussed more on
generalised spread pathways. Network-driven spread could be
developed as part of a follow-on modelling project on a plant pest

for which there is sufficient network-based movement data.
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3.3 Control and Eradication

3.3.1 General Surveillance

All cells that have both a pest population and a human population
are scanned daily for detections by the general public. The detection
of a pest population is modelled with a stochastic process based on
the following factors:

e the infested cell's pest population density
e the infested cell’s human population density

e the sensitivity of the observer

The probability of a general surveillance detection event occurring
on any given day is adapted from Sharov, Liebhold and Roberts
(1998) and Bogich, Liebhold and Shea (2008), and is given by
Equation 5.

Pd't): 1 _efdit]\ Hs Se (Eqn. 5)

where

pa(t) = probability of detection occurring on day t
d(t) = normalised pest population density of infested cell on day t
Hs = normalised human population density of the infested cell

S. = sensitivity of the observer

The observer sensitivity for unmanaged cells is defined separately
to that for managed cells. A managed cell is any cell that is

undergoing, or has undergone, delimiting surveillance or treatment.
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Figure 3 uses Equation 5 (with Se = 0.70), to illustrate how the
probability of detection varies with respect to the normalised pest
population density and the normalised human population density.

human population density
0.6 —_— 0.1
0.2
0.3
—0.4
— 0.5
0.6
0.7
0.8
— 09
1

probability of detection

0.0 0.2 0.4 0.6 0.8 1.0

pest population density

Figure 3. Probability of general surveillance detection with respect to pest
population density and human population density

3.3.2 Early detection Surveillance

All cells that have both a pest population and a permanent trap
location are scanned daily for active detections. The detection of a
pest population is modelled with a stochastic process based on the
following factors:

e the infested cell's pest population density
e the lure type and spacing of traps in the infested cell

e the sensitivity of the surveillance process (traps and
personnel)

e the specificity of the surveillance process (traps and

personnel)
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The probability of a true positive detection occurring on day t is
adapted from Sharov, Liebhold and Roberts (1998) and Bogich,
Liebhold and Shea (2008), and is given by Equation 6.

pr(t): 1 _e—d[t}ATd Se (Eqn. 6)

where

pre(t) = probability of a true positive detection on day t
d(t) = normalised population density of source cell on day t
A = cell area (hectares)

Ty = trap density (traps per hectare) in the infested cell =
10000 / (trap spacing in metres)?

Se = sensitivity of the surveillance process (traps and
personnel)

Figure 4 uses Equation 6 (with A = 10 ha and S. = 0.96), to illustrate
how the probability of detection inside a cell varies with trap

spacing.

trap spacing
a m
—10m
20m
30 m
— 40 m
S0 m
—60m
70m
— 30 m
0.0 0.2 0.4 0.6 0.8 1.0 90 m

probability of detection

pest population density — 100 m

Figure 4. Probability of specific surveillance detection with respect to pest
population density and trap spacing (in metres)
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Figure 5 uses Equation 6 (with A = 10 ha and S = 0.96), to more
clearly illustrate how the probability of detecting small pest
populations is very sensitive to the trap spacing inside the cell.

trap spacing
3 m
—10m
20m
30 m
—40'm
50 m
—60m
Tom
—_— 30 m
0.00 0.02 0.04 0.06 0.08 0.10 g0 m

tion

probability of dete

pest population density — 100 m

Figure 5. Probability of specific surveillance detection of small pest populations
with respect to trap spacing (in metres)

If a surveyed cell does not yield a true positive result, then it is
checked for a false positive result. The probability of a false positive

detection occurring is given by Equation 7.

Prp— 1 _Sp (Egn. 7)

where

pre = probability of a false positive detection

S, = specificity of the surveillance process (traps + personnel)

If a surveyed cell does not yield a positive result then a true/false
negative result is assigned according to the actual
absence/presence of the pest in the cell. Note that for most plant
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pest applications, specificity will be set to 1 so that all positives,
after undergoing the full suite of testing, will be considered true.

3.3.3 Delimiting Surveillance

After a pest population has been detected in a cell, the surrounding
cells undergo delimiting surveillance. Delimiting surveillance
comprises a configurable number of surveillance visits conducted at
a configurable period. Delimiting surveillance operates in either
Moore mode (where the cells in the Moore neighbourhood of the
detected cell are surveyed), or Radial mode (where all cells within a
configurable distance of the detected cell are surveyed). The
detection of a pest population through delimiting surveillance is
modelled as a stochastic process based on the following factors:

e the surveyed cell's pest population density
e trap spacing in the surveyed cell

e the sensitivity of the surveillance process (traps and

personnel)

e the specificity of the surveillance process (traps and

personnel)

The probability of a true positive detection occurring on day t is
given by Equation 6.

If a cell does not yield a true positive result it is then checked for a
false positive result. The probability of a false positive detection
occurring is given by Equation 7.

A positive surveillance result triggers a treatment program. If a cell
does not yield a positive result then a true/false negative result is
assigned according to the actual absence/presence of the pest in
the cell.
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The pest is deemed absent from a cell once a configurable number
of consecutive negative surveillance results has been reached.

3.3.4 Treatment

All cells that have yielded a (true or false) positive result from
general surveillance, early detection surveillance, or delimiting
surveillance undergo a treatment program. A treatment program
comprises a configurable number of treatments, conducted at a
configurable period. Each treatment reduces the population by a
percentage amount (determined stochastically between a
configured minimum and maximum reduction). A pest population is
deemed extinct if a treatment reduces it to below the configured

minimum population size.

A treatment program may operate in Spot mode (where only the
detected cell is treated), Moore mode (where all cells in the Moore
neighbourhood of the detected cell are treated), or Radial mode
(where all cells within a configurable distance of the detected cell
are treated).

3.3.5 Post-treatment surveillance

Post-treatment surveillance commences at a configurable period
after the completion of the last scheduled treatment. A post-
treatment surveillance program comprises a configurable number of
surveillance visits, conducted at a configurable period. Post-
treatment surveillance is modelled with a stochastic process based
on the following factors:

e the surveyed cell's pest population density
e the trap spacing in the surveyed cell

e sensitivity of the surveillance process (traps and personnel)
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e specificity of the surveillance process (traps and personnel)

The probability of a true positive detection occurring on day t is
adapted from Sharov, Liebhold and Roberts (1998) and Bogich,
Liebhold and Shea (2008), and is given by Equation 6.

If a cell does not yield a true positive result it is then checked for a
false positive result. The probability of a false positive detection
occurring is given by Equation 7.

A positive surveillance result triggers a treatment program. If a cell
does not yield a positive result then a true/false negative result is
assigned according to the actual absence/presence of the pest in
the cell.

A cell is deemed free of the pest after a configurable number of

consecutive negative surveillance results.

3.3.6 Resourcing

Early detection surveillance, delimiting surveillance, treatment and
post-treatment surveillance are all dynamically constrained by
available resources. A ‘resource’ is an arbitrary set of
personnel/equipment/supplies required to carry out a specific job. If
there are insufficient resources to carry out a job, then the job is
queued until sufficient resources are available. The model maintains
resource pools for each resource type (early detection surveillance,
delimiting surveillance, treatment and post-treatment surveillance).
The capacity of each pool increases linearly from an initial minimum

level up to a maximum level as shown in Figure 6.
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Figure 6. Dynamic allocation of resources

The model reports the daily resource usage for early detection
surveillance, delimiting surveillance, treatment and post-treatment
surveillance. If resourcing is set to ‘unlimited’ then the resourcing
levels become a model output (as opposed to a model input that
dynamically constrains the response).
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4 Software model

The Australian Animal Disease model (AADIS) (Bradhurst et al.,
2015), is an epidemiological model developed under funding from
the Australian Government Department of Agriculture. AADIS is a
spatially-explicit simulation model that combines equation-based
and agent-based modelling techniques to represent the spread and
control of emergency disease in livestock. Note that an ‘agent’ in a
modelling context does not refer to an ‘infectious agent’, it is simply
an abstraction of the modelling unit of interest, and will vary with
the modelling domain. For example, when modelling the spread of a
virus in domestic livestock the agent might be a herd of animals,
whereas when modelling the spread of virus in a human population
the agent might be an individual person. The abundance of a
pathogen within an AADIS agent is modelled mathematically, while
the spread of the pathogen between agents is represented with an
agent-based stochastic model. AADIS is written in Java (Oracle,
2015), and employs open-source products such as SQL Power
Architect (SQL Power Group, 2015), PostgreSQL (PostgreSQL, 2015),
OpenMap (BBN, 2015), and Log4) (Apache, 2012).

The following sections describe plant pest specific modifications to
the AADIS modelling framework required to create the APPDIS
modelling framework. UML diagrams (Fowler & Scott, 2000), are

used to convey the key class relationships.

4.1 Database subsystem

APPDIS uses the PostgreSQL relational database to store datasets
that may be large and/or have cross dependencies. Each table in the

database has a corresponding comma-separated values (CSV) input
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file. A wuser updates the database by editing the CSV file
corresponding to the table of interest and then rebuilding the entire
database (to ensure relational integrity between tables). A user may
only add/delete/modify rows of an existing table. The creation of a
new database table or the addition of new columns to an existing
table is a software development activity.

The Weather Grid Data database table was updated with the
following new (per grid cell) attributes:

e suitability - user defined measure of the suitability of the grid
cell to support a pest population

e population density - initial (normalised) pest population
density of the grid cell

e human population - human population count per grid cell

e |and use A - user defined measure of land use within the cell
e land use B - user defined measure of land use within the cell
e land use C - user defined measure of land use within the cell
e land use D - user defined measure of land use within the cell
e land use E - user defined measure of land use within the cell

e watercourses - absence/presence of watercourses in the cell

4.2 Configuration subsystem

4.2.1 Disease configuration

The Disease Configuration class was updated with the following new

parameters:
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Within-cell pest population

enabled - determines whether the plant pest is enabled.
name - the name of the plant pest being modelled.

min_suitability - the minimum suitability value required for a

grid cell to support a plant pest population.

suitability transform - optional linear or log transformation of

the cell suitability scores before use.

population model - the means by which the within-cell growth

of a plant pest population is modelled. Currently the only valid
value is 'logistic'. Note that the carrying capacity of the cell is
determined by the normalised suitability.

temperature dependent - determines whether the population

model depends on temperature.

logistic growth rate - only applies when the population model

is not temperature dependent.

temperature dependent loqistic growth rates - the set of

growth rates corresponding to each temperature in the
configured 'active' range for the plant pest. Only applies when

the population model is temperature dependent.

min temperature - the minimum mean weekly temperature

(degrees Celsius) required for a grid cell to support a plant

pest population.

optimal temperature lower - the lower bound of the ideal

temperature (degrees Celsius) for the plant pest population.

optimal temperature _upper - the upper bound of the ideal

temperature (degrees Celsius) for the plant pest population.
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max temperature - the maximum mean weekly temperature

(degrees Celsius) allowable for a grid cell to support a plant
pest population._

rainfall dependent - determines whether the presence of the

plant pest depends on rainfall.

min rainfall - the minimum annual average rainfall (mm)

required for a grid cell to support a plant pest population.

max_rainfall - the maximum annual average rainfall (mm)
allowable for a grid cell to support a plant pest population.

elevation dependent - determines whether the presence of the

plant pest depends on elevation.

min_elevation - the minimum elevation (metres above sea

level) required for a grid cell to support a plant pest

population.

max_elevation - the maximum elevation (metres above sea

level) allowable for a grid cell to support a plant pest
population.

max population - the maximum number of pests that a 100%

suitable cell can carry.

point introduction population - the initial number of pests in a

naive cell after a user-defined point introduction (e.g., via

arrival in a shipping container)

extinction population - the number of pests in a cell that is

deemed insufficient to sustain a viable population.

quiescence enabled - determines whether a plant pest

population enters a quiescent state when the temperature

falls below the configured minimum temperature.
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e quiescence max days - the maximum number of days outside

the allowable temperature range that a plant pest population

in a grid cell can survive quiescently.

4.21.2 Steady spread of a plant pest population into adjoining

cells

e diffusion enabled - determines whether the plant pest

diffusion (spatial kernel) pathway is enabled.

o diffusion name - the name of the plant pest diffusion process

being modelled, e.g., budding.

e diffusion baseline probability - baseline probability that the

plant pest population in a given grid cell will diffuse out of the
cell on any given day.

e diffusion radius - maximum extent (km) of the spatial kernel

from the centroid of the source grid cell.

e diffusion decay mode - linear or exponential.

e diffusion decay exponent - only applicable to exponential

decay mode.

e diffusion temperature dependent - determines whether the

diffusion of the plant pest depends on temperature.

e diffusion min temperature - the minimum mean weekly

temperature (degrees Celsius) at which diffusion of the plant
pest can occur. Only applies when plant pest diffusion is
temperature dependent.

e diffusion elevation dependent - determines whether the

diffusion of the plant pest depends on elevation.
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diffusion elevation increase effect - the dampening effect (0.0

to 1.0) that an increase in elevation (from source cell to target
cell) has on the probability of diffusion. Only applies when
plant pest diffusion is elevation dependent.

diffusion elevation decrease effect - the amplifying effect (0.0

to 1.0) that a decrease in elevation (from source cell to target
cell) has on the probability of diffusion. Only applies when
plant pest diffusion is elevation dependent.

diffusion wind dependent - determines whether the diffusion

of the plant pest depends on wind.

diffusion _max wind speed - the maximum average weekly
wind speed (km/hour) at which diffusion can occur. Only
applies when plant pest diffusion is wind dependent.

diffusion initial cell population - the plant pest population size

in a naive cell immediately after a diffusion event has

occurred.

4.21.3 Sporadic spread of a plant pest population into other cells

jump enabled - determines whether the plant pest jump

pathway is enabled

jump name - the name of the plant pest jumping process
being modelled, e.g., hitchhiking.

jump land use _dependent baseline probabilities - baseline

probabilities (per land use category) that a plant pest

population will jump out of a cell on any given day.

jump baseline probability - baseline probability that a plant

pest population will jump out of a cell on any given day (only
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applicable if the land use dependent baseline probabilities are
not defined)

jump mode - windborne (where the jump bearing is influenced
by wind direction), random (where the jump bearing is
randomly chosen), or directed (where destination cells must
meet land use eligibility criteria)

human population dependent - determines whether plant pest

jumps are influenced by human population

human_population_source_mandatory - determines whether
jumps may only occur from cells that have human population
density > 0

human_population_destination_mandatory - determines

whether jumps may only land in cells that have human

population density > 0

human_population_destination _leakage (percentage) - allows
some jumps to stochastically to land in cells that have human
population density = 0. Only applies when
human_population_destination_mandatory is set to true. This
reflects, for example, a hitchhiking jump into a wilderness

darea.

jump _land _use_source_dependencies - determines the eligible

land use categories for jump sources

jump _land use_destination_dependencies - determines the
eligible land use categories for jump destinations

jump temperature dependent - determines whether plant pest

jumps depend on temperature.
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4.2.2

jump min temperature - the minimum mean weekly

temperature (degrees Celsius) at which a plant pest jump can
occur. Only applies when plant pest jumps are temperature
dependent.

jump min distance - 1% parameter for the betaPERT (Vose,

2008) distribution governing jump distance (km).

jump most likely distance - 2" parameter for the betaPERT

distribution governing jump distance (km).

jump max distance - 3™ parameter for the betaPERT

distribution governing jump distance (km).

jump initial cell population - the plant pest population size in a

naive cell immediately after a jump event has occurred.

Scenario configuration

The Scenario Configuration class was updated with the following

new parameters:

42.21

Scenario definition

scenario end mode - determines how a scenario ends:

(a) fixed - the scenario ends on a user-specified fixed day.

(b) burned-out - the scenario ends when there are no active or
quiescent cells.

(c) spread-distance - the scenario ends when spread has
reached a specified distance (km). Only applicable to point
incursions.

(d) sentinel - the scenario ends when spread reaches the first
user-specified sentinel cell.
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seed mode - determines how the initial plant pest population

is established:

(a) manual - the initial plant pest population is defined via
specfic grid cell IDs in the scenario configuration file.

(b) endemic - the initial plant pest population is derived by the
model according to environmental criteria specified in the
disease configuration file.

(c) density - the initial plant pest population is defined by
user-supplied (per-cell) population density values specified in
the Weather Grid Data database table.

num manual seeds - the number of grid cells to be manually

seeded with a plant pest population. Only applies to 'manual’
seed mode.

seed cell IDs - the identifiers of the grid cells to be manually

seeded with a plant pest population. Only applies to ‘'manual’
seed mode.

4.2.2.2 Reporting

plant pest spread report enabled - enabling/disabling of the

per-run plant pest spread summary report

plant pest control report enabled - enabling/disabling of the

per-run plant pest control and eradication summary report

plant pest distribution report enabled - enabling/disabling of

the plant pest distribution report (across all runs)

plant pest weekly dump enabled - enabling/disabling of a

weekly detailed report on all cells with either an active or
quiescent plant pest population.
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plant pest monthly dump enabled - enabling/disabling of a

monthly detailed report on all cells with either an active or
quiescent plant pest population.

plant pest yearly dump enabled - enabling/disabling of a

yearly detailed report on all cells with either an active or
quiescent plant pest population.

plant pest daily map snapshot enabled - enabling/disabling of

a daily snapshot of the map (depicting the cells with either an
active or quiescent plant pest population at that point in

time).

plant pest weekly map snapshot enabled - enabling/disabling
of a weekly snapshot of the map (depicting the cells with
either an active or quiescent plant pest population at that

point in time).

plant pest monthly map snapshot enabled - enabling/disabling

of a monthly snapshot of the map (depicting the cells with
either an active or quiescent plant pest population at that

point in time).

plant pest yearly map snapshot enabled - enabling/disabling

of a yearly snapshot of the map (depicting the cells with either
an active or quiescent plant pest population at that point in

time).

plant pest five-yearly map snapshot enabled -

enabling/disabling of a five-yearly snapshot of the map
(depicting the cells with either an active or quiescent plant
pest population at that point in time).

plant pest ten-yearly map snapshot enabled -

enabling/disabling of a ten-yearly snapshot of the map
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4223

(depicting the cells with either an active or quiescent plant
pest population at that point in time).

plant pest dump day of month - the day of the month (1..31)

on which to take a dump/map snapshot.

General surveillance

general surveillance enabled - enabling/disabling of passive

detections from members of the general public

general surveillance sensitivity - sensitivity of an observer in

ah unmanaged area

general surveillance managed area sensitivity - sensitivity of

an observer in an managed area

general surveillance mode (passive or fixed) - allows the first
general surveillance detection to be either stochatic or occur
on a fxed day.

general surveillance first detection day - the fixed day of the

first detection. Only relevant when the general surveillance

mode is passive.

general surveillance first detection cell - the fixed cell where

the first detection occurs. Only relevant when the general

surveillance mode is passive.

4224 Early detection surveillance

early detection surveillance enabled - enabling/disabling of

active detections via the national trapping grid

early detection surveillance trap lure type - the trap lure type

specific to the plant pest being modelled. Sample values are:

methyl eugenol, cuelure, capilure, other.
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e cearly detection surveillance period - the period (in days) at

which a trap is inspected and a result obtained.

e early detection surveillance trap service cost - the cost (in A$)

for a visit to inspect/service a trap.

e cearly detection surveillance resources - the number of

resources required to inspect/service a trap.

e early detection surveillance sensitivity - the sensitivity of the

surveillance process (traps and personnel)

e early detection surveillance specificity - the specificity of the

surveillance process (traps and personnel)

e early detection surveillance min_resources - the minimum

number of resources available to conduct early detection

surveillance.

e cearly detection surveillance max_resources - the maximum

number of resources available to conduct early detection

surveillance.

e cearly detection surveillance resources ramp start - the

number of days after a detection that the number of available
resources start increasing (from the minimum to the

maximum)

e early detection surveillance resources ramp length - the

number of days required to move from the minimum number

of resources to the maximum number of resources.

4.2.2.5 Delimiting surveillance

e delimiting surveillance enabled - enabling/disabling of
delimiting surveillance
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delimiting surveillance mode - either Moore mode (where the

cells in the Moore neighbourhood of the detected cell are
surveyed), or Radial mode (where all cells within a
configurable distance of the detected cell are surveyed).

delimiting surveillance duration - the period (in days) it takes

to conduct surveillance in a cell

delimiting surveillance period - the period (in days) between

surveillance visits

delimiting surveillance min visits - the minimum number of

visits required before a determination that the pest is ‘absent’
may be made.

delimiting surveillance trap service cost - the cost (in A$) for a

visit to inspect/service a trap

delimiting surveillance resources - the number of resources

required to conduct surveillance in a cell

delimiting surveillance sensitivity - the sensitivity of the

surveillance process (traps and personnel)

delimiting surveillance specificity - the specificity of the

surveillance process (traps and personnel)

delimiting surveillance trap spacing - the spacing (in metres)

between traps

delimiting surveillance min_resources - the minimum number

of resources available to conduct surveillance in a cell

delimiting surveillance max_resources - the maximum number

of resources available to conduct surveillance in a cell
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4.2.2.6

delimiting surveillance resources ramp start - the number of

days after a detection that the number of available resources

start increasing (from the minimum to the maximum)

delimiting surveillance resources ramp length - the number of

days required to move from the minimum number of

resources to the maximum number of resources.

Treatment

treatment enabled - enabling/disabling of treatment programs

treatment mode - either Spot mode (where only detected cells

are treated), Moore mode (where the cells in the Moore
neighbourhood of the detected cell are surveyed), or Radial
mode (where all cells within a configurable distance of the
detected cell are surveyed).

treatment duration - the period (in days) it takes to conduct

surveillance in a cell

treatment period - the period (in days) between surveillance

visits

treatment min visits - the minimum number of visits required

before a determination that the pest is ‘absent’ may be made.

treatment visit cost - the cost (in A$) to treat a cell

treatment resources - the number of resources required to

treat a cell

treatment min effectiveness - the minimum reduction in

population (%) from a single treatment

treatment max effectiveness - the maximum reduction in

population (%) from a single treatment
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4.2.2.7

treatment trap spacing - the spacing (in metres) between

traps

treatment min_resources - the minimum number of resources

available to treat a cell

treatment max resources - the maximum number of

resources available to treat a cell

treatment resources ramp start - the number of days after a

detection that the number of available resources start
increasing (from the minimum to the maximum)

treatment resources ramp length - the number of days

required to move from the minimum number of resources to

the maximum number of resources.

Post-treatment surveillance

post-treatment surveillance enabled - enabling/disabling of

post-treatment surveillance

post-treatment surveillance duration - the period (in days) it

takes to conduct surveillance in a cell

post-treatment surveillance period - the period (in days)

between surveillance visits

post-treatment surveillance min visits - the minimum number

of visits required before a determination that the pest is
‘absent’ may be made.

post-treatment surveillance visit cost - the cost (in A$) to

inspect/service a trap.

post-treatment surveillance resources - the number of

resources required to conduct surveillance in a cell
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post-treatment surveillance sensitivity - the sensitivity of the

surveillance process

post-treatment surveillance specificity - the specificity of the

surveillance process

post-treatment surveillance trap spacing - the spacing (in

metres) between traps

post-treatment surveillance min_resources - the minimum

number of resources available to conduct surveillance in a cell

post-treatment surveillance max_resources - the maximum

number of resources available to conduct surveillance in a cell

post-treatment surveillance resources ramp start - the

number of days after a detection that the number of available
resources start increasing (from the minimum to the

maximum)

post-treatment surveillance resources ramp length - the

number of days required to move from the minimum number

of resources to the maximum number of resources.
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4.3 Population subsystem

4.3.1 Population and Logistic classes

Grid cells are agents in the APPDIS agent-based model (ABM) (akin
to herds, farms, and saleyards in the AADIS model) (Figure 7). A grid
cell is capable of hosting a plant pest population with growth
characteristics determined by the Logistics class. A population could
be represented by any growth model, however, only temperature-
dependent and temperature-independent logistic growth models are

currently implemented.

Agent

faadis. model)

+id

+latitude

+longitude
+nearestWeatherStationId

+distanceTo()
+bearingFrom{ )

Herd Farm Cell
il (aadis. herds) (aadis.grid) Population
+northLatitude - (aadis. population)
+southLatitude jlge————————J+density
+westlongitude +state
+eastlLongitude +origin
+setPopulation() +creationDay
+getPopulation() +qU1l?2'SCE'r_‘-cE'Da}r
+reset () +extinctionDay
Logistic
(aadis. population)
+growthRate

Figure 7. Cell, Population and Logistic classes
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4.4 Grid subsystem

4.4.1 Grid Manager class

The Grid Manager class (Figure 8) maintains the cache of Caell
agents. The ABM Scheduler synchronously updates the agent
caches at the conclusion of each simulation day's asynchronous
processing. The Grid Manager maintains dynamic lists of cells that

correspond to the active and quiescent plant pest populations.

Thread

{fava.lang)
Herd Manager Farm Manager Grid Manager

(aadis. herds) faadis. herds) faadis. grid)
+herdCache +farmCache +cellCache
+updateCache() +updateCache() +updateCache()
+reset () +reset() +reset()
==singleton==

Scheduler
faadis. modsi)

+inbox
+outbox|[]

+post{event)

Figure 8. Grid Manager

4.5 Plant Pest subsystem

A new Plant Pest abstract class was created that extends the APPDIS
ABM Environment class in a similar fashion to the Spread, Control

and Vector abstract classes. Three Plant Pest concrete classes were
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created: Plant Pest Presence, Plant Pest Diffusion and Plant Pest
Jump (Figure 9). As with all APPDIS ABM components the Plant Pest
Presence, Diffusion, Jump, General Surveillance, Active Surveillance
classes operate concurrently and independently (Bradhurst et al.,

2015; 2016).
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Figure 9. Plant Pest subsystem
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4.5.1

Plant Pest Presence class

The Plant Pest Presence class is responsible for

Establishing the initial plant pest population based on the
configured seeding mode (manual, endemic or density). In
manual mode the seed cells are specified via cell IDs set in
the scenario configuration file. In endemic mode the seeds
cells are determined by the model based on the configured
suitability, rainfall, temperature and elevation criteria. In
density mode the seed cells are all cells in the Weather Grid
Data database table with a population density > 0. A plant
pest population is introduced into each seed cell by creating
and attaching a Logistic (Population) object to the Cell agent.
The Population object predicts the population density of the
plant pest in the cell over time.

Determining whether an active plant pest population becomes
quiescent (based on the weekly mean temperature falling

below the configured minimum).

Determining whether a quiescent plant pest population
becomes active again (based on the weekly mean
temperature rising above the configured minimum within the
maximum number of days that a population can remain

quiescent).

Determining whether a quiescent plant pest population
becomes extinct (based on the weekly mean temperature
remaining below the configured minimum beyond the
maximum number of days that a population can remain

quiescent).
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4.5.2 Plant Pest Diffusion class

The Plant Pest Diffusion class stochastically determines whether the
plant pest population in a cell spreads into surrounding grid cells.
For each active source cell, a set of candidate destination cells is
derived based on the configured spatial kernel radius. The
probability that diffusion will occur on any given day is influenced by
the plant pest population density of the source cell, the suitability
and average weekly temperature of the candidate cell, and the
distance and elevation difference between the cells. If a candidate
cell is deemed to have been diffused into it is seeded with a new
plant pest population by creating and attaching a Logistic
(Population) object to the Cell agent.

4.5.3 Plant Pest Jump class

The Plant Pest Jump class stochastically determines whether the
plant pest population in a cell jumps into grid cells that lie beyond
the diffusion radius. An active cell is only eligible as a jump source if
it meets the configured criteria for temperature, land use, rainfall
and elevation. The jump distance is determined by sampling the
configured betaPERT distribution. The jump bearing is dictated by
the configured jump mode - windborne (governed by wind direction)
or random. The probability that a jump will occur on any given day is
influenced by the plant pest population density of the source cell
and the suitability of the candidate cell. If a candidate cell is jumped
into it is seeded with a new plant pest population by creating and
attaching a Logistic (Population) object to the Cell agent.

4.5.4 Plant Pest General Surveillance class

The Plant Pest General Surveillance class performs daily scans of all
infested cells that also have a human population. The probability of
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a detection increases with pest density and human population
density (per Section 3.4.1). Only true positive detections are
generated.

4.5.5 Plant Pest Active Surveillance class

The Plant Pest Active Surveillance class conducts early detection
surveillance, delimiting surveillance and post-treatment surveillance
(per Sections 3.4.2, 3.4.3 and 3.4.5). True/false positives and
true/false negatives are generated according to the configured
sensitivities and specificities (per Section 4.3.2).

4.5.6 Plant Pest Treatment class

The Plant Pest Treatment class performs conducts treatment
programs on detected cells per Section 3.4.4). Each treatment in a
program reduces the pest population by a stochastic proportion (per
Section 4.3.2).

4.5.7 Plant Pest Resources class

The Plant Pest Resources class maintains a pool of user-defined
resources for early detection surveillance, delimiting surveillance,
treatment and post-treatment surveillance (per Section 3.4.6). The
Plant Pest General Surveillance, Plant Pest Active Surveillance and
Plant Pest Treatment classes request resources from the pools. If a
resource cannot be provided for a job then the client classes queue

the job until such time as the resource request can be met.

4.6 Visualisation & Graphical User interface

e A Plant Pest Presence layer was created to dynamically
visualise the plant pest population as either graduated colours
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depicting densities (Figure 21), or directed arrows depicting
the jump/diffusion spread network (Figure 22).

A Plant Pest Distribution layer was created to dynamically
visualise the aggregated plant pest population (over all
scenario iterations) as a graduated risk map (Figure 23).

A Plant Pest Control Layer was created to dynamically
visualise general surveillance, early detection surveillance,
delimiting surveillance, treatment, and post-treatment

surveillance (Figure 10).

The Visualisation Toggle was updated to allow access to the
new plant pest layers.

The Visualisation Key was updated to dynamically report

statistics on infested cells and managed cells (Figure 10).

The Cell Popup (Figure 10) was updated to display plant pest
attributes. Plant pest Population Density curves (Figure 10)
can be displayed via the Cell Popup.

A Trap Dialog (Figure 11) was created to display the national
trapping grid. Each trap can be queried and the details viewed
via the new Trap Popup.

The Grid Dialog (Figure 12) was updated with display controls
for the pest suitability and land use layers.

An Infestation Curve popup (Figure 10) was created to
dynamically display daily counts of infested cells vs daily
counts of managed cells.

A Resources Monitor (Figure 10) was created to dynamically
display resource pool capacity.
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A Resources Profiler was created to dynamically display
resource usage. When resource usage is unlimited the
Resources Profiler depicts the resourcing required during the
incursion. An example is provided in Figure 16 where the
maximum number of delimiting surveillance resources (cyan)
required at any given time was 75, maximum treatment
resources was 45 and maximum post-treatment resources was
40. When resource usage is limited, the Resources Profiler
depicts the periods of overload. An example is provided in
Figure 17 where the maximum number of delimiting
surveillance resources was limited by the pool size of 40.

A Control Monitor (Figure 10) was created to dynamically
display current control actions and backlogs (due to

insufficient resources).

A General Surveillance Dialog (Figure 13) was created for
dynamically adjusting general surveillance parameters
(Section 4.3.2).

A Specific Surveillance Dialog (Figure 14) was created for
dynamically adjusting early detection surveillance, delimiting
surveillance, and post-treatment surveillance parameters
(Section 4.3.2).

A Treatment Dialog (Figure 15) was created for dynamically

adjusting treatment program parameters (Section 4.3.2).

The Scenario Dialog was updated to allow individual enabling/
disabling of the diffusion, jump, early detection surveillance,
delimiting surveillance, treatment, post-treatment surveillance

and resources components.
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53



.‘ ) disable general surveillance

it enable fixed first detection
first detection day (0 .. 3650):

i first detection cell ID: (1 .. 175441):

® enable passive detection

default sensitivity (0.0.. 1.0 ): [0.25
managed area sensitivity (0.0.. 1.0 ): [0.6

| 0K || Cancel|
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Figure 17. Resources Profiler with limited resources
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4.7

Reports

A Plant Pest Spread Report class was created that reports (on a per-run basis):

number of cells with an endemic plant pest population
number of cells with an active plant pest population
number of cells with a quiescent plant pest population
number of cells with no plant pest population

number of cells where a plant pest population arose via the diffusion
mechanism

number of cells where a plant pest population arose via the jump

mechanism

A Plant Pest Control Report class was created that reports (on a per-run basis):

day and means of first detection

number of general surveillance detections

number of early detection surveillance true/false positives/negatives
number of delimiting surveillance true/false positives/negatives
number of treated cells

number of successful/unsuccessful treatments

number of post-treatment surveillance true/false positives/negatives

costs - early detection surveillance, delimiting surveillance, treatment,
post-treatment surveillance, total

A Plant Pest Dump class was created that reports on a weekly, monthly or

yearly basis:

the plant pest population state of each grid cell (free, active or quiescent)

the population density of each grid cell that has a plant pest population
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A Plant Pest Map Dump class was created that takes a graphical snapshot of
the map on daily, weekly, monthly, yearly, 5-yearly or 10-yearly basis.

4.8 Documentation

The configuration guide was updated with descriptions of all new user
configurable parameters.
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5 Case study la: Tramp ant uncontrolled spread

5.1 Introduction

Tramp ants are a diverse group of aggressive, invasive ant species that can
severely impact native species and habitats, agriculture and forestry, and
human health and social amenity (Department of Agriculture, 2018). If
introduced they can rapidly establish and spread through natural and human-
mediated dispersal (Abbott, 2005; Hoffman, 2014). Several Tramp ant species,
including Wasmannia auropunctata (electric ant), and Solenopsis invicta (red
imported fire ant), which are both present in Australia, are on the National
Priority Pest List.

An example of a tramp ant that is a concern to Australia is Anoplolepis
gracilipes (yellow crazy ant (YCA)). YCA causes severe ecological damage
(Abbott, 2005; 2006), and can affect the horticulture industry by farming sap-
sucking scale insects for honeydew. This can lead to larger infestations of pests
on host plants (Haines & Haines, 1978b, Lach & Barker, 2013; Helms, 2013),
and an increase in the risk of disease being transmitted to plants through
insect vectors. (Department of Agriculture, 2018). Supercolonies are formed
through colony budding and the absence of intraspecific aggression (O'Dowd et
al., 1999).

The purpose of the case study is to demonstrate use of the new APPDIS plant
pest modelling functionality in the context of tramp ants. Yellow crazy ant was
chosen for the case study due to the availability of expert opinion and data on
infestations near Cairns. It is anticipated that YCA model construction will be
readily transferable to other tramp ant species (for example, red imported fire
ant), with only minor parameter changes (Section 8). Note that the purpose of
the case study is to illustrate model usage and not draw conclusions on yellow
crazy ant control and/or eradication.
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5.2 Method

The grid for this case study was a regional-scale bounding box with latitudes -
16.450 to -17.941 and longitudes 145.090 to 146.149, and 0.003 x 0.003
decimal degree cells (approximately 10 ha each). The initial YCA population
(Figure 18) was defined through density seeding mode, i.e., the locations and
densities of the initial population (spanning 154 cells or approximately 1540
hectares), were defined in the Weather Grid Data database table.

JLairns Northern Beaches

Smithfield Heights

.(. aravonica

Figure 18. Initial yellow crazy ant cell populations

Modelling in terms of 10 hectare cells reflected the observation that a YCA
supercolony spanning an area less than 10 hectares tends to be a single
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contiguous population, whereas a supercolony spanning an area greater than

10 ha tends to be comprised of fragmented populations (Hoffmann, 2014).

YCA densities have previously been estimated at between 0.2 million and 3.5
million per hectare (Haines & Haines, 1978a), and up to 20 million per hectare
(Abbott, 2005). As the habitat suitability data layer for this study was very
simple (land=suitable, sea/lakes=unsuitable), a conservative grid-wide carrying
capacity of 2 million YCA per hectare was chosen. This means that every land
cell is deemed equally suitable for YCA with a nominal carrying capacity of 20
million. This simplistic assumption could be improved in future versions of the
model by incorporating variables such as rugosity and food sources in the
determination of cell suitability, which in turn would provide heterogeneity in

cell carrying capacity.

The initial population sizes of the 154 seed cells were synthesized, graduating
from a population of 20 million in cells at the centre of large clusters, down to
2000 in cells at the edge of clusters. This resulted in an overall initial YCA
population of approximately 310 million spread across approximately 1540
hectares. A YCA propagule is arbitrarily defined as comprising 1 queen and 24

workers.

The within-cell abundance of a YCA population over time was modelled with a
temperature independent logistic growth function (Section 2).

The spread of YCA between cells was modelled through four concurrent
stochastic spread pathways:

1) the steady diffusive spread of YCA over time to adjoining cells. This is
mainly attributed to natural budding, however, in some cells the process
is accelerated, for example, in cells that contain cane farms the spread is
augmented by short-range (intra-cell) hitchhiking jumps from localised

cane farming activities.

2) the sporadic spread of YCA over time to non-adjoining cells due to
medium-range hitchhiking related to cane farming activities (Section 4).
Spread between cane farms was defined separately than spread from

cane farms to cane railway corridors.
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3) the sporadic spread of YCA over time to other_cells due to human-

mediated hitchhiking unrelated to cane farming.
4) the sporadic spread of YCA over time to other cells due to rafting.

As the APPDIS model is stochastic, any given simulation scenario must be run
multiple times to allow distributions of outcomes (YCA spread patterns and
rates) to emerge. The summary outputs of a single example run is provided in
Section 5.3.

5.2.1 Within-cell abundance

The abundance of the YCA population within an infested cell over time was
represented by a deterministic logistic growth function Equation 1 (Section 3),
with a temperature independent population growth rate. The population growth
rate, R, was estimated at 0.025 using Equation 2 based on the assumption that
for an ideally suitable 10 ha cell, an uncontrolled YCA population will take
approximately 2 years to grow from a single propagule (n=25) to 99% of the
cell carrying capacity (n=19.8M) (Figure 19). This implies that 50% of the
carrying capacity is reached after 454 days.

1.2

1

0.8

0.6

0.4

Population density

0.2

0 200 400 600 800 1000 1200
Day

Figure 19. Yellow crazy ant within-cell population density curve

Natural contractions of YCA populations (Abbott, 2006) were not modelled.
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5.2.2 Diffusive spread of YCA between adjoining cells

The diffusive spread of YCA from an infested cell into an adjoining naive cell

was modelled with Equation 3 (Section 3).

The baseline daily probability of diffusion P4 was derived with Equation 8.

P= 1-1-p" (Eqn. 8)

where

Ps = daily probability of an event occurring

p = overall probability of an event occurring at least once in a specified
period of interest d

d = the period of interest (days)

The overall probability of diffusion p depends on the land use category of the
infested cells. This allows heterogeneity in the diffusion behaviour. For
example, diffusion on a cane farm (where natural budding is perhaps
augmented by short-range movements arising from within-farm activities such
as harvesting), can be defined differently to diffusion in a national park (that is
primarily due to natural budding). The baseline daily probabilities of diffusion
out of a 10 hectare cell are derived using Equation 8 with the assumptions in
Table 1.

Table 1. Daily probabilities of YCA diffusive spread

Land use category |Period Overall Daily baseline

of source cell probability p probability Py
Cane farm 3 years 40% 0.000466
Cane railway corridor |3 years 8% 0.000076
Managed/used land |3 years 8% 0.000076
Natural area 3 years 3% 0.000028

The initial YCA population of a newly infested cell is deemed to be a propagule

(comprising 24 workers and 1 queen).
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5.2.3 Spread between non-contiguous cells due to sugar cane

farming activities

The spread of YCA from an infested cell into a non-adjoining naive cell via sugar

cane farming activities was modelled with Equation 4 (Section 3).

The baseline daily probability P; was defined per Equation 10 and depended on
the land use category of the destination cell. This allowed heterogeneity in the
jumping behaviour. For example, jumps between cane farms (brought about,
for example, by harvesting activities spanning multiple farms), could be
defined differently to jumps from cane farms to cane railway corridors (brought
about by cane rail transportation). The baseline daily probabilities of diffusion
out of a 10 hectare cell were derived using Equation 8 with the assumptions in
Table 2.

Table 2. Daily probabilities of YCA jumps related to cane farming

Land use Land use category Period Overall Daily
category of | of destination cell probability | probability P;
source cell

Cane farm Cane farm 1 year 10% 0.000289

Cane farm Cane railway corridor| 1 year 10% 0.000289

Cane farming related hitchhiking jumps are independent of the human
population density in the source and destination cells.

The distance of jumps due to cane farming activities are sampled from a
BetaPERT distribution (minimum 0.5 km, most likely 2 km, maximum 20 km).

The initial YCA population of a newly infested cell is deemed to be a propagule
(comprising 24 workers and 1 queen).

Seasonal variations in cane farming activities were not modelled, i.e., the

pathway represents average cane jumps over time.
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5.2.4 Spread between cells due to human-mediated hitchhiking

The spread of YCA from an infested cell into another naive cell via human-
mediated hitchhiking (unrelated to cane farming activities), was modelled with
Equation 4 (Section 3).

The baseline daily probability P; was defined per Equation 8 and arose from the
assumption that if a cell has a maximal YCA population (i.e., is at carrying
capacity), and has a maximal human population (i.e., normalised human
population density of 1.0), there is (arbitrarily) a 30% chance of a human-

mediated hitchhiking jump into a another cell within a year:
Pj=1-(1-0.3)1/3)
Pj = 0.000977

Human-mediated hitchhiking jumps may occur between cells with land use
classifications as follows:

e from managed/used land to other managed/used land

e from managed/used land to cane railway corridors

e from managed/used to land to natural areas

e from cane railway corridors to managed/used land

e from cane railway corridors to other cane railway corridors
e from cane railway corridors to natural areas

e from natural areas to other natural areas

e from natural areas to managed/used land

e from natural areas to cane railway corridors

A source cell must have a human population density greater than zero for a
hitchhiking jump to occur. A destination cell generally must have a human
population density greater than zero for a hitchhiking jump to occur, however,
the model allows for random infrequent hitchhiking events to occasionally
occur from a populated area into a non-populated area (e.g., wilderness).
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The human population density of the source cell influences the probability of a

jump occurring.

Human-mediated jump distances are sampled from a BetaPERT distribution
(minimum 0.5 km, most likely 10 km, maximum 75 km).

The initial YCA population of a newly infested cell is deemed to be a propagule
(comprising 24 workers and 1 queen).

5.2.5 Spread between cells due to rafting

The spread of YCA from an infested cell into a naive cell via rafting was
modelled with Equation 4 (Section 3).

The baseline daily probability P; was defined per Equation 8 and arose from the
assumption that if a 10 hectare cell with waterways has a maximal YCA
population (i.e., is at carrying capacity), there is a 5% chance of a rafting jump
into another cell within a year:

Pj=1- (1 - 0.05)1536%

Pj= 0.000141

Rafting jumps are independent of the land use category and human population
density of the source and destination cells.

The distance of a rafting jump is sampled from a BetaPERT distribution
(minimum 0.5 km, most likely 0.5 km, maximum 5 km).

The initial YCA population of a newly infested cell is deemed to be a propagule

(comprising 24 workers and 1 queen).

Seasonal variations in rafting likelihood were not modelled, i.e., the pathway

represents average rafting jumps over time.
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5.2.6

Spread pathway summary

Table 3 provides a summary of the various spread pathways where

cane = cells that contain one or more cane farms

railway = cells that contain a cane railway corridor

managed = cells that contain managed/used land

natural = cells that contain natural areas

water = cells that contain one or more watercourses

Table 3. Summary of YCA spread pathways

Spread Source |Destination| Baseline | Dependent | Distance Initial
pathway cell type | cell type |probability, on human population in
population a newly
density infested cell
Diffusion cane any 0.000466 no Adjoining 25
railway any 0.000076 cells only
managed any 0.000076
natural any 0.000028
Cane farm cane cane 0.000289 no BetaPERT 25
jumps cane railway 0.000289 (0.5, 2, 20)
km
Hitchhiking | railway, railway, 0.000977 yes BetaPERT 25
(human- managed, | managed, | (dampened (0.5, 10, 75)
mediated) natural natural by the km
jumps source cell
human
population
density)
Rafting water water 0.000141 no BetaPERT 25
jumps (0.5, 0.5, 5)

km
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Table 4 uses Equation 4 to illustrate the daily probabilities of a jump for minimal
and maximal YCA and human population densities. It illustrates how the
probabilities of cane-related and rafting jumps jump are independent of the
human population density of the source cell.

Table 4. Examples of daily probabilities of YCA jumps

Cell YCA Cell Cell human Cell Daily Daily Daily
population | normalised | population | normalised | probability | probability of  probability
YCA human of cane hitchhiking of rafting

population population jump jump jump

density density

min (25) |1.25x10°| min (1) 0.002 3.61 x10'°| 2.30x10* | 1.76 x 10*°
min (25) |1.25 x 10° | max (531) 1.0 3.61 x10%°| 1.22x10° | 1.76 x 10*°
max (20M) 1.0 min (1) 0.002 2.89x10%| 1.84x10° | 1.41x10*
max (20M) 1.0 max (531) 1.0 2.89 x10*| 9.77 x10* | 1.41 x10*

5.3 Scenario

The initial YCA population (Figure 18) was allowed to spread without
intervention for 30 years. The scenario was repeated 50 times.

5.4 Results

Table 5 provides a summary of uncontrolled YCA spread over 30 years. A
sample resultant YCA population and infestation network (i.e one of the 50
iterations) are provided in Figures 21 and 22. Figure 23 illustrates how a
stochastic model such as APPDIS produces distributions of outcome variables.

Table 5. Simulation results for 50 iterations of 30 years of uncontrolled yellow crazy ant spread

Model outcome Value

Scenario length 30 years

Initial YCA population size 310 million
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Final population size? 124 billion

Initial infestation area* 154 cells (approx. 1540 ha)
Final infestation area’ 6936 cells (approx. 69,360 ha)
Final infestation area convergence? 2.90%

Num diffusions!® 3164

Managed land diffusion rate! 119 metres/year

Cane farm diffusion rate! 132 metres/year

Cane railway diffusion rate! 90 metres/year

Natural area diffusion rate?! 68 metres/year
Cane-related jump rate’ 41 jumps/year
Human-mediated jump rate! 16 jumps/year

Rafting jump rate! 13 jumps/year

Simulation run time! 5.3 hours

1averaged over 50 runs

’percentage standard error of the sample mean (95% confidence)

Convergence estimates the percentage standard error E of the sample mean
with 95% confidence for a given number of iterations (Equation 9) (Driels and
Shin, 2004).

_100chx (Eqn 9)
xVn

where

E = percentage standard error of the sample mean
z. = confidence coefficient (1.96 = 95%)

Sx = sample standard deviation

X = sample mean

n = number of runs
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Figure 20 provides a snippet of the 'yearly dump' output for Case Study 1la. The
model outputs the population density for each active cell at the end of every

year, for each simulation run.

run sim_day calendar _date | cell ID latitude longitude infest day pathway Source ID | pest density population
1 3650 | Sun 29 Nov 2026 38667 -16.7785 145.65851 3203 hitchhiking 67996 0.0819 1637160
1 3650 | Sun 29 Nov 2026 40417 -16.793499 145.6135 3242 budding 40769 0.0325 650698
1 3650 | Sun 29 Nov 2026 40762 -16.796501 14558951 3147 budding 40763 0.2655 5310817
1 3650 | Sun 29 Nov 2026 40763 -16.796501 145.5925 1777 budding 41117 1 20000000
1 3650 | Sun 29 Nov 2026 40764 -16.796501 145.59549 0 seed 0 1 20000000
1 3650 | Sun 29 Nov 2026 40765 -16.796501 145.59851 2508 budding 41117 1 19999994
1 3650 | Sun 29 Nov 2026 40768 -16.796501 145.6075 3477 budding 40769 0.0001 1889
1 3650 | Sun 29 Nov 2026 40769 -16.796501 145.6105 1559 rafting 41472 1 20000000
1 3650 | Sun 29 Nov 2026 41117 -16.7995 14559549 0 seed 0 1 20000000
1 3650 | Sun 29 Nov 2026 41118 -16.7995 14559851 0 seed 0 1 20000000
1 3650 | Sun 29 Nov 2026 41119 -16.7995 145.6015 3148 budding 40765 0.2607 5213876
1 3650 | Sun 29 Nov 2026 41470 -16.802502 145.59549 0 seed 0 1 20000000
1 3650 | Sun 29 Nov 2026 41471 -16.802502 145.59851 0 seed 0 1 20000000
1 3650 | Sun 29 Nov 2026 41472 -16.802502 145.6015 318 budding 41118 1 20000000
1 3650 | Sun 29 Nov 2026 41474 -16.802502 145.6075 2213 rafting 41472 1 20000000
1 3650 | Sun 29 Nov 2026 41475 -16.802502 145.6105 185 rafting 41824 1 20000000
1 3650 | Sun 29 Nov 2026 41481 -16.802502 145.62851 3273 rafting 41826 0.0153 305133
1 3650 | Sun 29 Nov 2026 41816 -16.8055 145.5745 2293 hitchhiking 68702 1 20000000
1 3650 | Sun 29 Nov 2026 41822 -16.8055 145.5925 2442 budding 41823 1 19999999
1 3650 | Sun 29 Nov 2026 41823 -16.8055 14559549 178 budding 41824 1 20000000
1 3650 | Sun 29 Nov 2026 41824 -16.8055 145.59851 0 seed 0 1 20000000
1 3650 | Sun 29 Nov 2026 41826 -16.8055 145.60449 2661 rafting 41823 1 19999707
1 3650 | Sun 29 Nov 2026 42169 -16.808498 145.5745 3398 budding 41816 0.0007 13605
1 3650 | Sun 29 Nov 2026 42176 -16.808498 145.59549 1233 budding 41824 1 20000000
1 3650 | Sun 29 Nov 2026 44615 -16.829498 145.49951 2465 hitchhiking 65867 1 19999998
1 3650 | Sun 29 Nov 2026 46762 -16.8475 145.5865 2804 hitchhiking 63756 0.9995 19989563
1 3650 | Sun 29 Nov 2026 46775 -16.8475 145.62549 1615 hitchhiking 68702 1 20000000
1 3650 | Sun 29 Nov 2026 47128 -16.8505 145.62549 2579 budding 46775 1 19999962
1 3650 | Sun 29 Nov 2026 47469 -16.8535 14558951 2465 hitchhiking 60933 1 19999998
1 3650 | Sun 29 Nov 2026 49568 -16.8715 145.5325 3606 hitchhiking 60225 0 75
1 3650 | Sun 29 Nov 2026 51405 -16.886501 145.7485 1448 cane jump 65877 1 20000000
1 3650 | Sun 29 Nov 2026 51709 -16.8895 145.6015 2739 hitchhiking 66575 0.9999 19997944
1 3650 | Sun 29 Nov 2026 52062 -16.8925 145.6015 3503 budding 51709 0 986
1 3650 | Sun 29 Nov 2026 52148 -16.8925 145.8595 2038 hitchhiking 41470 1 20000000

Figure 20. Yellow crazy ant simulation report (snippet only)
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Figure 21 provides an example of a yellow crazy ant population after 30 years
of uncontrolled spread (iteration 40 of 50). The varying population densities of
each cell are encoded with shades of purple - the lighter the shade the higher

the population density.

Figure 21. Sample yellow crazy ant population density map

70



Figure 22 provides an example of a yellow crazy ant infestation network after
30 years of uncontrolled spread (iteration 40 of 50). Diffusions are represented
by short orange arrows, cane-related jumps by yellow arrows, human-mediated

hitchhiking jumps by red arrows and rafting jumps by cyan arrows.

Figure 22. Sample yellow crazy ant spread pathway network map
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Figure 23 illustrates the distribution probabilities of YCA after 30 years of

uncontrolled spread. The 50 scenario iterations are aggregated into a single
distribution map whereby cells that most frequently hosted a YCA population
are encoded in red and cells that least frequently hosted a YCA population are
encoded in blue. The encoding between distribution probability and colour is
provided on the left hand side of the model output.

{0.20 < density >= 0.25)
{0.23 < density >= 0.30)
(0.30 < density == 0.35)
{0.35 < density == 0.40)
{0.40 < density >= 0.45)
{0.45 < density == 0.50)
{0.50 < density == 0.55)
[0.35 < density >= 0.60)
{0.60 < density == 0.65)
0.65 < density >= 0.70)
(0.70 < density >= 0.73)
(0.75 < density == 0.80)
(0.80 < density == 0.85)
(0.85 < density == 0.90)

Figure 23. Sample yellow crazy ant distribution risk map




5.5 Discussion

This case study explicitly took land use heterogeneity into account when
simulating the diffusive spread of YCA between cells. This allowed, for example,
spread to be more vigorous in cells that have cane farming activities than cells

in natural areas where unaided dispersal is the main driver.

The average YCA diffusion rates over a 30 year period (ranging from 68 metres/
year in natural areas up to 132 metres/year in cane farming areas), was
broadly in line with published budding distances of up to 182 metres per year
(Abbott, 2006), and 37 to 402 (average 125) metres per year (Haines & Haines,
1978a). [Note that cells may have multiple land uses (e.g. cane + managed,
railway + managed). Each cell diffuses based on its highest risk land use and
this can artificially boost the diffusion rate for the lower risk land use of the cell
(e.g. a managed cell with cane contributes correctly to the overall cane

diffusion rate but over-contributes to the overall managed land diffusion rate).]

Dispersion via winged flight of queens (fission) was not explicitly modelled as it
is unclear whether this is an important means of dispersal for YCA (Rao et al.,
1991; Haines et al., 1994; O'Dowd et al., 1999; Abbott et al., 2014; Hoffmann,
2014). It should be noted that, data permitting, it would be easy to include a
fission jump pathway as the model supports multiple concurrent jump spread

pathways.

Longer range sporadic spread of YCA via hitchhiking is more unpredictable and
harder to quantify than steady diffusive spread. The probability of spread via
human-mediated hitchhiking is influenced by an infested cell’s pest population
density and human population density, however, the frequency and distance of
such jumps is largely driven by expert opinion and inference from unexpected
satellite colonies. For example, a 30 km movement of YCA from near Cairns to a
residential dwelling in Russett Park (on the edge of the Wet Tropics World
Heritage Area), was attributed to the transportation of landscaping materials

As illustrated in Figure 23, one of the outputs of AAPDIS is a risk map of spread
- driven by the number of times a cell is infested over a series of scenario runs.
The land uses of the resultant infested cells can be analysed to provide an
estimation of the potential long-term impact on agricultural, residential and

73



environmentally sensitive areas. This case study strongly suggests that 30
years of uncontrolled spread of YCA would lead to significant incursions into the

Wet Tropics World Heritage Area (Figure 24).
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Figure 24. Risk map of YCA spread in the World Heritage Area after 30 years of uncontrolled

spread

The simulation produced very good convergence (2.90%) of the mean number
of infested cells after 50 iterations. This implies there is 95% confidence of only
2.90% standard error in the distribution of the mean. This is perhaps related to
the very simple suitability data layer (l1=land; O=ocean/lake). A more
expressive suitability data layer (as employed in Case Study 2) would likely

produce more variability in the infestation network.
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6 Case study 1b: Tramp ant control and
eradication

6.1 Introduction

This case study looks at the effect of trap spacing (for both delimiting and post-
treatment surveillance), on the cost and efficacy of eradicating an established

population of yellow crazy ants.

6.2 Method

The initial YCA population and spread pathway parameterisation from Case
Study 1la (Sections 5.1 and 5.2) were re-used, and general surveillance,
delimiting surveillance, treatment, and post-treatment surveillance pathways
added.

6.2.1 Model parameterisation

The model parameterisation for the control and eradication pathways is
provided in Tables 6 to 10. Refer to Sections 4.3.2 for explanations of the
parameters. Note that parameter values are for illustrative purposes only and
will vary according to the specific control/eradication strategies that a model
user wishes to compare.

Table 6. YCA general surveillance parameterisation

Parameter Value
Observer sensitivity in managed areas 0.60
Observer sensitivity in unmanaged areas 0.25
General surveillance mode Passive
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Table 7. YCA delimiting surveillance parameterisation

Parameter Value
Mode Moore
Visit duration (per cell) 21 days
Trap spacing 10 metres
Trap sensitivity 0.99
Trap specificity 1.00
Visit cost (per trap) A%$10
Interval between visits 90 days
Minimum number of visits 8
Resourcing Unlimited
Table 8. YCA treatment parameterisation
Parameter Value
Treatment mode spot
Visit duration (per cell) 7 days
Minimum effectiveness 0.8
Maximum effectiveness 0.95
Treatment cost (per cell) A$1700
Interval between visits 28 days
Minimum number of visits 6
Resourcing Unlimited
Table 9. YCA post-treatment surveillance parameterisation
Parameter Value
Visit duration (per cell) 21 days
Trap spacing 10 metres
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Sensitivity 0.99
Specificity 1.00
Visit cost (per trap) A$10
Interval between visits 180 days
Minimum number of visits (before result) 4
Resourcing Unlimited
6.2.2 Scenarios

(a) Investigating the effect of delimiting surveillance trap spacing on control

cost and effectiveness

The trap spacing parameter for delimiting surveillance (Table 7) was
systematically varied between 2 and 100 metres. The trap spacing parameter
for post-treatment surveillance (Table 9) was held constant at 10 metres. 500
iterations of the scenario were run for each trap spacing. The maximum length

of a scenario was limited to 15 years (5475 days).

(b) Investigating the effect of post-treatment surveillance trap spacing on

control cost and effectiveness

The trap spacing parameter for post-treatment surveillance (Table 9) was
systematically varied between 2 and 100 metres. The trap spacing parameter
for post-treatment surveillance (Table 7) was held constant at 10 metres. 500
iterations of the scenario were run for each trap spacing. The maximum length

of a scenario was limited to 15 years (5475 days).

6.3 Results

An example of the APPDIS dynamic visualisation of the control and eradication
of an established YCA population is provided in Figure 10 (Section 4). Table 10
and Figures 24 to 26 summarise the effect of delimiting surveillance trap
spacing on the average cost and effectiveness of control/eradication.
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Table 10. Effect of delimiting surveillance trap spacing on control effectiveness and cost

Trap | Outbreak Delimiting Treatment Post-treatment | Total cost of Delimiting Reduction Average
spacing| length surveillance cost surveillance control surveillance | in infested runtime per
(m) (days) cost (A% million) cost convergence false cells iteration

(A$million) (A$ million) negatives (secs)

2 4113 504.64 0.27 6.34 0.50% 0.58 99.25% 64
5 4182 80.54 0.26 6.35 0.27% 7.59 99.50% 46
8 4227 31.65 0.27 6.46 0.45% 17.90 99.14% 44
10 4281 20.31 0.27 6.51 0.31% 23.28 99.16% 55
15 4255 9.05 0.27 6.68 0.26% 34.59 99.20% 56
20 4354 5.10 0.27 6.79 0.26% 45.29 99.12% 52
30 4431 2.28 0.27 6.99 0.24% 61.73 99.07% 53
40 4469 1.28 0.27 7.09 0.23% 75.37 98.99% 59
50 4471 0.82 0.27 7.14 0.24% 86.22 99.13% 72
60 4490 0.57 0.27 7.21 0.26% 95.89 98.84% 66
70 4455 0.41 0.27 7.21 0.24% 103.26 99.13% 72
80 4474 0.31 0.27 7.22 0.26% 110.18 98.85% 71
90 4508 0.25 0.27 7.22 0.25% 115.87 99.03% 68
100 4434 0.19 0.27 7.22 0.24% 120.49 99.16% 70
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Table 11 and Figures 28 to 30 summarise the effect of post-treatment surveillance trap spacing on the average cost and

effectiveness of control/eradication.



Table 11. Effect of post-treatment surveillance trap spacing on control effectiveness and cost

Trap Outbreak | Delimiting Treatment Post-treatment Total cost of Post- Reduction Average
spacing length surv. cost cost surveillance control treatment | in infested runtime per
(m) (days) (A$ million) | (A$ million) | cost (A$ million)| convergence surv. false cells iteration

negatives (secs)

2 2049 20.07 0.26 143.39 0.10% 0.05 99.99% 28
5 2796 20.10 0.26 23.57 0.14% 10.29 99.90% 34
8 3611 20.18 0.26 9.74 0.21% 31.56 99.64% 41
10 4233 20.27 0.27 6.51 0.25% 48.59 99.31% 49
15 5262 20.73 0.27 3.24 0.46% 97.29 96.95% 61
20 5470 21.36 0.27 2.03 0.60% 151.01 93.78% 59
30 5475 22.87 0.28 1.09 0.73% 269.86 83.12% 74
40 5475 24.37 0.29 0.69 0.86% 378.37 70.68% 95
50 5475 26.72 0.31 0.49 0.92% 481.37 55.37% 110
60 5475 28.30 0.32 0.36 1.07% 566.74 43.54% 118
70 5475 29.99 0.33 0.28 1.33% 650.54 32.11% 124
80 5475 32.17 0.34 0.22 1.51% 718.66 20.69% 131
90 5475 33.92 0.36 0.19 1.66% 780.78 11.66% 137
100 5475 35.36 0.37 0.15 1.48% 836.07 1.87% 142
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6.4 Discussion

Figures 25 and 28 illustrate how false negative surveillance results increased
with trap spacing (for both delimiting and post-treatment surveillance).

The overall cost of control rose steeply when delimiting surveillance trap
spacings were less than 20 metres (Figure 26) and when post-treatment

surveillance trap spacings were less than 10 metres (Figure 29).

The effectiveness of control tended to be far more sensitive to post-treatment
surveillance trap spacing than delimiting surveillance trap spacing. Figure 27
shows how the YCA population was reduced by 99% within 15 years for all
delimiting surveillance trap spacings. In contrast, only post-treatment
surveillance trap spacings between 2 and 10 metres resulted in a 99%
population reduction within 15 years. Further, the effectiveness of control
decreased steadily as post-treatment surveillance trap spacing increased
(Figure 30), with a trap spacing of 100 metres yielding no net population
reduction after 15 years. This suggests that the effectiveness of post-treatment
surveillance is an important aspect of pest eradication. Figure 25 indicates that
a trap spacing of 18 metres minimised the cost of control at approximately
A$23.5M and resulted in an average 95% population reduction. In order to
achieve an average 99.99% population, the required 2-metre post-treatment

surveillance trap spacing would incur a cost of approximately A$163M.

The high sensitivity of control effectiveness to post-treatment surveillance trap
spacing is perhaps because post-treatment surveillance is typically conducted
in cells with very small pest densities. As discussed in Section 3.4.2 (Figures 4
and 5), the model’s implementation of specific surveillance is highly sensitive
to trap spacing at low pest population densities. An incorrect determination of
pest absence in a treated cell (after 4 successive false negative results), leads
to cell populations that will recover over time. In the absence of an early
detection surveillance system, the subsequent detection of a residual
population relies on general surveillance. The probability of a general
surveillance detection is, however, greatly reduced at low pest population
densities (Figure 3, Section 3.4.1).

82



For the uncontrolled spread scenario, the model on average, took 5.9 hours to
complete a single scenario iteration of 30 years of uncontrolled YCA spread.
This reflects the high computational load associated with large numbers of
infested cell agents (on average, there were 6936 infested cells after 30 years).
In contrast, for the control and eradiction scenario, the model on average, took

73 seconds to complete a single scenario iteration.

The simulations produced very good convergence for the mean total cost of
control (< 1.6%). This implies 95% confidence that there is at most 1.6%
standard error in the distribution of the mean, and that 500 iterations of the

scenarios were sufficient.
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7 Case study 2: Exotic fruit flies

7.1 Introduction

Oriental fruit fly (Bactrocera dorsalis) is extremely damaging to horticultural
industries due to its wide host range, ability to attack unripe fruit, and
dominance over competing fruit fly species (CABI, 2015). In addition to
ecological damage, Oriental fruit fly invasions cause significant market access
problems. In Australia, an incursion of Oriental fruit fly occurred in Cairns in
1995 (Bellas, 1996) and was successfully eradicated through a program that
concluded in 1999. The losses associated with market access restrictions are
estimated to have been $100 million ($140 million 2012 AUD at 2.5%) (Cantrell
et al., 2002). Full market access was granted when the Pest Quarantine Area
was rescinded in August 1998. The first detection in 1995 was a general
surveillance detection by a farmer and it is likely that the incursion had been
present for many generations before reaching that location (Meats et al.,
2008). This late detection is often attributed to the decision in 1992 to remove
an early detection trapping grid.

In this case study we model a similar incursion in Cairns, this time with an early
detection trapping grid in operation. We also explore similar scenarios in
Brisbane, Hobart, Melbourne, Sydney, and Perth, other examples of cities that
have high volumes of arriving travellers and/or imported goods, and may be
exposed to exotic pest incursions.

7.2 Method

The grid for this case study was a national-scale bounding box with latitudes -
9.16 to -43.855 and longitudes 112.70 to 153.795, and 0.045 x 0.045 decimal
degree cells (approximately 2500 ha). Initial Oriental fruit fly populations were
seeded as a point introduction to a grid cell in each city. Mean weekly
temperature data are assigned to each cell in the grid.
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7.2.1 Within-cell growth

Within-cell population abundance was modelled with a temperature-dependent
logistic growth function (Section 3.2). Estimation of the parameters for carrying

capacity and growth rates are provided below.

7.211 Carrying capacity
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Figure 31. Oriental fruit fly cell suitability data layer

The cell suitability data layer for Oriental fruit fly (Figure 31), was derived from
Normalised Difference Vegetation Index (NDVI) data and land use type. This
layer represents cell-specific carrying capacity, also referred to as habitat
suitability, varying between 0 and 1. Details of the data layer are described in
Camac et al., 2019.

The carrying capacity of a cell was determined by the cell’s suitability score
and the maximum carrying capacity of an ideally suitable cell (set to 1.25
million). For example, a cell with a suitability score of 0.2 can accommodate at
most 0.2 x 1.25 million flies = 250,000 flies.

7.21.2 Temperature dependent growth rates

The lifecycle time of Bactrocera dorsalis can range from a month up to several
months in cooler areas. Density dependent mortality increases if oviposition
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occurs in fruit already containing eggs. Some species of tephritid fruit flies are
deterred from oviposition by the rotting fruit odours produced by larvae feeding
on the flesh of the fruit (Fitt, 1984; Muryati et al., 2017). During the egg and
larval stage, protection from the climate is provided by the fruit. The larvae
remain inside the fruit until completion of the third instar, where larvae emerge
to pupate in the soil beneath the host plant. Although the organisms are no
longer protected by the fruit, the soil offers some thermal insulation. Pupae are
sensitive to high levels of moisture in the soil, however this is not currently
included as a data layer in the APPDIS model.

The unconstrained temperature dependent growth rate (i.e., ignoring the

effects of carrying capacity), at temperature, T, is given by Equation 10:

_ 1og(ﬂ) (Egn. 10)

where

Rr = growth rate at temperature T
Do = the initial population size
D: = the final abundance of adult females

tr = time to complete a full life cycle

To produce temperature dependent growth rate parameters, we consider a
single adult female (i.e. DO = 1), believed to lay approximately over 1000 eggs
in her lifetime (Yousheng, Farong & Huanping, 1996; Ye & Liu, 2007). We
assume a 1:1 female to male sex ratio in wild populations (shown to be 0.99:1
by Luo et al., 2009), so half of these adults will make up the final abundance of
adult females (Dt). Of the eggs, a proportion will progress to the larval and
pupal stages before emerging as adults. Survivorship of a cohort will be
affected by ambient temperature and other mortality due to predators,
parasitoids and accidents. Given the difficulty in experimentally estimating
other mortality factors, there is little evidence to draw on in the literature.
However it is apparent that even under optimal conditions with unrestricted
growth, three generations would result in (1000/2)® = 125 million flies, which is
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not consistent with observations of fruit fly populations. As temperature effects
on survival have been well studied and are expected to have a major impact on
both the establishment potential and growth rates, the shape of the growth
rate function with respect to temperature has first been estimated from
empirical studies and then later rescaled to take into account other mortality

factors.

The method by which Dt was estimated is outlined in Figure 32. Survivorship
curves associated with each life stage show the proportion of fruit fly entering

the subsequent life stage over a range of temperatures.

Initial input: 1 Female lays 1200 eggs in one lifetime. Eggs laid = 1200

20 0 20 30
Temperature Temperature
Finalgggs = Eggs laid X Survivalgggs Eggs La rvae Finalygrpae = Finalgggs X Survivalygrpae
Adults Pupae
Sex ratioin B. dorsalis = 1:1

Final _ Finalpypqe
Adult Fem Count 4165 CoUNtpamare

Egg Survivorship
Larvae Survivorship

Pupae Survivorship

20 20
Temperature

L Finalpypge = Finaligrpge X Survivalpyyqe W

Figure 32. Method to estimate D: for Bactrocera dorsalis by calculating survivorship in each
life stage.
Tables 12 to 14 present data from five studies where the development time and
survivorship of fruit fly populations were measured in response to temperature
manipulations (Danjuma et al.,, 2014; Rwomushana et al., 2008; Luo et al.,
2009; Vargas et al., 2000; Jiajiao et al., 2000). The various species described in
these papers are now considered synonyms of Bactrocera dorsalis. Each of
these studies set out to determine the effects of temperature on population
dynamics, covering the optimal growth range. We have ignored similar papers
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seeking to find total mortality thresholds for extermination as they typically
cover a very small temperature range at each end of the thermal performance
curve, and mortality will occur over very short periods (Hsu et al., 2018; Kaliyan
et al.,, 2007). Moreover, we have ignored papers with total temperature

exposure over sub-daily extents and papers that analyse only one temperature.

Table 12. Data for egg survivorship and development time across a range of temperatures

Species Temperature (°C) Development Survival Rate Reference
time (days) (%)

Bactrocera papayae 15 5.05 81.87 Danjuma et al., 2014
Bactrocera invadens 15 5.71 90.67 Rwomushana et al., 2008
Bactrocera dorsalis 17 3.61 85.2 Luo et al., 2009
Bactrocera dorsalis 18.5 3.2 74 Vargas et al., 2000
Bactrocera dorsalis 18.96 2.96 N/A Jiajiao et al., 2000
Bactrocera papayae 20 2.7 87.2 Danjuma et al., 2014
Bactrocera invadens 20 2.88 94.8 Rwomushana et al., 2008
Bactrocera dorsalis 21 2.52 89 Luo et al., 2009
Bactrocera dorsalis 23.18 1.96 N/A Jiajiao et al., 2000
Bactrocera dorsalis 23.5 2 83 Vargas et al., 2000
Bactrocera dorsalis 24 2 85 Vargas et al., 2000
Bactrocera dorsalis 24.14 1.54 N/A Jiajiao et al., 2000
Bactrocera papayae 25 1.53 85.6 Danjuma et al., 2014
Bactrocera dorsalis 25 1.55 92.4 Luo et al., 2009
Bactrocera invadens 25 1.69 93.47 Rwomushana et al., 2008
Bactrocera papayae 27 1.22 88.4 Danjuma et al., 2014
Bactrocera dorsalis 28.08 1.17 N/A Jiajiao et al., 2000
Bactrocera dorsalis 29 1.25 89.8 Luo et al., 2009
Bactrocera papayae 30 1.11 90.93 Danjuma et al., 2014
Bactrocera invadens 30 1.41 93.6 Rwomushana et al., 2008
Bactrocera dorsalis 31.02 1.04 N/A Jiajiao et al., 2000
Bactrocera dorsalis 33.56 NA 0 Jiajiao et al., 2000
Bactrocera papayae 35 1.03 81.8 Danjuma et al., 2014
Bactrocera invadens 35 1.24 87.47 Rwomushana et al., 2008

Table 13. Data for larval survivorship and development time across a range of temperatures

Species Temperature (°C) Development Survival Reference
time (days) Rate (%)

Bactrocera papayae 15 27.84 73.21 Danjuma et al., 2014
Bactrocera invadens 15 35.95 83.54 Rwomushana et al., 2008
Bactrocera dorsalis 17 23.73 71.2 Luo et al., 2009
Bactrocera dorsalis 18.5 11.1 72 Vargas et al., 2000
Bactrocera dorsalis 18.96 11.19 N/A Jiajiao et al., 2000
Bactrocera papayae 20 12.16 80.79 Danjuma et al., 2014
Bactrocera invadens 20 14.99 90.29 Rwomushana et al., 2008
Bactrocera dorsalis 21 15.02 74 Luo et al., 2009
Bactrocera dorsalis 23.18 9.49 N/A Jiajiao et al., 2000
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Bactrocera dorsalis
Bactrocera dorsalis
Bactrocera dorsalis
Bactrocera papayae
Bactrocera dorsalis
Bactrocera invadens
Bactrocera papayae
Bactrocera dorsalis
Bactrocera dorsalis
Bactrocera papayae
Bactrocera invadens
Bactrocera dorsalis
Bactrocera dorsalis
Bactrocera papayae
Bactrocera invadens

23.5
24
24.14
25
25
25
27
28.08
29
30
30
31.02
33.56
35
35

7.3
7.7
7.99
7.13
12.36
9.48
6.56
6.83
9.31
6.51
7.85
6.04
NA
5.28
6.64

78
83
N/A
85.08
85
98.61
83.88
N/A
78.4
80.09
93.31
N/A

66.27
84.52

Vargas et al., 2000
Vargas et al., 2000
Jiajiao et al., 2000
Danjuma et al., 2014
Luo et al., 2009
Rwomushana et al., 2008
Danjuma et al., 2014
Jiajiao et al., 2000

Luo et al., 2009
Danjuma et al., 2014
Rwomushana et al., 2008
Jiajiao et al., 2000
Jiajiao et al., 2000
Danjuma et al., 2014
Rwomushana et al., 2008

Table 14. Data for pupal survivorship and development time across a range of temperatures

Species

Bactrocera papayae
Bactrocera invadens
Bactrocera dorsalis
Bactrocera dorsalis
Bactrocera dorsalis
Bactrocera papayae
Bactrocera invadens
Bactrocera dorsalis
Bactrocera dorsalis
Bactrocera dorsalis
Bactrocera dorsalis
Bactrocera dorsalis
Bactrocera papayae
Bactrocera dorsalis
Bactrocera invadens
Bactrocera papayae
Bactrocera dorsalis
Bactrocera dorsalis
Bactrocera papayae
Bactrocera invadens
Bactrocera dorsalis
Bactrocera dorsalis
Bactrocera papayae
Bactrocera invadens

Temperature (°C)

15
15
17
18.5
18.96
20
20
21
23.18
23.5
24
24.14
25
25
25
27
28.08
29
30
30
31.02
33.56
35
35

Development
time (days)

29.14
34.08
25.12
24.9
19.83
13.19
13.59
16.95
12.9
12.2
12.4
11.45
9.73
11.91
10.02
8.4
8.7
9.58
7.16
8.5
8.35
NA
NA
NA

Survival
Rate (%)

66.8
72.16
24.4
68
N/A
74.35
92.91
81.4
N/A
59
66
NA
80.22
88.8
95.51
81.52
N/A
83.8
80.01
95.4
N/A

(==

Reference

Danjuma et al., 2014
Rwomushana et al., 2008
Luo et al., 2009

Vargas et al., 2000
Jiajiao et al., 2000
Danjuma et al., 2014
Rwomushana et al., 2008
Luo et al., 2009

Jiajiao et al., 2000
Vargas et al., 2000
Vargas et al., 2000
Jiajiao et al., 2000
Danjuma et al., 2014
Luo et al., 2009
Rwomushana et al., 2008
Danjuma et al., 2014
Jiajiao et al., 2000

Luo et al., 2009
Danjuma et al., 2014
Rwomushana et al., 2008
Jiajiao et al., 2000
Jiajiao et al., 2000
Danjuma et al., 2014
Rwomushana et al., 2008

While there have been several instances of controlled temperature data being

used to develop species distribution models (de Villiers et al., 2015; Stephens
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et al., 2007) and population dynamics models (Hong et al., 2015; Yousheng,
Farong & Huanping, 1996; Yonow et al., 2004), they face significant limitations.
Relative humidity ranging from 40% to 75% has been used across these
studies. Populations in each study originated in different locations globally,
covering Kenya, Hawaii, Australia, Thailand, and China. Local adaptation of the

species to source habitats may contribute to variation in the results.

Vargas et al.,, (2000) conducted the only experiment with diurnally varied
temperature comprising a high (day) and low (night). Therefore, for this study,
we have averaged the high and low temperature to match the data to the other
studies, despite the approach of Vargas et al., (2000) being optimal. Constant
temperature experiments are known to lead to underestimations of

development thresholds (Rwomushana et al., 2008).

The data used to produce the daily survivorship curves in Figure 32 was
collected in laboratory based experiments, where populations were exposed to
a constant temperature. Populations were independently exposed to a range of
temperatures until the eggs had passed through all life stages and emerged as
adults, or survivorship was 0. This survivorship data was fitted to a second
order polynomial (Equation 11).

St :32T2 +51T1 + Ba (Eqn' 11)

where

St = survivorship at a given temperature
T" = temperature to the power n

Bn = parameter associated with temperature to the power n
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Table 15. Parameters for the second order polynomial model used to predict survivorship in
each life stage

Parameter Eggs Larvae Pupae
B2 -0.0003913 -0.0009182 -0.00534
B1 0.0209900 0.0474099 0.24976
Bo 0.6096139 0.2345832 -2.05723
Eaggs H Larvae | | Pupae
1.00 1 .
. - M . . - . L] L]
- _'__——-__p . _F_--*—"_\' -
0.751 - ’ .
* Reference

Danjuma et al. 2014
Jiajiao et al. 2000
* |uoetal 2009

Survivarship
=
in
=
1

*  Rwomushana et al 2008

Vargas et al. 2000

=
%]
n
I
L ]
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Figure 33. Survivorship curves show variation across a temperature range in each life stage.
Data is shown in points, coloured by data source. Lines represent the polynomial model fitted
to the data.

The time taken for the experimental populations to pass through each life
stage was recorded for each constant temperature. A polynomial model of the
form described in Equation 11 was fitted to the development time data to
predict the effect of temperature on development time in each life stage. While
the form of the equation predicts increasing development time once a high
optimum mean daily temperature of 29°C is exceeded, this rarely occurs in the
Australian dataset and effects are expected to be negligible. Through a simple
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polynomial addition, a quadratic model for total development time with

parameters is presented in Table 16.

Table 16. Parameters for the second order polynomial model used to predict time taken to
complete each life stage

Parameter Eggs Larvae Pupae Total time
a 0.01587 0.1034 0.1185 0.23777
[+ 1 -0.97830 -6.1459 -6.8485 -13.9727
Qo 16.10941 96.8000 107.3041 220.2135
Eagags | | Larvae | | Pupae
30
© Reference
% Danjuma et al. 2014
é 20 Jiajiao et al. 2000
_g— *  |uoetal 2009
% . ) * Rwomushana et al. 2008
O o i . \:\ :r// Vargas et al. 2000
- 'H-_Fr’/.
e L
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Figure 34. Time taken to pass through each life stage shown to vary across a temperature
range. Data is shown in points, coloured by data source. Lines represent the polynomial model
fitted to the data.

Temperature specific times were summed to get the total time to complete a
full life cycle. Total development times provide the denominator in Equation 10,
tr. Values for the growth rate parameter at selected temperatures are displayed

in Figure 35 as black points.
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Figure 35. Variation in growth rate parameter (Ry) across a range of temperatures. Original
data displayed as black points. Rescaled values to account for less optimal conditions in nature
are displayed as red points.

The red points in Figure 35 show a set of growth rate parameters that have
been re-scaled from the original. Values are adjusted based on an estimate of a
baseline growth rate (e.g., number of females produced per female), if the
effects of mean temperature are ignored. There is a lack of information in the
literature as to the impact of these factors, so we have taken the quite
arbitrary approach of testing values that create population growth that seems
characteristic of what has been observed in previous incursions. When
calculating growth rate parameters, we assumed that the maximum growth
rate for a given adult female is 3. These adjusted values are displayed in Figure
35 as red points. Sensitivity testing of the model to this value and discussion of
the outcomes with experts is essential before the model can be used for

making pest management decisions.

7.21.3 Testing the logistic growth model

The logistic growth model was prototyped in the R programming language
(RStudio Team, 2015) to trial growth rate parameters for subsequent use in the
APPDIS model. Figure 36 provides a comparison of population densities
generated by the prototyped logistic growth model and the eventual APPDIS

implementation, for the same capacity values and temperature data.
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Figure 36. Testing the logistic growth model against the output in APPDIS using temperature
data for different cities
Hobart is not seen in the time series plots of population density due to early
local extinction through cold temperature stress.

7.21.4 Limitations of the temperature-dependent logistic growth model

A key limitation with a data-driven model such as APPDIS is when there is
shortage of localised field data for the pest of interest. Data may exist from
other countries and different environments, however, caution is needed in
applying these data to predict behaviour of the pests in a novel and/or naive
Australian environment. For example, literature describing fruit fly growth rates
are primarily based on laboratory experiments, which can be difficult to
translate to natural conditions. Growth rate experiments may expose fruit fly
eggs to a constant temperature and record the times to develop into adults, or
alternate between two temperatures to replicate day and night. While the
cumulative effects of temperature stress over various time scales can be
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monitored under constant exposure, the natural variability in temperature is
not represented. In natural environments, temperature variability can have
considerable effects on the abundance of an ectotherm. An environment which
regularly exposes ectotherm populations to temperatures outside of their
thermal tolerance range, even for short periods, will typically be uninhabitable
regardless of whether these extremes are interspersed with habitable

temperatures.

APPDIS currently employs mean weekly temperature data which implies that all
simulation days in a week have the same temperature value. In reality, of
course, temperatures may fluctuate over a wide range during a day, and over a
week. Sporadic temperature extremes within a week may have a significant
impact on mortality and population growth, however, this is not captured by a
mean weekly temperature approach. Temperature data such as the Bureau of
Meteorology Atmospheric high-resolution Regional Reanalysis for Australia
(BARRA) and the Bureau of Meteorology Australian Gridded Climate Data
(AGCD) are available at hourly and daily timescales, respectively. These data
could potentially be used to increase temporal resolution of the temperature
data layer and therefore the sensitivity of the within-cell population dynamics
model to intra-week extremes. There is, however, a computational cost
associated with increased temporal resolution. It may also be useful to

augment the average temperature data with minimums and maximumes.

A large cell size does not capture spatial temperature heterogeneities within
the cell, for example, due to elevation changes. A small cell size captures
spatial temperature heterogeneties (data granularity permitting), but comes
with a computational overhead for large grids.

Temperature is not the only factor affecting population growth. Predation,
parasitism and disease may significantly influence mortality but may be
difficult to estimate. The egg lay observed in laboratories may far exceed that
achieved in the wild due to increased mortality, and competition for mates and
hosts. Temperature-based functions can be useful to estimate the ranges over
which population growth is possible, but translating these into predictive
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models of growth rates is challenging due to imperfect knowledge of wild

populations and other factors influencing population dynamics.

As described in Sections 3.3 and 3.4, the between-cell spread pathways and
surveillance components are dependent on the within-cell pest population
density (i.e., dispersal pressure). This means that the model as a whole is

sensitive to the assumptions and limitations of the within-cell growth model.

7.2.2 Between-cell spread

Selected model parameters for between-cell spread (Section 3.3) are provided
in Table 17.

Table 17. Selected model parameters for Oriental fruit fly

Parameter Value
Max cell population 1,250,000
Temperature dependent True
Minimum active temperature 12°C?
Optimal temperature lower 27°C?
Optimal temperature upper 33°C?
Maximum active temperature 36°C!
Minimum diffusion temperature 18°C!?
Minimum jump temperature 18°C!?
Rainfall dependent False
Elevation dependent False
Quiescence enabled False
Seeding mode Manual
Diffusion baseline probability 0.282
Diffusion spatial kernel radius 10 km
Jump baseline probability 0.33
Human population dependent True
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Jump mode Random

Jump distance BetaPERT(10, 50, 500) km*

Temperature parameters were derived from Rwomushana et al., 2008; Ye and
Liu, 2005; Zhang et al., 2008; CABI, 2015; and Kean, 2015.

’The baseline daily probability of diffusion was based on the assumption that a
fully infested cell has a 99.995% chance of diffusing into an adjoining cell

within one month:
Po=1-(1-0.99995)%39 such that the daily probability of dispersal is,
Ps= 0.280.

Recall from Equation 3 (Section 3.3.1) the daily probability of a cell with

population density d(t) diffusing into an adjoining cell is:
pa(t) = 1 - (1 - Pg Sq wq)?®
where:

pq(t) = probability of diffusion occurring on day t

Ps = baseline daily probability of diffusion occurring

Sq = normalised suitability of the destination cell

wg = distance weight between the source and destination cells
d: = population density of the source cell on day t

3The baseline daily jump probability arises from the assumption that a
population in a fully infested cell has a 1% chance of a jump into a non-

adjoining cell within a year:
Pj=1-(1-0.01)%3%
Pj = 0.00003

Using Equation 4 (Section 3.3.2) the daily probability of a jump from a cell with
population density d(t) into a non-adjoining cell is:

pj(t) =1 - (1 - Pj Sd)d(t)
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“The jump spread pathway represents human-mediated dispersal.

7.2.3 Early detection surveillance

Early detection surveillance was based on the national grid of traps with methyl
eugenol lures (Figure 37; Section 3.4.2). Traps were visited once every 14 days,
with each visit costing A$40 (adjusted from Royer pers. comm. 2012). Cost
variations due to trap location (e.g., proximity to the office the inspector leaves
from, or proximity to other traps), were not taken into account. The daily
sensitivity of the early detection surveillance process (traps and personnel),

was set to 0.95 per day and the specificity set to 1.00.
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Figure 37. Early detection trap grid for Oriental fruit fly (methyl eugenol lures).

7.2.4 General surveillance

General surveillance (Section 3.4.1) was configured to operate in passive mode
with a daily observer sensitivity of 0.25 in unmanaged areas and 0.75 in

managed areas.
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7.2.5 Delimiting surveillance

Delimiting surveillance (Section 3.4.3) was carried out in all cells within 50 km
of each detected cell, at a trap spacing of 400 metres. Surveillance visits were
conducted weekly for a minimum of 26 weeks, with each trap service costing
$30. The daily sensitivity of the delimiting surveillance process (traps and

personnel), was set to 0.95 per day, and the specificity set to 1.00.

7.2.6 Treatment

Treatment was conducted in all cells within a 10 km radius of each declared
infested cell. A treatment program comprised 6 treatments, each taking 7 days
at a cost of $1000, repeated every 14 days. Each treatment reduced a cell’s
population stochastically by between 80% and 95%.

7.2.7 Post-treatment surveillance

Post-treatment surveillance was carried out in all treated cells, at a trap
spacing of 400 metres. Surveillance visits were conducted weekly for a
minimum of 26 weeks, with each trap service costing $30. The daily sensitivity
of the post-treatment surveillance process (traps and personnel), was set to
0.95 per day, and the specificity set to 1.00.

7.2.8 Scenarios

7.2.81 Unconstrained spread

An incursion of 100 Oriental fruit flies was introduced in December into the
cities of Brisbane, Cairns, Hobart, Melbourne, Perth and Sydney. The population
was allowed to spread without intervention for a maximum period of 5 years.

The scenario was repeated 100 times for each point introduction site.

7.2.8.2 Detection and control

An incursion of 100 Oriental fruit flies was introduced in December into the
cities of Brisbane, Cairns, Hobart, Melbourne, Perth and Sydney. The population
was allowed to spread in parallel with the operation of the early detection

surveillance, general surveillance, treatment, and post-treatment surveillance
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processes. The maximum length of a scenario was 5 years. The scenario was

repeated 1000 times for each point introduction site.
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7.3 Results

7.3.1 Unconstrained spread

Table 18 summarises the results of five years (maximum) unconstrained spread of Oriental fruit fly after separate point
introductions in December of 100 flies in the cities of Brisbane, Cairns, Hobart, Melbourne, Perth and Sydney.

Table 18. Simulation results for five years of unconstrained Oriental fruit fly incursion (no treatment).

Model outcome variable Brisbane Cairns Hobart Melbourne Perth Sydney
Seed cell suitability 0.3965 0.5323 0.5129 0.4195 0.5000 0.3638
Cumulative infested cells? 3485.2 1824.4 1.0 18.6 362.0 365.4
Final population (million)?! 230.7 720.1 0 0.1 10.3 5.5
Diffusion rate (km per year)?! 5.0 7.2 0 0.1 3.7 3.4
Maximum spread (km)?! 558.7 882.6 0 209.2 334.4 398.0
Time to first detection (days)?! 331.3 213.6 N/A 1031.8 431.4 462.4
Scenario iteration runtime (seconds)® 128.1 251.4 5.3 40.8 56.2 51.5
Convergence? 1.48% 0.34% 0% 4.17% 2.11% 2.80%

'averaged over 100 runs

*convergence (per Table 5) of the cumulative number of infested cells



Figure 38 shows an example of an Oriental fruit fly population after five years
of unconstrained spread from a point introduction in December at Cairns airport
(iteration 100 of 100). The varying population densities of each cell are
encoded with shades of purple - the lighter the shade the higher the population
density.
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Figure 38. Example of an Oriental fruit fly population density map after 5 years of
unconstrained spread from a point introduction in Cairns
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Figure 39 provides an example of an Oriental fruit fly population spread
pathway network after five years of unconstrained spread from a point
introduction in December at Cairns airport (iteration 100 of 100). Natural
dispersal (diffusions) are depicted as short orange arrows and human-mediated
hitchhiking (jumps) are depicted as long red arrows. Over the five-year

simulation there were 323 diffusions and 1107 jumps.
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Figure 39. Example of an Oriental fruit fly spread pathway network map after 5 years of

unconstrained spread from a point introduction in Cairns
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Figure 40 illustrates the distribution probabilities of Oriental fruit fly presence
after five years of unconstrained spread from a point introduction in Cairns in
December. The results of all 100 iterations are presented as a frequency map
whereby cells that were always invaded by Oriental fruit flies are encoded in

red and cells that least frequently hosted a population are encoded in blue.

oriental fruit fly distribution visualisation

Figure 40. Oriental fruit fly distribution map from 100 five-year simulations of unconstrained
spread after a point introduction in Cairns

7.3.2 Detection and Control

Table 19 summarises the results of the control response to incursions of
Oriental fruit fly after separate point introduction of 100 flies in December in
the cities of Brisbane, Cairns, Hobart, Melbourne, Perth and Sydney. All values
are averaged over 1000 simulations. The maximum length of a simulation was

capped at 5 years.
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Table 19. Simulation results for detection and control of Oriental fruit fly incursions

Model outcome variable Brisbane| Cairns Hobart | Melbourne | Perth | Sydney
Seed cell suitability 0.3965 0.5323 0.5129 0.4195 0.5000 | 0.3638
Cumulative infested cells! 7.1 8.3 1.0 3.4 6.1 5.2
Natural (undetected) extinctions (% of runs) 0% 0% 99.4% 0% 0% 0%
Maximum spread (km)* 69.3 44.8 0.6 58.2 37.8 72.0
Time to first detection (days)? 340.5 213.5 165.8 960.6 426.5 444.1
Delimiting surveillance cost (A$ million)? 49.16 27.56 33.46 36.49 29.25 25.80
Number of treatments? 293.9 221.0 186.0 186.8 195.1 214.6
Treatment cost (A$ thousand)? 49.00 36.64 31.00 31.14 32.54 35.79
Post-treatment surveillance cost (A$ million)? 5.14 4.21 2.76 2.95 3.34 3.57
Eradication within 5 years (% of runs) 94.6% 98.5% 100.0% 97.8% 98.4% 97.4%
Total incursion cost (A$ million)?3 54.35 31.80 36.25 39.47 32.62 29.40
Incursion duration (years)?! 2.6 2.0 0.8 3.6 2.4 2.5
Scenario iteration runtime (secs)* 41.4 28.7 10.7 56.5 34.7 33.1
Convergence* 7.15% 8.02% 0.55% 4.79% 4.27% 4.98%

'averaged over 1000 runs averaged over the number of runs where detection and treatment occurred (i.e the population did not die out naturally)
*not including the constant background cost of early detection surveillance

‘convergence (per Table 5) of the cumulative number of infested cells



Figure 41 shows a snapshot of a simulated response to an incursion of oriental

fruit fly in Cairns (day 1144 of iteration 18). The control visualisation depicts

general and specific surveillance outcomes, treatments, and eradication
success. Active surveillance cells are shown in cyan, delimited free cells are

shown in blue, and eradicated cells are shown in green.
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Figure 41. Example of a simulated response to an Oriental fruit fly incursion in Cairns




7.4 Discussion

The extent of an incursion is influenced by the temperature driven growth of
populations, and the availability and connectivity of environmentally suitable
cells within range of the pest. Figure 42 depicts the distributions of maximum
incursion distance (including response actions), from the seed cell. Populations
always established and spread in Brisbane and Cairns, with spread distance
consistently greater than 200 km and 500 km, respectively. Populations
sometimes spread well in Perth, with some scenarios spreading similar
distances to those in sub-tropical Brisbane. Similar cell suitability scores
between Perth and Brisbane was thought to drive this result despite the cooler
climate of Perth. Populations struggled to spread in Sydney with almost 70% of
scenarios staying within a 10 cell radius of the initial incursion. Populations
typically failed to establish in Melbourne and Hobart despite the high suitability
of the seed cells and surrounding cells. This was due to the sustained colder
climate naturally suppressing and eradicating the populations.
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Figure 42. Oriental fruit fly spread distances from initial seed cell. Histograms show variation
in outcomes for 1000 five year simulations for six Australian cities. Control strategies were

active in these simulations.
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The length of an incursion (as measured from the first day of the seeded
simulation, until the completion of cell management and declaration of pest
freedom), varied between cities and is displayed in Figure 43. There was a fixed
minimum incursion duration for Brisbane, Cairns, Perth and Sydney. This
reflects the period, upon first detection of a pest, to conduct the minimum
required delimiting surveillance, treatment and post-treatment surveillance
regimes before an area can be declared free of the pest. The fixed minimum
duration was not observed for Hobart and Melbourne as often the colder

climate lead to population extinction before a detection event could occur.
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Figure 43. Oriental fruit fly incursion durations for each of the cities in this case study. This is
calculated as days before first detection subtracted from total simulated time

Despite typically small incursion extents in Melbourne (Figure 42), the duration
of an incursion in Melbourne is typically larger than the other Ccities.
Characteristics of the trapping grid near the Melbourne seed cell, combined
with the very slow growth in Melbourne, means that occasionally a pest will
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persist without much spread for a significant amount of time. Conversely,
incursions in Cairns are shorter than those in Brisbane due to the improved
early detection grid positioning, despite the former being better suited to
Oriental fruit fly. This emphasizes the importance of grid design and is
something that could be explored in future simulations using a variety of grid

networks and an analysis of initial incursion pathways.

In Figure 44 the zero mean cost for incursions in Hobart indicates that Oriental
fruit fly generally failed to establish due to unsuitable climate and was very
rarely detected. This figure also illustrates the dangers associated with late
detection of an Oriental fruit fly incursion in favourable climates such as
Brisbane and Cairns. In Sydney, the total control cost remains similar for a

range of incursion durations.

The cost of delimiting surveillance is notably high in these simulation outputs,
and it is suggested that this parameter is subject to review and a sensitivity
analysis. This may help to determine an improved total cost estimate.
Specifically, running simulations with varying radius for the radial delimiting
surveillance method would give a good estimate of the change in cost
compared to the change in incursion time and extent. This would allow an
analysis of optimal delimiting strategy.
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Figure 44. Cost of surveillance and treatment for a given incursion. Each point represents one
simulation beginning on 1t December, where 1000 simulations for each city follow their

respective linear trend.
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8 Discussion

8.1 Conclusions

National Priority Plant Pests represent a serious threat to Australia, both
environmentally and economically. NPPPs require efficient detection
mechanisms and effective response strategies. However, often due to the lack
of opportunities to trial control strategies on exotic species in the field, it can
be difficult to understand the complex spatiotemporal interplay between
spread, surveillance and control. Models can be useful decision support tools
for exploring potential spread pathways, and comparing response strategies in
terms of relative benefit and cost.

Decision support tools that represent the spread of a pest in an environment
range from simple aggregative mathematical models through to complex pest-
specific spatial simulations. Aggregative mathematical models generally do not
take environmental and host heterogeneity into account, but are concise, easy
to parameterise, scalable, computationally efficient, and may be readily
extensible to other pests. They can be useful for the fast prototyping of
incursion dynamics, especially when data is scarce or unreliable. Spatially
explicit simulations capture environmental and host heterogeneities, but are
data dependent, can be complicated to parameterise, may not scale well
computationally, and may not be readily extensible to other pests.

The APPDIS modelling framework attempts to find a pragmatic middle ground
between the biological and ecological fidelity of a complex pest-specific spatial
model, and the extensibility of a generalised model. APPDIS is flexible in that a
user can configure either simple or complex spread models. A simple
mathematical spread model is obtained by disabling the environmental data
layers and configuring a single aggregative diffusion kernel based on predicted
spread rates. A complex spread model can be achieved by enabling
environmental data layers and configuring individual spread pathways that
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take heterogeneities in elevation, temperature, wind speed, vegetation, land

use, and human population, into account.

Once a model is spreading a pest in a way that is congruent with field data (if
available), and expert opinion, a decision support tool should allow useful
experimentation with early detection and control strategies. A further design
tension exists in that a model may provide quite detailed pest specific
detection/control options that may not be readily extensible to other pests, or
provide generalised detection/control options that may not be detailed enough
for the pest under study.

Again, APPDIS attempts to find a pragmatic middle ground by providing
detection/control options that are detailed enough to be useful yet easily
extensible to a range of pests. Surveillance and treatment regimes are
configurable by the user in generalised terms such as duration, cost, resource
requirements, efficacy, sensitivity and specificity. As the underlying spread
mechanism is stochastic, a control policy is trialled against a distribution of
plausible incursions. In this way, despite inherent uncertainty in how an exotic
pest population may spread, confidence can be gained as to the likelihood of a
particular policy to achieve the desired control/eradication outcome.

An advantage of a disaggregated approach to modelling spread (by simulating
each spread pathway separately), is that control measures can be applied to
specific spread pathways. For example, a pest may spread through both a
windborne pathway and a market-driven pathway. With a disaggregated
modelling approach it is easy to test the effect of movement restrictions on the
market-driven pathway whilst still allowing the airborne pathway to spread the
pest. This is more difficult when all spread pathways are aggregated into a

single mathematical spread mechanism.

The goal of this project was to produce a general purpose decision support
framework for future use by plant health specialists. The case studies were
selected to illustrate APPDIS operating in two quite different ways (Table 20).
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Table 20. Case study key differences

Tramp ant Exotic fruit fly
case study case study
Modelling scale Regional National
Study area grid (km?) 18,758 km? 17,391,864 km?
Cell size (approx.) 10 ha 2500 ha
Number of cells 175,441 703,923
Cell suitability layer Binary (land or water) Biotic (Camac et al., 2019)
Incursion type Established population Point introduction
Initially populated cells 1540 cells 1 cell
Initial population size 310,000,000 100
Within-cell growth rate Temperature independent | Temperature dependent
Diffusive spread Yes Yes
Human-mediated jumps Yes Yes
Agriculture-specific jumps Yes No
Rafting jumps Yes No
General surveillance Yes Yes
Early detection surveillance No National trapping grid
Delimiting surveillance Mode Moore Radial
Treatment Mode Spot Radial
Post-treatment surveillance Yes Yes
Resourcing Unlimited Constrained

The primary APPDIS inputs are configuration files (Section 4.3) and database
files (Section 4.2), and the primary outputs are CSV report files (Section
4.3.2.2), which can be post-processed statistically. APPDIS also provides a
graphical user interface for interacting with the model and dynamic
visualisation of incursions as they unfold (Figure 10). The ability for APPDIS to
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convey incursion concepts visually perhaps suits it to classroom use (as has
been the case with the AADIS model).

In summary, the project has produced a general purpose pest modelling
framework that is flexible (not tied to a specific pest), scalable (operable
regionally and nationally), accounts for heterogeneity in the host environment,
and allows relative comparisons of strategies for early detection surveillance,
delimiting surveillance, treatment, and post-treatment surveillance, with
respect to efficacy, resource usage and cost. The case studies have
demonstrated the potential for APPDIS to assist with decision support for both
plant pests and environmental pests. Importantly, APPDIS is extensible to other
pests via user configurable parameters, i.e., specialised mathematical

reformulation and/or computer programming is not required.

8.2 Limitations

As the APPDIS model is data-driven it must be carefully and separately
parameterised for each plant pest under study. This should be done
collaboratively with experts familiar with the pest and candidate detection and
control strategies.

The case studies, whilst attempted to be parameterised realistically, are purely
to illustrate the newly developed modelling framework. As such, if the model is
to be used to address specific ecological/policy questions on YCA or Oriental
fruit fly then the spread and control parameters should be reviewed and refined

by experts working in those particular pest spaces.

Due to lack of data on National Priority Plant Pests in an Australian context, it is
recommended that the model not be used to guide a response to a specific
incursion in real time. It is best suited as a ‘peace time’ decision support tool to
assist preparedness and planning across a range of assumptions.

8.3 Future work

It may not be feasible to develop detailed spread and control models for all
NPPPs. An alternative is to develop generic models for functional groups of
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pests. Groupings could, for example, be based on similarities of species,

thermal tolerance, spread modalities, and control strategies.

Case study 1b (Section 6) provided a rudimentary sensitivity analyses on trap
spacing for both delimiting surveillance and post-treatment surveillance. Other
key parameters (e.g., surveillance mode, sensitivity, specificity, radius;
treatment mode, radius; delimiting surveillance treatment radius), require

similar analyses.

APPDIS allows the first detection of an incursion to be made stochastically or to
be fixed on a set day. This feature could be used to investigate the
consequences of early/late detection with respect to effectiveness and cost of

control.

APPDIS allows response actions to be constrained by finite resource pools or
unlimited (Sections 3.4.6 and 4.6.7, Figures 16 and 17). Case study 1b
illustrated unconstrained control and case study 2 illustrated constrained
control. Further work could be conducted on the impact of resource shortages
on the effectiveness and cost of control.

The model requires ongoing validation for each plant pest under study. A
suggested approach is to parameterise APPDIS for a prevalent and well-studied
organism that shares functional traits with a National Priority Plant Pest. For
example, a Queensland fruit fly model may assist with the validation of the
Oriental fruit fly model. It is noteworthy that the Queensland fruit fly has
expanded to southern parts of Australia, previously thought to be climatically
hostile to a fruit fly.

There is great potential for plant pest entry risk maps (Camac et. al., 2019), to
inform the selection of seed cells when modelling pest incursions. This will
allow pest detection and eradication simulation experiments to be intelligently

targetted at high-risk entry points.

8.4 Application to other plant pests

The new components developed for APPDIS for plant pests have emerged from
the tramp ant and exotic fruit fly case studies. This section considers the
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modelling components that may be required for other National Priority Plant

Pests so that APPDIS can address strategic incursion management questions.

General surveillance can be a significant component of response programs
where public awareness campaigns can be responsible for a significant number
of new reports. Pests that are large, colourful or likely to cause noticeable
damage to high value plants are good candidates for enhanced general
surveillance programs, as are nuisance pests such as ants and bees that
directly affect people. Refinement of the general surveillance module to vary
reporting rates in response to awareness campaigns could be used to explore

the relative contribution of general surveillance options on delimiting a pest.

Movement restrictions on pests of produce are one of the major mechanisms
for managing pest incursions. Movement restrictions are not currently
implemented in APPDIS, although it should be relatively simple to incorporate a
mechanism that reduces the probability of jump dispersal beyond a
configurable radius.

For each of the NPPPs, there are known areas of uncertainty that will prevent
the construction of models that could be predictive enough to employ with any
great confidence. In general, while the growth rates and mortality of pests and
diseases in laboratory conditions are often known, their behaviour in natural
areas and in diverse microclimates within the modelling units is not.
Surveillance efficacy is often poorly understood and, with the exception of
complete removal of host plants, the effectiveness of control methods for

eradication in novel environments are also not known with confidence.

Of the biological components, spread parameters are usually the most poorly
understood at a resolution that is required for accurate invasion modelling.
While recapture and trapping techniques can give some indication of dispersal
behaviour under limited conditions, the success of eradication is likely to be
sensitive to the dispersal kernels. For those pests that are carried by people,
either through trade or hitchhiking, there is still significant research required to
better understand the association between pests and the distance over which
viable propagules are carried.
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For some pests, such as the brown marmorated stink bug and gypsy moth,
there are quite complex temperature requirements that lead to critical
behaviours in the life cycle. It is not sensible for these complex functions to be
included specifically within APPDIS, however, it may be possible to model the
functions offline, and then plug the population growth values back into APPDIS
in the manner that was done for the fruit fly model. However, in the same way
that the fruit fly model was challenging to interpret around weekly mean
temperatures, it is likely to be difficult to model the biological subtleties with

this coarse information.

It requires some experience to interpret the impact of local spread and
biological growth on the increase in populations within a cell. For a pest that is
a poor disperser across distances much smaller that a cell, it is likely that there
will be come considerable lag time before a pest infests enough sites within the
cell to start increasing at an exponential rate. Note that if the implemented
temperature dependent/independent logistic growth model is unsuitable for
some pests then it would be possible to provide alternative within-cell

population growth models, however, this would require software modification.

For some pests, the ability of the landscape to support the pest may change
dramatically over time. Some examples include floral sources for pest bees and

the availability of hosts plants and alternative hosts around cropping cycles.

The adage of models only being as good as what goes in, needs to be
considered seriously before embarking on a new pest modelling exercise.
Foremost, there needs to be a clear strategic learning outcome identified
before starting. This outcome will determine the spatial and temporal scales for
attacking the problem. Once a suitable modelling scale is identified, literature
need to be consulted to determine whether there is enough information to
construct a credible model of growth and spread within this resolution. Related
to this is the collection of spatial data that will define the extent of the invading
population and the favourability of the environment that will support pest
populations within the cells. The collation of this information is not a trivial
task. If the aim of the investigation is around eradication and containment,
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then the modeller needs to assess the quality of information about the efficacy

of both surveillance and response.

In finalising this project, we have made an assessment of the prospects for
APPDIS to assist in understanding the surveillance and management of
incursion of the top 20 NPPPs (Table 21). These assessments touch on some of
the data required, the modelling scales that will be useful and whether there is
any real need to model the incursion in order to understand components of the
incursion process. It can be seen that many of the NPPPs are not suited for
modelling of this sort, while for some others, modelling will be useful to
understand components of surveillance and control. In some cases the model
results will be challenged by a lack of understanding of the biological
parameters. However, there are some groups of pests where modelling is likely
to help identify critical information gaps and to highlight strategies that are
needed to successfully respond to pests with particular attributes.
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Table 21. Options for modelling under the current APPDIS configurations and further requirements

Pest Common Growth Extents Spread Surveillance Control Prospects
group name
Xylella Xylella and | Vector / | Probably treat | Vector spread by | Visual surveillance will be | Destruction of hosts and | Model could examine the
fastidiosa | vectors disease as unrestricted, | diffusion, potential | low efficacy and multiple | management of vectors | challenges faced by
and complex due to weed | jump diffusion of | level surveillance for the pest | possible responses with low
confirmed difficult  to | hosts but some | vectors and disease | and the disease would be surveillance efficacy.
and model. uncertainty. on propagating | required.
unconfirm Local to | material
ed vectors district scales
most relevant.
Trogoder | Khapra Growth rates | Extents are | No natural spread, | Surveillance on premises | Control on premises basis No need for spatial
ma beetle will be | primarily jump dispersal from | basis modelling on  APPDIS
granarium available abstract  and | importer stores only platform, simple models
will be limited would suffice
to the stored
product
distribution
chain.
Exotic, Fruit fly Case study Demonstrated model for
economic demonstrated considering strategies.
fruit  fly , further
(both lure growth
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Pest Common Growth Extents Spread Surveillance Control Prospects
group name
and non- parameters
lure could be
responsive examined for
) other species.
Tilletia Karnal bunt | Temperature | Cereal Natural spread | Surveillance will generally | Chemical and destruction | Could model some natural
indica dependant growing areas | within districts may | need to be based on samples | methods implemented but | spread characteristics in
growth rates | are accessible | be able to be | from farm or district level | movement relation to farm level
for  Karnal modelled. Jump | aggregations in the grains | the bulk handling network | sampling. Control within
bunt should dispersal on | distribution network. difficult to model distribution network not
be available. machinery is enabled.
Influence of possible
wetness and
humidity are
likely to be
significant.
Candidatu | Huanglongb | Vector /| Limit Vector spread by | Multiple level surveillance | Destruction of hosts and | Model could examine the
S ing and | disease residential and | diffusion, potential | for the pest and the disease | management challenges faced by
Liberibact | vectors complex citrus jump diffusion of | would be required. possible responses with low
er difficult  to | horticultural vectors and disease surveillance efficacy.
asiaticus model. land uses on propagating
(and other material
strains)
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Pest Common Growth Extents Spread Surveillance Control Prospects
group name
complex
Lymantria | Gypsy Detailed Unrestricted Some natural spread | Trapping methods able to be | Control through chemical | Spread of gypsy moth
Spp. moths growth although the | parameters available | implemented as for fruit flies. | sprays implemented. through residential areas
models are | capacity  for | from ABARES from key hazard areas could
available but | spread in | reports. Human be modelled but APPDIS
are natural spread may not be platform may not add any
dependent on | environments | significant. significant value to simple
complex uncertain models.
responses to
temperature.
Solenopsis | Exotic Case study | Unrestricted Current spread | Multiple surveillance | Control methods are | Demonstrated model for
. and other | invasive demonstrated based on crazy ant | methods including general | documented for several | considering strategies could
exotic ants could be extended | surveillance, trapping and | species and could be | be parameterised for other
tramp ant to examine other | inspections. validated against programs. | species. Models  could
species species. provide insight into the
compliance rates,
surveillance and treatment
efficacy needed for
successful eradication.
Internal Bee mites Varroa mite | Difficult to | Some spread | Surveillance can be through | Control methods would | Modelling in port areas
and growth rates | ascertain  the | information multiple methods but hive | include standstills of hive | could be useful. There is an
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Pest Common Growth Extents Spread Surveillance Control Prospects
group name
external are available. | feral bee | available from New | inspections and swarms will | movements, treatment of | existing CSIRO model that
mites  of population. Zealand but | be the most useful. | hives and possibly | has explored some of the
bees (Apis Some records | mechanisms are not | Surveillance of swarms in | destruction of hives. parameters. Previous
spp.) available on | well understood. | port areas could be flagged as models have suggested that
commercial Movement from | higher likelihood eradication is unlikely.
hive locations | hives, swarms and
but access is | drifting bees.
restricted.
9 | Lissachati | Giant Data should | Unrestricted Spread through | Visual  surveillance  and | Proportional reduction | Model is unlikely to provide
na fulica African be available diffusion and jumps | general surveillance will be | treatments can be | any significant insights into
snail on goods and | important implemented. management
machinery
10 | Halyomor | Brown Complex Extent is | Spread through | Surveillance by trapping is | Control methods are limited | Model would likely need
pha halys | marmorated | daylength unrestricted diffusion and jumps | probably poor. Visual | but local sprays around | significant modification to
stink bug and although on goods and | inspections will target | infested areas may be used. | address eradication
hibernation establishment | machinery fruiting trees in spring and strategies. Some critical
required potential could summer and aggregation biological information may
be set higher areas in autumn. APPDIS be poorly understood.

in areas which

would need some

are both amendments to manage this.
exposed to
pathways and
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Pest Common Growth Extents Spread Surveillance Control Prospects
group name
close to food
plants

11 | Bactericer | Tomato- Vector /| Probably treat | Vector spread by | Surveillance can be | Destruction of hosts and | Model could examine the
a potato disease as unrestricted, | diffusion, potential | implemented using traps. | management of vectors | challenges faced by
cockerelli | psyllid and | complex due to weed | jump diffusion of | Efficacy poorly understood possible. Management of | responses with low
/ Clso difficult  to | hosts but some | vectors movements through produce | surveillance efficacy.
Candidatu model. uncertainty restrictions likely.
s
Liberibact
er
solanacear
um

12 | Puccinia Ug99 Temperature | Cereal Natural spread is | Surveillance programs are in | Control is most likely to be | Could model some natural
graminis f. dependant growing areas | likely to  occur | place for endemic diseases. through resistance | spread characteristics across
sp. tritici growth rates | are accessible | quickly within management. districts but unlikely to be
(exotic for cereal districts may be able useful for  improving
strains) rusts  should to be modelled resistance management

be available. across districts. strategies.

Influence of
wetness and
humidity are

likely to be
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Pest Common Growth Extents Spread Surveillance Control Prospects
group name
significant.

13 | Diuraphis | Russian Information Cereal Likely to be very low general | Unlikely to be modelled. Unlikely to be considered
noxia wheat aphid | likely to be | growing areas surveillance efficacy. further although an
(sexual available. are accessible interesting case study to
type) parameterise to see if the

detection scenario can be
reproduced.

14 | Xanthomo | Citrus Growth Limit to | Vector spread by | Visual surveillance and | Destruction of hosts and | Model could examine the
nas  citri | canker models residential and | diffusion, potential | general surveillance chemical challenges faced by
subsp. available citrus jump diffusion of responses with slow spread
citri although horticultural disease on

some land uses propagating
uncertainty material
about spread
at a local
level that
could affect
growth
implemented
within a cell
15 | Puccinia Guava rust/ | Models Unrestricted Rapid  wind-borne | Visual surveillance and some | limited Some existing models have
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Pest Common Growth Extents Spread Surveillance Control Prospects
group name
psidii Eucalyptus | available Ag | although spread, possibly | general  surveillance  in dealt with spread of
sensu lato | rust Vic probably leading to spread | natural areas that are poorly eucalyptus rusts but there
(exotic variable across Bass Strait. covered. are limited options to
strains) manage incursions.
16 | Air-borne | Airborne May be | Unrestricted Wind and  soil | Visual surveillance and | limited Limited options to manage
Phytophth | phytophthor | poorly although spread, local | general surveillance likely incursions.
ora spp. a understood probably dynamics likely to | once significant impacts
variable be important to | showing.
model outputs.
17 | Exotic bee | Exotic bees | Growth rates | Fairly Some spread | Surveillance can be through | Control methods would | Modelling in port areas
(4pis spp.) of colonies | unrestricted information multiple methods but hive | operate on nests or swarms. | could be useful although
are probably | although available from New | inspections and swarms will may not be very informative
not well | management Zealand but | be  the most useful. unless high resolution floral
known scales, the | mechanisms are not | Surveillance of swarms in maps are created.
although distribution of | well understood. | port areas could be flagged as
some floral sources | Movement from | higher likelihood
information over time | hives, swarms and
from A. | could be | drifting bees.
cerana useful.

APPDIS does

not

support

currently

125




Pest Common Growth Extents Spread Surveillance Control Prospects
group name
variable
carrying
capacity
18 | Fusarium | Panama Surveillance by  visual | Control methods about on-
oxysporu disease surveillance poor. Farm level | farm management
m f. sp. | (Tropical general surveillance likely
cubense race 4) driven by motivation to
Tropical report
race 4
19 | Globoder | Potato cyst Surveillance very poor Limited, mostly movement | No useful modelling scale
a spp. nematodes restrictions within APPDIS
20 | Liriomyza | Liriomyza Some May be some | Multiple spread | Surveillance as a | Limited control options May be able to investigate
spp. flies information restrictions on | mechanisms, could | combination of trapping and surveillance efficacy but no

through cesar

some species.

visual inspections. Some

complexity in detection.

suitable control

mechanisms.
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workshop report for CESRMA project 170606

Soplomber 2007

CEBRA Project 170606
Developing models for the spread and
management of National Priority Plant Pests

Workshop report

Tuesday 29 August 2017

Department of Agriculture and Waler Resources
18 Marcus Clarke 51 Canberra

Purpose

This workshop was held to canvass expert apinion on the plans for CEBRA project
170806 'Develaping models for the spread and management of National Priority
Flant Pests'. The workshop orought tegether plant pest science and policy
specialists at bath a national and state level to discuss the potential for
enhancing the Australian Animal Disease Model (AADIS) to enable simulation
muodelling of national prierity plant pests {MPFPs) in Australia.

Agenda
The workshop agenda is provided in Appendix &

Participants
The warkshap participants are listed in Appendiz 8,

Session 1 Project context and goals
Mark Stanaway welcomed the participants ana outlined the goals for the
warkshop:

« ntroduce the AADIS model and haw it has been usea by Animal Health
+ determine potential uses for the AADIS model in 2 Plant Health context
*  dizcuss the types of plant pests that might be aporooriate o model

= determine the data, skills and pest information needed as model inputs

Fach workshon participant provided a one-minule averview af ther background
and how it may beneft the project.

Session Z2: Overview and demonstration of the AADIS model

Richard Bradhurst provided atlendses with an overview and demonstrabion of
the AADIS model. AADIS is referred o as 2 hyorid model as it combines
malthematical ana agent-based modelling lechnigues, An equation-based mode
{EBM) iz embedded inside each (herd) agent of an agent-based model (ABM).
The EBM (for example, 3 SEIR compartmental model), captures the spread of
dizeasze within a herd while the ABM captures the spread of disease between
ferds, This Lachic reduces the number of agents reguired for a national scale
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mode! from over 1,000,000 animal agents to less than 250,000 herd agents. This
nturn allows the model to be computationally efficient such that naticnal-scale
simulations of the spread and cantrol of animal disease can be conducted an a
aptop.

OF particular interest were the AADIS modifications recently completed under
CEBRA project Le03B ('Decision-support tools for vectorspread animal disease’).
This project intreduced a new type of AADIS agent: the grid cell. A cell agent's
EBM (in this case 2 temperature dependent logistic growth modeal), models the
papulation density of an (insecl) vector papulation over Dime withon the grid cell.
The ABM models the spreac of the vector population between grid cells with a
stachastic jump-diffusion process that takes into account multiple layers of raster
data (cattle density, temperature, rainfall, elevaticn and wind). The initial vectar
population can be (a) camputed by the madel based on configurea criteria for
environmental parameters such as temperature, rainfall, elevation, etcl, (b)
defined by point mtroductions (e,.g., &t a port), or (o} derved from exlermnally
generated abundance/risk maps.

Session 3 The applicability of 8ADIS ta plant pests
Mark Stanaway lead a discus=on on possibile uses of Lhe AADIS maodel in g plant
post context. He noted that AADIS operates intwo ‘modes’: farm (per the foot-
and-mouth disease demonstration and raster (per the Cubicoides vector
demonstration). Thers is intuitive crass-over between the modelling of insect
vectors in raster mode and the modelling of plant pests, The uselulness of farm
muode for plant pests will depend an how the madel is used and the specific
pests,
Fassible uses of AADIS include:

¢«  Preparedness and planning. The madel can be used to simulate 'what-il’

scenarios of spread and management strategies. This may gssist decision

makers in the prieritisation of plant pests, policy formulation, and the
allocation of finite budgets between surveillance and contral.

= Carly cetection surveillance planning. The madel could be usaed to
inveshigate the patential spread of plant pests in specific high-risk areas or
‘hot spots'. This could inform the estaklishment of trapping andfor
surveillance programs aimed at early detection of an incursion and thus
mare cost-effective management.

«  Early response management. The model could help predict outhreak
extents for the purpose of informimg delimiting surveillance activities, At
the time of detection the model might assist with estimates of the locatian
and time of incursion,

+ Late response management. The model could help estimate the
probability of area freedom for both domestic and international trade
pPUrPoOses,

Potential users of AADIS include the Plant Health Policy Branch, the Chief Plant
Frotection Office, and the states/territaries. The following pest information will be
needed in arger to maodify, configure and run SADIS:

#  spreai
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«  establishment

+  palfrways

o survelllance efficacy

¢ conktrols
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The availakility and robustness of this data will influence the complexity of the
model faggregated pathways such as jump-diffusian vs disaggregated pathways
zuch as airborne plumes and nursery trade movements), ang the choice of case
sbudies, somelimes simple models are more appropriale than comples modals,
for cxample, when data is scarce ar unreliable. In some cases it is not sensible to
model at all, for example, if thers are simply too many unknowns with & pest's
ccology, distribution and/or epidemiology.

Tany Arthur mentioned that he previousy developed a spread mode! (writken in
Rl of Siam weed. Mark said that althaugh the focus of the project is national
priority plant pests the Siam model may still be a usetul resource for the project,

Session &: Project plans

Mark Stanaway described how the first year of the project focuses on incursion
and spread (hoth natural and hurman assistea), while the second year focuses an
detection and control. The broad schedule for the project is provided in Appendix

C.

Sessions 5 and 6: Case studies and the reguisite data
Mark Stanaway tabled the top 30 national priarty plant pests:

MEPPs 1 to 10

Xylella § Sharpshooter

Khapra beetle

Front Flies

Karnal bunt

Huanglonghbing [ psyllid vectars
Gypsy mokhs

Tramp ants

Bee parasites

Giant African snail

Brown marmorated stink bug

WPFPs 11 L 20
Tormato potato psyllia
LG 99 wheat stem rust
Russian wheagt aphid
Citrus canker
Fucalyptus rust
Airborne Phytophthora
Exaotic bees

Fanama disease (TRA)
Potato cyst nemalodes

Lirioamyza leaf miners
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MPEPPFs 21 1o 30

Fire Blight

Hessian fly

Texas root rot

Wheat stem sawfly
Golden apple snail
Barley stripe rust
Cereal oyst nematode
Plum pox wirus

Exolic drywood termites

Exotic subterranean
Lermites
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The following criteria were used by the group to assess the suitability of the
MFPPs as case studies:

«  Good knowledge of spread parameters

» Data an wind, water, transport, directed spread
-+ Ecclogy / Epidemiclogy
«  Good knowledge of establishment points
= Hosk material ¢ hatiilats
- Ecalogy / Epidemiclogy

o Good knowledge of survelllance sensilivily

= Trapping effcacy, visugl inspection, latent periods
v Belationship with modelling scales

o Good knowledge of control technology

— Effectiveness of baits, destruction, sprays

Fhe group assessed the pests that would satishy most of the above cnteria and
suggesied the following would make useful case studies far the project.

« exotic fruit flies (Mediterransan fruit fly, Ceratits cagetata and arnental fruit
fly, Bactrocera dorsalis)

« vectored disease (huanglonabing, "Candidatus’ Lineribacter asiaticus
fasian citrus peyllid, Diaphonng ot |

o exnlic invasive anls (Raspherry ants, Nylandena Wlva, browsimg ants,
Legisiota frauenfaldi, red imported fire ant, Solenopsis invicta and electric
ant, Wasmannia auropunctala,

Session 7 The Animal Health experience with AADIS

Rachel Iglesias described how A&01% arose from a2 PRD scholarship funded by the
Departrmeant al Agriculture and Waler Resources and replaced the regional-scale
AusSoread model, 88005 is orimarily a decision-support tool that infarms
preparedness and planming for emergency anmal disease, L has been used in
FMD modelling studies on the value of vaccination, the impact of resource
imitations, and early decision indicators,

AADIS has recently been extended to model the distribution and spread of
naecks {primarily in their role as vectors), Tesk cases have included Culicondes
brovitarsis, Culex gelidus and Hagmatohia irritans exigua.

ABADIS 15 currently deplayed on departmental personal computers, that whilst
DAVWR assers, are net part of the departmental network. The main reason for this
= the difficulty in white-hsting a canstantly evolving custom software product
ithere have been 41 versions of AADIS released in & years).
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Session 8: Project outcomes

Richard Bradhurst described the difference bebween the classic “waterfall’
appraach to software development and the modern "agile’ approach. Yith an
agile appraach there are iterative incremental software releases that help to
flush cut issues earlier in the development life cycle. This in turn lowers project
risk as flaws in the project direction and spacification are detected earlier, This
project will follow an agile appreach with regular minor software releases in
addition to the scheduled major releases {refer to Appendix C),

Verification 1= the process of determining whether a software implementation
agrees wilh the specification, Le, are we building the product right® 10 0s largely
nternal to the software develcpment process and consists of activities such as
unit besls, module tests and inlegration tests

Validation is the process of determining whether the specification meets the
custamer's needs, Le,, are we buldimg Lhe right proauct s 0 AL for purpose?
Examples of validation include relative (cross-model) comparison and
retrospectively madelling past [known) cutbreaks

Sensitivity analysis is the process of gauging model response to systematic
variation of parameters, This helps priontise the importance of specific
data/parameters.

Given the difficulties of white-hsting AaRIS for use on the departmental nebwark
the project will procecd based on stand-alone laptops with potential client-server
solutions investigated as a parallel activitw

Session 9 Wrap-up and next steps
Mark Stanaway and Richard Bradhurst summarized the next steps for the project
during the 20172018 fnancal year:

= A literature review of previous madelling studies on the first case study
fruit fly .

+  Exlenzion of the AADIS software architecturs Lo include plant pests,

#  Collection and translation (to the AADIS database schema) of fruit fly data
required by the model.

«  PFroduction of a prototype mode! of frut Ay incursion and spreard.

«  Ongoimg refinement and improvement of the model through ileralive
soltware releases for assessment by Plant Health personnel.

s Interim software release in February 2018,

=  Final software release and project report (detailing the validation and
SEnSItivily analysis activites) submitted in June 2018,

The first case study will be vsed o flush out general izsues with maodelling plant
pests i AADIS, The second and third case studies will anly be started once
significant progress has been mace on the first case study.

Participants were thanked for their altendance and the meeting was closed al
16:30.

un
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Appendix A - Agenda

Developing models for the spread and management of
Mational Priority Plant Pests (CEBRA Project 170606)
Tuesday 29 August 2017 9am - 4.15pm
Emergency Management Room (M.2.02)
Department of Agriculture and Water Resources

Time
O:00
9:05

9:15

9:30

10:15

10:30
10:45

11:30

12:30

1:30

2:30
3:00

3.15

4:00

4:15

18 Marcus Clarke 5t, Canberra

Activity

Welcome and housekeeping

Praject context and goals

Introductions - each participant to provide a one
minute overview of their experience and how it
may be helpful far the project

AADIS overview and demaonstration

The applicability of AADIS to plant pests

Break

Group discussion on project plans
= desired outcomes
* case studies
« engagement with stakeholders

Group discussion on possible case studies for the
project, e.g., fruit fly, fire ant, citrus greening

Lunch
Group discussion on case study data

1 requirements and availability

2 resources (GIS skills, availability, etc)
The Animal Health experience with AADIS
Break
Group discussion on project outcomes

1) aaDIS modifications

2) deliverables

3) adoption

Wrap-up and the next steps for the project

Close
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Lead
Mark Stanaway
Susie Collins

Mark Stanaway

Richard Bradhurst

Mark Stanaway &
Richard Bradhurst

Mark Stanaway &
Richard Bradhurst

Mark Stanaway

Mark Stanaway &
Richard Bradhurst

Rachel Iglesias

Richard Bradhurst
& Mark Stanaway

Mark Stanaway
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Appendix B - Participants and affiliation
Participants Affiliation
Tony Arthur ABARES, DAWR
Richard Bradhurst | CEERA, UoM
Robyn Cleland ACPPO, DAWR

Susie Collins

Biosecurity Plant, DAWR

Cheryl Grgurinovic

Biosecurity Plant, DAWR

Craig Hull

Biasecurity Plant, DAWR

Rachel Iglesias

Biosecurity Animal, DAWR

John de Majnik

Biosecurity Plant, DAWR

Louise Rossiter

NSW Department of Primary Industries

Mark Stanaway Biosecurity Plant, DAWR
Apologies

Kylie Calhoun Biosecurity Plant, DAWR
lain East Biosecurity Animal, DAWR
Graeme Garner Biosecurity Animal, DAWR
Dary| Hardie Department of Agriculture and Food, Western Australia
Sarah Hilton Biosecurity Plant, DAWR
Greg Hood Biosecurity Plant, DAWR
Tom Kompas CEERA, UoM

Kim Ritman ACPFO, DAWR

lames Walker Bigsecurity Plant, DAWR

Project team

Marion Healy Biosecurity Plant, DAWR (project sponsaor)
Susie Collins Biosecurity Plant, DAWR (project leader)
Mark Stanaway Biosecurity Flant, DAWR (project leader)
Sally Troy Biosecurity Plant, DAWR (project leader)
Tom Kompas CEERA UoM (project leader)

Richard Bradhurst

CEBRA UoM

Kiy

ABARES: Australian Bureau af Agncultural and Resource Ecanomics and Sciences

ACEPC: (Office of thel Australian Chief Plant Protection Officer

CEBRA: Centre af Excellence for Biosecurity Risk Analysis

DAWER: Department of Agriculture and Water Resources

Lok University of Melbourne
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Appendix C - Project Schedule

Phase/Milestone Due
Year 1: Modelling the incursion and spread of NPPP:
HPFPP incursion and spread workshop: August 2017

- Review of existing AADIS spreasd mechanisms for applicability to NPPP

*  ldentification of NFFP functional groups to test the suitability and availability
of data and parameterisation for the AADIS spread mechanisms,

*  Formadation of NPPP incursion and sproad case studies.

‘Workshop report provided to DAWE September 2017
[ata and parameterisation neesded for NPFFP incursion and spread case studies Dctober 2017
prowvided by DAWR,

Intedm software delivery February 2018
Draft report provided to DAWR project leaders for commaent May 2018

Year 1 final repart and final saftware dalivery June 2018

Year 2: Modelling the detection and control of NPPP:

NPPP detection and contrel workshop: July 201E

- Feview of existing AADIS control mechanisms for extensibility to NPFP
Hientification of NPPP-specific controd measuras to be Implemented,

&« ldentification of data and parameterisation reguired for the AADIS NPF#
centrol machanisms,

»  Formadation of NPPP detection and control case studies,

‘Workshop report pravided to DAWE August 2014
Data and paramaterisation needed for NFPFP control case studias provided by DAWR September 2018
Interim software dedivery February 2018
Dralt repart provided te DAWR project leaders for comment May 2019

Year 2 final report and software defivery June 2019
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Jure 2019

CEBRA Project 170606
Developing models for the spread and
management of National Priority Plant Pests

Workshop report

Friday 21 June 2019

Department of Agriculture and Waler Resources
18 Marcus Clarke 5t, Canberra

Purpose

This workshop was held to canvass expert opinion on the prototype of the plant
pest spread model developed under CEBRA project 170606 'Developing models
for the spread and management of National Priority Flant Pests'. The purpose of
the workshop was to demonstrate and describe the prototype, and seek
feedback from plant pest science and policy specialists.

Outcomes

Workshop participants agreed that the AADIS model provides a useful tool for
investigating response stralegies to manage plant pest incursions, However,
uncertainty about the ecology of pests and the efficacy of surveillance and
response methods does not favour use of the model for tactical decision making
during responses,

The growth and spread components of the crazy ant and Oriental fruit fly model
were considered reasonable, although difficult to validate, Further work is
required to check the surveillance and response parameters and costings.

The current prototype contains the range of components that would allow it to
be applied o functional groups of National Priority Plant Pests in a general
sense, Extensions to the modelling system were discussed that would allow
greater flexibility and rigour in modelling plant pest spread. The value of these
extensions needs to be considered in terms of specific modelling applications,

Agenda
The workshop agenda is provided in Appendix A

Participants
The workshop participants are listed in Appendix B.

Session 1: Project context and workshop goals
Mark Stanaway opened the workshop and welcomed the participants. Each
workshop participant introduced themselves. Mark provided a hrief overview of
the project and outlined the goals for the workshop:
* o obtain feedback on the ecology and control aspects of the ant and fruit
fly models
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+ to obtain feedback on the richness of the AADIS modelling platform for
applying to National Priority Plant Pests

* o identify useful ways in which the model can be used by biosecurity
afencies,

Session 2: AADIS overview and demonstration of prototyvpe

Richard Bradhurst provided attendees with a hrief overview of the AADIS model
including its origins as a model of emergency animal disease (EAD). The AADIS
modeal has been updated to provide a suite of modelling components that can be
applied to modelling plant pest incursions and their detection and control.
AADIS 15 referred to as a hybrid model as it combines mathematical and agent-
based modelling techniques, Each epidemiological unit (or agent), has an
embedded equation-based model (EBM) that represents the spread of a
pathogen/peast inside the agent, When modelling a plant pest, the agent is a cell
in a grid and the EBM is a logistic growth equation. The spread of a
pathogen/pest between agents is implemented by an agent-based model (ABM).
The ABM provides a variety of stochastic spread pathways and
control/eradication policies.

The model prototype was used to demonstrate the two case studies for the
project: an established population of tramp ants and a point incursion of an
exotic fruit flyv.

Cas g Study 1 (established population of vellow crazy ants):

reqional study area of approximately 18,000 km* near Cairns,
Queensland

« 10 hectare cells.

* initial population of approximately 300 million ants across 154 cells.

»  within-cell abundance is modelled with a temperature independent
logistic growth function,

*  hetween-cell spread may occur via budding diffusion, sugar cane related
jumps, human-mediated hitchhiking jumps and rafting jumps.

« detections may ocour passively through general surveillance or actively
via delimiting surveillance

* treatment program carried out in all detected cells

+ post-treatment surveillance program leads to either further treatment or
declaration of freedom

« controlferadication response is dynamically constrained by available
resources and costed

Case Study 2 (point incursion of oriental fruit fly at the Port of Cairns):

« qpational study area of approximately 17,000,000 km2

+  25km® hectare cells.

* initial population of 25 flies

« within-cell abundance is modelled with a temperature dependent logistic
growth function.

*  hetween-cell spread may ocour via natural dispersal diffusion and
human-mediated hitchhiking jumps

+ detections may occur through general surveillance, early detection
surveillance (hased on the national network of methyl eugenal traps) or
delimiting surveillance

* treatment program carried out in all detected cells
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»  post-treatment surveillance program leads to either further treatment or
declaration of freedom

« controlferadication response is dynamically constrained by available
resources and costed

Session 3: Modelling within-cell abundance - habitat and climate
suitability, the logistic growth model
James Milner provided an overview of how intra-cell population dynamics are
represented in the AADIS frameworlk:
= fruit fly phvsiology - a general overview of fruit fly physiology covering
life stages, growth and mortality
+  logistic growth - modelled with a logistic function constrained by an
initial population density, a carrying capacity, and a growth parameter
+ parameterisation - the following parameters are adjustable within the
logistic growth model
o initial cell population - written into the model as a fixed value
o carrving capacity - determined for each cell by a habitat suitability
raster laver where suitahility is a function of land-use type and a
vagetation index (NDVT)
o growth rate - modelled by combing functions that determine the
response of development and mortality to temperature, where
functions are constructed based on data in the scientific literature

James explained how the logistic growth model is implemented in the AADIS
framework and how this determines within-cell population dynamics, and how it
can be customised to a specific pest using three parameters: initial cell
population, carrying capacity, and growth rate. Two parameterisation examples
wers illustrated for Queensland fruit fly and Oriental froit fly, with the
differences displayed as time series for different cities around Australia,

Session 4: Modelling between-cell spread
Richard Bradhurst provided further details (equations and configuration
options), on the pathways through which pests spread between cells:

+ patural dispersal - modelled with a stochastic diffusive spatial kernel that
depends on the source cell pest density, destination cell suitability, and
distance

+ agriculture-related jumps - modelled with a stochastic jump process that
depends on the source cell pest density and land use, and the destination
cell suitability and land usea

+  human-mediated hitchhiking jumps - modelled with a stochastic jump
process that depends on the source cell pest density and human
population density, and destination cell suitability and human population
density

+ rafting jumps - modelled with a stochastic jump process that depends on
the source cell pest density and waterways, the destination cell suitability
and waterways, and the gradient between the cells.

Richard described how the spread pathways are independent, concurrent and
configurable. For example, rafting could be replaced by nuptial flights by simply
modifying the jump pathway name and configuration data.
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Sesszion 4: Modelling detection and control

Richard Bradhurst provided further details (equations and configuration
options), on the surveillance and control/eradication components of the ABM:

general surveillance - modelled by a stochastic process that depends on a
cell's past population density, human population density, and the
sensitivity of the observer. Observers in managed areas such as cropping
systems have a higher sensitivity than those in unmanaged areas.

early detection survaillapce - modelled with a stochastic process based
on the national trapping grid. Detection depends on trap density, trap
lure type, source cell pest density, and trap sensitivity.

delimiting surveillance - modelled with a stochastic process that depends
on trap density, source cell pest density, and trap sensitivity. Surveillance
is conducted around detected calls based on either the immediate
neighbour cells or inside a radius. A positive result triggers a treatment
program. A& cell is deemed free after a configurable number of
consecutive negative results,

treatment - a treatment program is comprised of a configurable number
of periodic treatments, Each treatment reduces the cell's pest population
by & configurable proportion. Extinction occurs if the population has been
reduced to below the confiqured minimum viable population by the end of
the treatment program

post-treatment surveillance - modelled with a stochastic process that
depends on trap density, source cell pest density, and trap sensitivity. A
positive result triggers a re-treatment program. A cell is deemed free
after a configurable number of consecutive negative results,

Richard described how the control components are independent, concurrent
and configurable. The active surveillance and treatment components are
dynamically constrained by available resources. If insufficient resources ara
available then control actions are queued. The model reports the efficacy of
surveillance (true/false positives/negatives), efficacy of treatment
(successfulfunsuccessful eradication), and the overall cost of surveillance and
treatment.

Session 5: Group discussion

Mark Stanaway led a group discussion on the model and the project. Comments
from the group included:

The model could be extended to represent directed network-based spread
pathways such as transport and logistics networks that depend on farm
type and season but these would also need resources to manage the risk
data,

Modelling mortality rates explicitly rather than the current aggregated
logistic population growth rate would be more realistic and transparent.
Surveillance visits do not take into account variability in the time needad
to service trap sites. This could be addressed by taking into account the
distance from a trap to the nearest control centre, or establishing trap
groupings for teams,
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+  The current model only allows a single treatment mode at each cell and
could be extended to include multiple modes such as spot and radial
treatments running at the same time.

*  Treatment choices may depend on cell characteristics such as whether
the pest is in an urban or rural area.

= Most useful applications for plant pests will be at a regional rather than
national scale. The model may be a useful tool for investigating spread
rates and management options in specific areas.

= The resourcing and cost data in the prototype is for test purposes only,
This should be improved before running the case study simulations for
the final report.

+  The prototype will need to undergo at least a rudimentary validation
process prior to running the case study scenarios for the final report.

= The final report should explain how the model might be extended to other
plant pests and identify the data required. Given the large numher and
variety of national priority plant pests, it would be useful to identify
functional groups of pests to describe the information required for
modelling.

* The final project report should manage reader expectations by carefully
describing potential modelling applications, caveats, and expertise and
resources required for use.

Session 6: Wrap-up and close

Participants were thanked for their attendance and the meeting was closed at
15:45,
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Appendix A - Agenda

Developing models for the spread and management of

National Priority Plant Pests (CEBRA Project 170606)
Friday 21 June 2019 9am - 3.45pm
Meeting room: M2.02
Department of Agriculture and Water Resources
18 Marcus Clarke 5t, Canberra

Time Activity Lead
9:00 Welcome, housekeeping & introductions Mark Stanaway
9:15 Project context and progress Mark Stanaway

Workshop goals

9:30 AADIS overview/recap Richard Bradhurst
Case study 1 demonstration - tramp ants
Case study 2 demaonstration - exotic frult flies

10:30 Break

11:00 Modelling within-cell abundance - habitat and James Milner
climate suitability, the logistic growth model

11:30 Modelling between-cell spread - natural dispersal, Richard Bradhurst
movement in produce, human-mediated
hitchhiking, rafting

12:30 Lunch
1:30 Modelling detection and control - general, early Richard Bradhurst

detection and delimiting surveillance, treatment,
post-treatment surveillance, absence, resourcing,

costs
2:30 Group discussion on the model thus far Mark Stanaway
+ pros and cons Richard Bradhurst

+ data requirements and availability James Milner
» parameterisation requirements
= calibration and validation

3:00 Break
3.15 Group discussion on project outcomes Mark Stanaway
+ potential uses for the model
+ training reguirements
+ adoption hurdles
*  future work

2345 Wrap-up and close Mark Stanaway
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[Participants Affiliation
Tony Arthur ABARES
Richard Bradhurst CEERA, UoM
Matthew Calverley Biosecurity Plant, Plant Health Policy
Susie Collins Biosecurity Plant, Plant Health Policy
Sophie Peterson Biosecurity Plant, Plant Health Policy
Greg Hood Biosecurity Policy and Implementation, Biosecurity
Integrated Information Systems & Analytic Program
Craig Hull Biosecurity Flant Science & Risk Assessment, Tropical
Fruits
ames Milner Biosecurity Plant, Plant Health Palicy
Haydon Morgan Biosecurity Plant, Plant Health Policy
Matalie O'Donnell Environmental Biosecurity Office
Amit Singh Biosecurity Plant, Plant Health Palicy
Mark Stanaway Biosecurity Plant, Plant Health Policy
Apologies
Mathaniel Bloomfield [ ABARES, DA
Jennifer Brooks Biosecurity Plant, Plant Health Policy
Cheryl Grgurinovic Biosecurity Plant, Plant Health Policy
John de Majnik Biosecurity Plant, Plant Health Paolicy
Sarah Hilton Biosecurity Flant, Plant Health Policy
Tom Kompas CEBRA, UoM
Heleen Kruger Environmental Biosecurity Office
Kirm Ritrnan ACPPO
Liesl Taylor Biosecurity Plant, Plant Health Policy
Project team
Marion Healy Biosecurity Plant (project sponsor)
Susie Collins Biosecurity Flant (project leader)
Mark Stanaway Biosecurity Flant (project leader)
Tom Kompas CEBRA, UoM (project leader)
ames Milner Biosecurity Flant
Richard Bradhurst CEEBRA, UoM
Eey
ABARES: Australian Bureau of Agricultural and Resource Economics and
Sciences
ACPPO: (Office of the) Australian Chief Plant Protection Officer
CEBRA: Centre of Excellence for Biosecurity Risk Analysis
UoM: University of Melbourne
T
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