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1 Executive summary

Risk-based biosecurity surveillance systems rely, amongst other things, on reliable spatial models of the
potential habitat of species of concern, often termed species distribution models (SDMs). A SDM can be
used for a variety of purposes:

- By understanding the possible extent of an incursion it can underpin the estimation of the potential
economic, environmental and human health costs.

- By combining an SDM with pathway analysis it can assist in prioritizing where surveillance effort
should be expended to maximise the likelihood of early detection.

An understanding of the potential habitats the species can establish in can support eradication campaigns.
A challenge in developing SDM'’s is the diversity of techniques and opinion in the scientific literature. No
one modelling technique has emerged as being suitable for all applications. In addition, while the
importance of basing models on good predictive variables is understood conceptually there has been little
attempt to review this or develop concrete protocols to identify these variables.

This project reviews the available environmental data and explores the information in the literature
defining proximal variables, which are variables that are most directly and closely linked to the biological
process and therefore likely to be the best predictors of potential distribution. The review identified that
there is not a consistent approach within ecology to identifying proximal variables. While proximal
variables are well defined conceptually, identifying them from observations of the species is more complex,
because correlation can obscure causation. In other words, it is difficult to measure promixity. Thus while a
variable may appear strongly predictive, its performance in other locations cannot be unambiguously
predicted.

Based on this review the project then explored several approaches to developing predictive models. We
developed methods to try to identify proximal variables statistically using small two variable models to
guard against over-fitting. We also tested new microclimatic variables with a more physiological basis than
those commonly used. Once variables were selected, we then tested a range of methods for making
predictions to new regions, including (1) from a fitted model, (2) from climate envelopes constructed on
the selected variables. The reason for the latter is that there are a number of compelling reasons that
probability based predictions to new regions will be unreliable. These methods where then applied to five
case studies using pests that have or could establish in Australia and/or New Zealand. There was no clear
preferred approach from this analysis.

The basis of this result was explored via simulation analysis. This analysis demonstrated that variables
could be strongly predictive in the native range but weakly predictive when projected to new locations.
This demonstrated a fundamental limitation in our ability to accurately perform these projections with any
of the tested models.

Based on these analyses a protocol was developed that reflects this inherent uncertainty. This protocol
recommends experts based assessment of proximal variables and incorporation of this uncertainty into the
analysis. It recommends the use of envelopes rather than probability methods when projecting to new
locations.
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2 Introduction

2.1 Project background

The design of risk-based biosecurity surveillance systems rely, amongst other things, on statistically reliable
spatial models of the potential habitat of species of concern, often termed species distribution models
(SDMs). This reliance is because risk based calculations depend critically on being able to reasonably assess
the likelihood of events.

An SDM can be used for a variety of purposes:

- By understanding the possible extent of an incursion it can underpin the estimation of the potential
economic, environmental and human health costs.

- By combining an SDM with pathway analysis (Heersink et al. 2015) it can assist in prioritizing where
surveillance effort should be expended to maximise the likelihood of early detection.

- By understanding the potential habitats the species can establish in, it can support eradication

campaigns.

This project explores developing a structured approach to developing SDMs to support the mapping of the
potential distribution of new pests and diseases that may be used to facilitate better biosecurity decision

making. It aims to synthesise best practice approaches from available techniques in the scientific literature
to provide an objective protocol that can be confidently applied and justified in decision making processes.

A range of tools for habitat suitability modelling have been developed in the academic literature (e.g.
Kriticos et al. 2005) and some have been adapted for general deployment by biosecurity agencies. Despite
these developments, CEBRA Project 1302 established that there is no single, best approach to predicting
invasive species distributions. Correlation based methods are not ideally suited to predicting the
distributions of pests in new environments (Elith et al. 2010) due to data and knowledge limitations. Other,
physiologically and ecologically based approaches (e.g. Kearney and Porter 2009) may require data or
understanding that are typically not available for many species. There is a gap in the form of guidelines and
concrete protocols for dealing with the full set of contingencies that face biosecurity managers. This project
explores developing a set of protocols to make robust and therefore defensible predictions about the
expected distribution of new species in Australia and New Zealand.

2.2 Theissue

The difficulties in characterising and projecting distributions of species between native and introduced
ranges are reasonably well known in the scientific literature (Elith and Leathwick 2009). What is less clear is
the reasons that they occur and how they can be ameliorated.

Species distribution models fitted to species data collected from the native range using available bioclimatic
variables typically don’t reliably project well to new environments, despite the use of standard model
selection approaches aimed at avoiding model over-fitting. For example, consider the fire ant (Solenopsis
invicta), native to South America, well established in the USA, and recently established in Australia. In
Figure 2, the result of fitting a generalised additive model (GAM) to the distribution of fire ants in their
native range in South America (Figure 1) using the standard 19 BIOCLIM variables and projecting to the rest
of the world is illustrated. The suitability shown is the mean of the best models selected from 10 folds of
the training data (n=74 from Fitzpatrick et al. (2007)). Each selected model is based on penalised regression
splines, with the degree of each term restricted to no more than two (only monotonic or concave/convex
relationships permitted to reduce overfitting). Despite these efforts to avoid over-fitting within the training
data, the projections do not accord well with what we know about fire ant distribution (e.g. the extent of
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invasion in the southern states of the USA, or their demographic vigour in Brisbane), or what we think we
know (e.g. that Siberia is probably not suitable).

Some (e.g. Sutherst and Maywald 2005) have argued that fire ants are not climate-limited in their native
South America, though go on to fit climate-based models to their invaded range in the southern United
States. We would argue that for many species of interest, such invaded ranges are not available and the
process based arguments are often untestable. Furthermore, whether it would have been apparent to
researchers that fire ants were not climate-limited in the native range in the absence of knowledge of the
invaded range will never be known (the counter factual). Incorporation of invaded range in modelling is
recommended in some situations (Broennimann and Guisan 2008), and there are some good conceptual
reasons to include records from invaded ranges where the species has been resident for enough time to
disperse throughout the landscape to suitable environments, and to persist (Elith in press). However we
would argue that it would be preferable to find robust methods that are able to perform on the native
range alone, as this is the data that biosecurity authorities will be most likely dealing with. More broadly,
our fire ant example highlights a number of the issues, in particular the failure of these models to reliably
extrapolate to new environments.

LATITUDE
0
|

-150 -100 -50 0 50 100 150

LONGITUDE

Figure 1. Distribution of fire ants (Solenopsis invicta) in South America (native range) and the United States
(introduced). Data sourced from Fitzpatrick et al. (2007).
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Figure 2. Example of projection problems. Left hand panel is the mean habitat suitability for fire ants (Solenopsis
invicta) based on their native South American distribution (average of 10 folds) utilising all BIOCLIM variables. Right
hand panel is standard deviation of the 10 folds. Data sourced from Fitzpatrick et al. (2007).

2.3 Project outline

This report explores approaches to habitat suitability modelling for non-native species with the goal of
developing structured guidelines and protocols to assist managers to identify the most appropriate tools
and approaches for specific applications.

This project arose from the results of a previous CEBRA project. CEBRA Project 1302 identified a number of
key issues in predicting species distributions were identified:

- That simple correlative approaches would often fail because the pattern of correlation between
environmental variables and distribution was not, in general fixed. A key challenge was therefore
to identify proximal variables. Proximal variables (Austin 2002) are variables that are “close” to the
processes that determine a species’ ecological functions and are therefore more likely to be closely
associated with its distribution. Therefore a key component of this project was to gain knowledge
about and approaches to identifying proximal variables.

- That probability based predictions were theoretically difficult to justify because the underlying
statistical populations (native vs invaded ranges) were not equivalent. Thus approaches using
techniques such as climate envelopes could be useful, because these simplify predictions into
guestions about whether climates in the target regions are suitable or not.

These issues led to the following work program:
1. Develop protocols to determine key predictive variables that determine an organism’s range.

This will involve:

- Reviewing literature and identifying approaches to determining predictors that will be applicable

generally. These will typically be primary environmental variables.
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- Reviewing modelling approaches to determine if and how they can be used to identify key
environmental predictors.

- Assessing the role of expert opinion in identifying key variables and developing protocols for doing
this.

2. Develop protocol/methods to project the information determined from the native range into the
new domain.

This will involve the following tasks:

- Reviewing methods for constructing environmental matches from variables determined in step 1
and information on native range.

- Developing protocols and implement techniques in R, if appropriate, to develop suitable products.

- Assessing the role of expert opinion in finalising distribution and developing protocols for doing

this.

As the project proceeded a number of challenges arose. In particular the discussion and identification of
proximal variables in the literature was less developed than anticipated. This was communicated to the
steering committee and lead to more focus on automated approaches to identifying proximal variables
than was originally intended. We present the results as follows. Chapter 3 reviews the literature on
proximal variables. Chapter 4 considers the impact of the curse of dimensionality on the construction of
climate envelopes. Chapter 5 develops empirical approaches to identifying proximal variables. Chapter 6
explores the theoretical basis of the results. Chapter 7 discusses the results and proposes a protocol.
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3  Review of proximal variables

3.1 Preamble

This section addresses the problem of choosing predictor variables for use in models predicting the
potential distributions of invasive species in a new region. For this project that new region is Australia
and/or New Zealand (ANZ). Prediction of potential distributions of species is a specific use of species
distribution models (SDMs) that extends beyond their initial intended use (which was understanding or
predicting the distribution of a species within the region in which it has been observed). Because it is an
extension, this chapter will particularly target literature and ideas that have been tested in the specific
situations that are relevant —i.e., where models were used to predict to new geographic localities. The
emphasis on predicting to new places means that the predictors we are most interested in are the
environmental ones. Geographic predictors can also be used in distribution modelling, but they are most
relevant when we are interested in spatial contagion or other geographic processes leading to spatial
autocorrelation in species occurrences. This might be useful for modelling the spread of invasive species in
a new range, but not for predicting potential distributions in new regions.

Potential distributions can only be correctly predicted if the fitted model (based on records in the native
range or native plus long-invaded ranges) is also relevant to the new region (e.g., ANZ). Focussing on
predictor variables, this means that the key variables affecting the species’ distribution across its full
potential range have been identified in the model fitted to records of the species in its native range. This is
where the concept of proximal predictors comes in (sensu Austin(2002). Proximal predictors are those that
are most directly and closely linked to the species requirements —i.e. they are functionally relevant.
Methods that project environmental relationships to new environments implicitly assume that there is a
core set of proximal predictors that are important throughout the whole range of a species.

Proximal predictors contrast with distal predictors, which are less directly relevant. Elevation is a well-
known example of a distal variable. It has been used as a predictor in many studies largely because it is easy
to measure or commonly available as GIS data. However, few organisms respond to elevation per se, but
rather are sorted along elevation gradients because of associated changes in proximal climatic factors such
as temperature, rainfall, solar radiation, and humidity (Austin and Smith 1989). The difficulty in using
elevation is that it is only effective as a predictor through its correlations with the more proximal variables.
These correlations between distal and proximal variables are imperfect and vary geographically. As a
consequence, use of a distal variable like elevation as a predictor will result in models where key
relationships are blurred, and predictive power in new regions with different correlation structures is
reduced. It is much more straightforward if proximal predictors can be identified and used in modelling.

3.2 Do we know which predictors are proximal, based on theory?

It would clearly be helpful if there were good knowledge of likely proximal predictors for species, or even
for taxonomic groups. This is most likely to come from physiological understanding of the requirements of
species. Literature searches (Appendix A9.1) reveal useful general information — refer to that appendix for
notes on 40 relevant papers published on this topic, and on choice of predictor variables in species
modelling. These show in general that (a) there is physiological information about species requirements
and tolerances that can inform knowledge in general terms about variables affecting species survival; some
examples are provided in Table 1; (b) there are numerous papers comparing use of different variables in
species distribution models, but these are simply tests on observed data and goodness of fit of models, and
provide no evidence about what is proximal. They do however give clear evidence of the impact on
predictions of choice of variables (see below); (c) there are some useful conceptual frameworks for
thinking about proximal variables, but as soon as the choice becomes practical, and especially when the
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choice is at global scales where there are limited choices of available predictors, the frameworks have some
utility, but only in broad general terms, for choosing variables.

A key limitation of the translation of this information into practice is that these proximal variables
represent processes operating at different scales, and in real applications for invasive species, the data that
would represent the relevant scales may not be available. In addition, a variable may be known to be
important for survival and reproduction, but could be expressed in many different ways (annual, seasonal
indices etc). For example temperature is widely viewed as a proximal variable, but what aspect of it drives
distributions. Is it the maximum, minimum or the mean or a complicated combination of all three? Jackson
et al (2009) discuss this in detail and give several practical examples of the challenges of dealing with these
nuances in species modelling.

Table 1. Examples of proposed variables driving distributions of various groups of organisms.

Group Proposed variables Ref for source Examples of transfer
to modelling

Plants Light, temperature, Austin (1980) Austin & Van Niel
nutrients, water, CO,, (2011b), Williams et
disturbance, pathogens, al. (2012), Mellert et
predators, competitors al. (2011b)

Soil water availability, See refs in Piedallu et  Piedallu et al. (2013)
growing degree days, min al. (2013)

winter temp (representing

frost).

Insects Richness explained by Diniz-Filho et al. See refs in Diniz-Filho
energy-water variables (e.g. (2010) et al.

evapo-transpiration) and
their dynamics and

seasonality
Birds Temperature Parmesan et al.
(2000)
Armadillo as Rainfall, temperature (days Parmesan et al.
e.g. of below freezing) (2000)

mammals

3.3 Spatial scale

Scale comprises both grain and extent. The extent (or domain) is the geographical area covered by the
modelling, and usually reflects the purpose of the analysis. For instance, macroecological and global change
studies tend to be continental to global in scope, whereas studies targeting detailed ecological
understanding or conservation planning tend toward local to regional extents. Grain usually describes
properties of the data (“data resolution”) or analysis - often the predictor variables and their grid cell size
or polygon size, but also the spatial accuracy and precision of the species records ((Dungan et al. 2002;
Tobalske 2002). In invasive species modelling, the grain usually refers to the grid cell (raster) size of the
predictor variables.

Grain is the most critical part of scale when thinking about predictor variables and their relationship to
processes affecting distributions. Austin and Van Niel (2011b) discuss this, focussing on plants and
predictions of distributions of species under changing climates:

“A biologically relevant variable must also have a data resolution that is consistent with the scale at which
the ecophysiological processes show greatest variation. Some hierarchical frameworks recommend critical
scales for different environmental characteristics but assume the use of coarse- scale data for large areas
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and fine-scale data for small areas (e.g. Pearson and Dawson 2003). This is not necessarily appropriate, as
local topographic factors may modify the climatic impact, particularly when studies are applied to very large
areas (Austin and Van Niel 2011a). Suitable conceptual models of the use of predictors have been presented
(Franklin 1995; Guisan and Zimmermann 2000) but are often ignored in climate change studies”.

And later in same paper, they state: “Plot size [in papers they reviewed and presented in a table] varied
from 16 m? to 2500 km®. The larger grid cell sizes reflect the interest in climate change, and, importantly,
the availability of distribution data at a grid cell size of 50 x 50 km. The assumption that only climate
variables are important when the extent of a study is very large leads to the corollary that local
environmental heterogeneity can be ignored in large-area studies. Since these assumptions were recognized
(Huntley et al. 1995), they do not appear to have been explicitly tested, although see Coudun et al. (2006).
Local heterogeneity is important for light (see below) and for soil properties such as nutrients. Soil
properties vary with lithology and along topographic gradients from ridge to gully. The magnitude of these
local differences in soils will equal or exceed that between 50-km grid cells. Coudon et al. (2006) explicitly
tested whether including soil nutrient variables with climate variables improved a model predicting the
distribution of the tree Acer campestre across the whole of France. It did. Such soil heterogeneity may define
local refugia for species, confounding predictions of distribution under climate change.”

We agree with the authors that there is an important, explicit link between ecophysiological processes
affecting species and the implied grain of predictor variables. The problem when modelling species in a
biosecurity context is that:

a) Records of species occurrences used to fit these models are usually from global databases, and
these records are rarely all accurately located. Often, spatial locations are only accurate to 1 to
10km of the true location. Even if grids of predictor variables at fine grain were available, this
uncertainty in species locations would not allow accurate identification of fine-grained
relationships.

b) Predictor variables must have a global coverage. So far, most global coverages are of climate
variables, often at coarse grains. See Table 2 for more information on this.

This means that, despite some good general understanding of processes affecting species, it is often hard to
translate it into the choices that need to be made in practice when modelling invasive species.

3.4 Sources of global terrestrial datasets for predictor variables

Table 2 summarises GIS datasets commonly used to source predictor variables for invasive species
modelling, plus others available globally but used less often. It focuses on terrestrial data and, for the
climate variables, on estimates of current conditions based on long-term climate data. In the published
literature the most commonly used variables are the WorldClim and CRU datasets (Table 2). For instance, in
March 2015 citations to the WorldClim key reference totalled 5820, compared with about 3000 citations to
the 2 papers describing the two versions of the gridded CRU data and 110 citations for CliMond.
WorldClim, published in 2005, includes a set of 19 bioclimatic predictors based on temperature and rainfall,
at resolutions down to 1km. CRU, published around 2000, includes a more extensive set of variables, but it
is coarser grain (~20km, smallest grain). Given that several of the additional variables at CRU and CGIAR
(Table 2, e.g. humidity, frost frequency) are likely to be proximally relevant to the distributions of many
species, it is surprising — and perhaps indicative of common lack of thought about predictor choice - that so
many published papers rely on the WorldClim set. For a comparison of the CliMond and Worldclim
variables in their mapped forms, see CEBRA 1402B_comparing mapped variables.pdf, and the similarly
named zip file of images.

More data are gradually becoming available; for instance, the availability of global 90m shuttle radar digital
elevation datasets makes it likely that terrain-based variables (e.g. topographic position, flow accumulation,
valley bottom measures; Gallant and Dowling 2003; Gallant and Wilson 2000) can be estimated globally
(John Gallant, pers. comm.). Soils data are also potentially important but as yet not available as a high-
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guality data source globally. Existing products tend to be based on sometimes coarse-grained data — e.g.
the harmonized world soil database (FAO et al. 2012).

Remotely sensed vegetation indices such as NDVI (the normalised difference vegetation index) have also
been used in some contexts. Bradley et al. (2012) present a useful discussion of the use of vegetation-
related indices (including land cover, Table 2) in species distribution modelling. They make the case that
including these types of remotely sensed variables might map current distributions well due to potentially
tight relationships with distributions of some plants, but might compromise the ability of the models to
identify proximal climatic variables affecting the species of interest.

3.5 How has theory been translated into practice, in choice of predictor
variables?

Theory-based identification of proximal predictors presents general concepts of the sorts of information
that is needed to predict distributions. When faced with modelling a particular species, modellers face the
decision of how to use this information to choose from the predictor variables they have identified as
available. Modellers do this in more or less structured ways. For instance, Austin and Van Niel (2011b)
summarise the approach used in 12 studies of plants, and note strong variation in which of six proximal
variables (light, temperature, nutrients, water, disturbance, biota; see section X.2) are represented, and
what variables are used to represent them. They find:

“It is clear that each study has an implicit conceptual model, but there is little consistency between them. No
study includes predictors for all six conceptual variables, although the category ‘other predictors’ may
provide surrogates for them. The total number of predictors ranges from 5 to 38. The number of predictors
used for each conceptual variable varies greatly; for example, for water Pearman et al. (2008) used one
variable while Coudun et al. (2006) used ten. All studies in the table include temperature- and water-related
predictors but only six include light. No two studies have identical predictors for temperature or water.”

Austin and Van Niel (2011b) recommend much more careful and explicit consideration of the proximal
variables, how they affect a species and at what scale, and how to link these to predictor variable choice.
Whilst this makes much sense and is a good framework for selecting variables, there is then a large gap
between what should ideally be done, and what the available data allow. Furthermore, the claim that a
conceptual link between a priori biological understanding and predictor variables will make models more
effective, while plausible, is relatively little tested and remains speculative.

Some researchers have instead started from a very pragmatic viewpoint, and have collected data, proposed
reasons for choice of predictor variables, then tested the predictive performance of these various choices.
For instance, Barbet-Massin & Jetz (2014) modelled 243 bird species in the USA, aiming to “develop and
demonstrate a comprehensive approach for identifying the climatic predictors providing greatest model
accuracy”. They estimated their own set of climate variables from the USA’s PRISM climate dataset
(http://prism.oregonstate.edu), calculating equivalents of the 19 WorldClim variables plus potential evapo-
transpiration, growing degree days above 5 degrees and moisture index. They then tested the predictive
power of models fitted to subsets of these variables, where the subsets were 6 variables not strongly
correlated. Prediction was tested on spatially and temporally distinct testing sets of data. They found that
annual potential evapo-transpiration, mean annual temperature and growing degree days produced
significantly more accurate SDMs than any other predictors, and that annual precipitation and the moisture
index were also useful. This is an example of an approach that is pragmatic and that tests predictive ability
on the sort of data available.

See Synes & Osborne (2011) for a useful summary of approaches that have been used in the species
modelling literature for selecting variables, and their link (or lack of) to theory — see their section “Creation
of variable datasets”. The general concepts are already covered in the sections here, but they provide
interesting links to further literature on it.
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Table 2. Global GIS data for predictor variables in models.

Name & source

Details of predictors, grain

Comments

WorldClim
www.worldclim.org

Monthly grids for min, max and mean
temperatures; also monthly precipitation
and elevation. Temperature and precip
variables also summarised into 19
“bioclimatic” predictors. Grain sizes: 30 arc-
seconds (~1km); 2.5, 5 and 10 arc-minutes
(i.e.~ 5,10 and 20 km)

The interpolation methods used to create
WorldClim data and the summaries in the
bioclimatic predictors are based on Mike
Hutchinson’s approaches for ANUCLIM (Xu and
Hutchinson 2013), all rainfall and temperature
related. See Hijmans et al. (2005) for details.

CRU Mean monthly estimates of: precipitation, This is an update of the first set released in
http://www.cru.uea. | wet-day frequency, temperature, diurnal 1999, that had a coarser grain (30°) and fewer
ac.uk/cru/data/hrg/ | temperature range, relative humidity, weather stations contributing to the
sunshine duration, ground frost frequency interpolation. See New et al. (2002) for details.
and wind speed. Grain: 10 arc-minutes
(~20km)
CliMond 35 “bioclimatic” variables; also mean These are hybrids of WorldClim and CRU data,

www.climond.org

monthly summaries for daily minimum
temperature, daily maximum temperature,
monthly precipitation total, daily average
radiation. Grain 10 and 30 arc-minutes (~20
and 60km).

combined as described in Kriticos et al. (2012).
The 35 predictors are based on Mike
Hutchinson’s approaches for ANUCLIM (Xu and
Hutchinson 2013), and include radiation and
moisture-related indices additional to those in
WorldClim. For a comparison of these,
mapped, with the worldclim variables, see
CEBRA 1402B_comparing mapped
variables.pdf, and the similarly named zip file
of images.

CGIAR-CSI
www.cgiar-csi.org

Aridity, potential evapotranspiration and
soil water balance. Grain 30 arc-seconds
(~1km)

These are useful grids aligned to the WorldClim
variables; surprising that they are not more
often used in species modelling

Consensus land cover
http://www.earthen
v.org

A consensus of 4 inputs, providing estimates
of the prevalence of each of 12 landcover
types within 1km grid cells (Behrmann
projection)

See Tuanmu and Jetz (2014) for methods. This
aims to reduce inconsistencies and errors
between products, and was tested on fine-
grained data.

Elevation

From various sources including the WorldClim
and CGIAR sources above. Can be based on
models or remotely sensed (shuttle radar) data.
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3.7 Does it matter which predictors are chosen?

It is reasonable to question whether the particular predictors chosen from a large candidate set actually
affect predictions. One might expect that all are closely related, and the choice of a particular subset has
little impact. Several studies show that this choice can have substantial impact, particularly for applications
like invasive species modelling, where the model is used to predict to new places. Figure 3 shows the
results of Ashcroft et al. (2012b) who modelled the emerald furrow bee (Halictus smaragdulus) in their
native northern hemisphere range and compared use of either all 19 WorldClim variables or a subset of 4
(variables 1, 5, 6 and 12, Appendix 9.1) or 2 (variables 1 and 12 — annual temperature and annual rainfall).
Predictions into Australia vary
substantially depending on the
selected set (Figure 4) despite
the similar performance of the
SDMis in the native range
(Figure 3).

* Form D recort
* All records

Maxent logistic output

EmO0-01 [J03-04 [06-0.7 EWO08-09
@mo0.1-02 CJ04-05 EMO07-08 WMO09-1
[J0.2-0.3 CJ05-06

Figure 3. Known locations for Halictus smaragdulus (black & grey dots), and Maxent predictions in native range for
models fitted to (a) 19 (c) 4 and (e) 2 climate variables (see text).
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3.8 Dealing with relationships between
predictor variables

Within datasets of climatic variables there are often several
highly correlated variables. For example, the set of 19
WorldClim variables (Table 1) includes temperature and
rainfall-related indices (Appendix 9.2), and in any particular
region several are often highly correlated. Common
practice in dealing with these varies, and includes:

- do nothing; include all variables of interest;
- choose a subset based on ecological knowledge,
with or without consideration of correlations

between variables; * Survey sites

- choose a subset based on explanation of each I
variable, singly, in a model; or on change in
explanation when dropping one (summarised in
Synes and Osborne 2011)

- use one of several techniques including pairwise
tests of Pearson correlations, principal component
analyses (Dormann et al. 2013) to test the
relationships between variables and select a subset
based on the results. See also the method in
Williams et al. (2012), that estimates dissimilarity
between rasters of variables using a Gower-style
metric (see their Section 3.3).

100 200 400 Km
J

A

While in our opinion the impact of correlated
variables is overstated in the literature, a practical
issue remains. The problem with making no initial (e)
selection between candidate predictors is that the
species data sets usually available for invasive
species modelling are often small to moderate in
size (5-200 observations). So even if there were
reasons to consider all variables there is limited
scope to reliably fit model parameters to large
numbers of variables. Many argue that it is best to
make initial selections based on ecological
reasoning and understanding of the relationships
within the data. In practice this remains
complicated given the range of representations of
conceptual concepts such as temperature and
moisture availability.

Goulbum
Foer

Figure 4. Projections of Maxent model for
Halictus smaragdulus into south east
Australia from the models shown in Fig. 3.
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3.9 Discussion

The literature is surprisingly short of concrete recommendations regarding proximal variables. While the
concept is often invoked to support particular choices of variables, the proof of their validity is typically by
assertion. The difficulty is that correlation can mimic causation, and that incomplete information can mask
causation.

Thus with organisms that are well studied by competent physiologists it may be possible to identify key
variables that are broadly predictive of a species distribution. It would thus be the recommended approach,
noting that it is still an emerging area of science. But for less well known organisms it is more difficult to
make general recommendations. There is a universal view that both temperature regimes and patterns of
moisture availability have major causal impacts on species distributions. The challenge is that these
relationships may be complex and choosing a particular representation on an expert basis may be
challenging. We consider an alternative in the next chapter.
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4  Outline of modelling process

Chapter 5 introduces the case studies and details of data selection and tests regarding the various steps of
model building, but here we outline the general modelling process.

Initial models fitted to native range data

The models fitted to records in the native range were fitted using a Generalized Additive Model (GAM)
implementation of a Point Process Model (PPM) for presence-only data (Renner et al. 2015; Renner and
Warton 2013; details in Chapter 5).

Development of climate envelopes

The previous project (CEBRA Project 1302) identified that probability based projections would typically
perform poorly as the underlying populations were different. In other words, if a model is fitted to say
presence-absence data in the native range, the probabilities will be correctly calibrated in the native range,
but they may not apply well to the invaded range — the proportion of presences observed may be
significantly different and predictions about places that are more or less suitable might be unreliable. This
is explored later in this report. Whilst we recognise that there is much to be explored around the question
of whether there is some useful information in the continuous predictions from fitted models (e.g.,
whether relative values are informative), we take the route here of trying to build robust binary
predictions. Therefore as an alternative to probability based predictions we consider the use of climate
envelopes, to be applied to variables selected after the first step of model fitting in the native range.
Climate envelopes involve a binary or ordinal classification system. Usually, the environment is classified as
either suitable or unsuitable. They can be interpreted as a regression technique in the sense that they
determine habitat suitability on the basis of the environment. But they are conservative in the sense that
locations within the envelope are not differentiated in terms of suitability..

There are a number of approaches to determining climate envelopes in the literature. The Bioclim model
involved developing a rectilinear region in environmental space based on analysis of the observed data’s
position in that space (Longmore et al. 1986). Later authors sought to restrict the envelope more closely to
the data. Instead of analysis of individual variables one at a time they considered using distance based
methods (DOMAIN, CLIMATCH) to construct local envelopes defined by the presence points. These
methods define some neighbourhood of each presence point to be associated with suitable environment.
This approach allows interactions between variables to be incorporated.

While the consideration of interactions is useful there are a number of issues with this approach. In
particular, there are challenges in creating these envelopes when the data is multi-dimensional. In this case
a phenomena termed the “curse of dimensionality” affects our ability to estimate envelopes in high
dimensions. The issue in this case is the data become increasingly sparse as the dimensions, in this case the
number of environmental variables, increase. As an example we simulated 1000 data points from the
uniform distribution over [0, 1] for each of 10 dimensions (in other words, sampling from a 10 dimensional
distribution with uniform and independent margins). We then calculated the mean distance to the nearest
neighbour in the data set for dimensions one to ten. This is shown in Figure 5. Note that the distance
increases as the dimension increases.

What this means for the construction of environmental envelopes is as follows. If we fix the distance that
we associate with presence for each point we end up with a climatic envelope that has “holes” in it as the
number of environmental variables increases. This is because the presence points become further apart as
the data become sparser in high dimensions. If we adapt the local distance two problems emerge. First we
are not sure how to effectively calibrate this. Second, increasing the distance leads to greater smearing of
the distribution across the edges of the envelope. This means we increase the region that we assign as
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suitable when it is in fact not. In high dimensions there are more “edges”. So we have more edges to
estimate and a greater propensity to over-predict.

We aim to test models for situations where information about the physiology of the organism is limited.
We take the approach of testing smaller models for which the climate envelope can be robustly estimated.
We fit low dimensional (2-3 variable) models. In lower dimensions we are able to detect holes in the
envelope more easily. These envelopes will also be broader as they are not “specialised” to large numbers
of variables. They will also not overfit the native distribution so will hopefully be more conservative in their
projections.

Projection methods

Projections are predictions from the fitted model to the whole world. We explored three methods of
performing global projections of each model. The choice of projection method depends on the structure
of the fitted model. The first method for projection is appropriate for point process models and involves
making a prediction of the Poisson intensity at each location across the globe based on the fitted model.
This projection method results in a gradient of low to high intensity but does not produce a probability. The
prediction output is instead a measure of the predicted population intensity per unit area and is thus
relatively meaningless in an absolute sense. The projection does give a relative abundance prediction
though.

The second global prediction method explored is the use of a minimum bounding box in environmental
space. This is an envelope method. Essentially all presence points in the native range are plotted in
environmental space using the chosen environmental variables. The minimum bounding box is then
constructed by drawing a box in environmental space, taking the minimum and maximum values of each of
the chosen variables as the endpoints of the box. The projection is then made to the globe by determining
if each geographic location is inside (predicted presence) or outside (predicted absence) this box. The
resulting global prediction depicts all places on the globe with environmental conditions within the range of
where the species is found in its native range.

The third global prediction method is a restriction of the second method. Instead of a bounding box being
constructed in environmental space, an alpha-hull is constructed. The alpha-hull is a shape constructed
using a parameter alpha. Alpha is the diameter of a sphere in environmental space. As alpha gets smaller,
the alpha-hull shrinks to the limit where it includes only the presence points. As alpha get larger, the alpha-
hull increases to the limit where it coincides with the minimum bounding box. The value of alpha we have
chosen is the value which creates the minimum sized box shape that includes all presence points and does
not have any internal holes. These holes would be difficult to justify physiologically. This could be termed
the minimum bounding region. Global prediction then proceeds in the same manner as method two, where
all geographic points are determined to be inside or outside the alpha-hull.

Convex hulls are an alternative, less computation intensive approach to using alpha-hulls. A convex hull is a
compromise between the use of a minimum bounding box and an alpha-hull. The alpha-hull is smaller in
most every case, except when the alpha-hull is also convex. Convex hulls and bounding boxes suffer from
the problem that they will generate biased estimates of a species tolerance of environmental conditions,
even with perfectly accurate and abundant data, if the shape of a species true environmental envelope is
not convex. Alpha hulls will converge on the true underlying envelope, as data improve.
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Figure 5 Effect of dimension on the distance to the nearest neighbour for a fixed sample size.

Novel environments

When statistical models like Maxent or GLMs or GAMs are fitted (trained) to species data, predictions can
be made globally. However environments may exist globally that are outside the range of the data used to
fit the models. These are often referred to as “novel” environments. It is not generally a good idea to use
statistical models to predict to novel environments, because the model is ignorant of the species’ response
to these new environments. Further, the model is usually also not structured in a way that can be
guaranteed to predict sensibly — e.g. the model might predict higher suitabilities at higher temperatures,
and not be controlled to predict zero suitability above some threshold. In recognition of these problems,
researchers have developed various techniques for quantifying which environments are novel. The sampled
environments are the combined set of presence records and background samples. Novelty might be
measured, for instance, as:

* those environments outside the range (minimum and maximum) of the sample, as estimated for
each environmental predictor in the model, or
* those environments outside a convex hull drawn around the sampled environmental space.

Methods proposed include:

* Elith et al. (2010) (“Multivariate Environmental Suitability Surfaces”, or MESS maps), which is
implemented in Maxent and available as R code in the package “dismo” (Hijmans et al. 2015);

e Zurell et al. (2012) — testing new combinations of environments

* Owens et al. (2013) — an extension of MESS maps
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* Mesgaran et al. (2014) — uses Mahalanobis distance; supplied as a stand-alone package “ExDet”
(https://www.climond.org/ExDet.aspx); example R code given elsewhere
(https://pvanb.wordpress.com/2014/05/13/a-new-method-and-tool-exdet-to-evaluate-novelty-
environmental-conditions/)

These estimates of novel environments can then be used to mask (i.e. to obscure) predictions in novel
space, or at least warn about where the model is extrapolating.

Those predictions that use hulls to define the occupied environments and then map those environments
globally will not be extrapolating into novel space. In contrast, the predictions from the fitted GAMs may
extend into novel space.
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5 Empirical identification of proximal variables.

In this section we document our investigation into approaches to identifying proximal variables.

5.1 Protocol development for model fitting

General

We explored general approaches to the development of a protocol for fitting SDMs. The following issues
were identified when developing the approaches to be applied to the case studies:

- Fewer variables (e.g. max. of 3) will more likely overestimate the potential distribution, as the
model will not overspecialised.

- Proximal variables are strongly predictive. Because they should predict strongly to identify
proximal variables we should pick variables that have strong predictive performance.

III

- Variables on their own aren’t “proximal”. The combinations of variables provide a biologically

plausible and effective model.

- Improved predictive performance may be possible with variables that interact more directly with a
species during its lifecycle (e.g. micro-climate data), or are “process” based.

- Choice of background data has a significant impact on model outcomes.

Our approach can be thought of as an application of the current correlative modelling approaches in the
literature, though with severe restriction on the number of variables (restricted to 2-3 only). A further
requirement was that each model could only contain one “temperature” type variable and one
“precipitation” type variable (see below). The rationale is that such an approach should avoid overfitting in
the training range (typically but not exclusively the native range), and hence generate better robustness
when projecting.

Predictor variables

Variables were chosen from the original BIOCLIM bioclimatic variables (BIO1 — BIO19) as generated for the
globe in CLIMOND (Kriticos et al. 2012). These variables and their descriptions are presented in Table 3.

Kearney et al. (2014b) created physiologically motivated climatic variables that provide global estimates of
hourly microclimate. The name “microclimate” emphasises climate near the ground, in contrast to the
commonly used SDM climatic predictors which are long-term average estimates of climate at standardised
heights above ground. Since many organisms actually experience near-ground climates, microclimate is
likely more proximal and hence informative. These variables are estimated through mechanistic
microclimate models which include routines for hourly calculations of solar radiation intensities, above-
ground profiles of air temperature, wind velocity and relative humidity, and soil temperature profiles.
These models can be applied to base gridded climate and soil data of various temporal and spatial
resolutions. In this project the approach of Kearney et al. (2014b) was — for the first time - used to generate
MICROCLIM variables on the same basis as the BIOCLIM temperature variables. That is, the BIO1 — BIO7
variables were reproduced using soil temperature at the surface and various depths.

We also explored the possibility of using more process oriented components than considered so far, though
retaining the restriction on model complexity. That is, we considered a temperature-based index plus a
moisture-based index. The idea is to use similar structural elements to CLIMEX (Sutherst and Maywald
1985) but with a more structured approach to fitting. This requires developing fast code (C++ interfacing
with R) that can generate CLIMEX variables as described by Sutherst & Maywald (1985) quickly. We
developed this based on monthly temperature and rainfall data variables available through the CLIMOND
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dataset (Kriticos et al. 2012). Issues arose with documentation of the empirical relationship between
relative humidity and evapo-transpiration so the CGIAR-CSI (Chapter 3, Table 2) evapo-transpiration data
was used instead.

An example of how the new CLIMEX derived variables may or may not influence results is shown in Figure
6. Whilst there are areas where the relationship is uncorrelated, there is clearly a broad correlation been a
somewhat complex index calculated across the entire year and a single monthly measure.
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Figure 6. Relationship between July maximum temperature and the ecoclimatic temperature index
The ecoclimatic index is based on this set of temperatures: 0, 15, 35 and 45 degrees for t0 to t3 respectively (for
details see Sutherst and Maywald 1985)

Models

As mentioned in chapter 4, the first models were fitted using a Generalized Additive Model (GAM)
implementation of a Point Process Model (PPM) for presence-only data (Renner et al. 2015; Renner and
Warton 2013). Smooth terms were restricted to 2" order polynomials at the most. Terms were either fitted
additively or jointly. Joint fits can be achieved in the mgcv package in R by fitting a smooth surface in two
dimensions over the chosen variables rather than two one-dimensional fits, one for each variable. In each
case the best model was chosen based on proportion of explained deviance. For the BIOCLIM candidate
models, this yielded 11 temperature x 8 precipitation x 2 fits = 176 models.

MICROCLIM candidate models were restricted to 1 MICROCLIM temperature variable + 1 BIOCLIM moisture
variable. This resulted in 28 temperature (1** 7 BIOCLIM variables at soil depths of 0, 5, 50 and 100 cm) X 8
precipitation x 2 fits = 448 Models.

These GAMs can be directly used to predict relative intensities, as explained earlier. As mentioned in
Chapter 4, we also explored the use of climate envelopes as a means of predicting suitability on a binary
scale. To achieve this, we took the two variables from the best fitting GAM, and constructed an alpha-hull
surrounding the presence points in environmental space. The choice of alpha was such that a minimum
bounding envelope was constructed that contained all presence points (not necessarily convex and without
holes). To construct a global suitability prediction, all points were classified as either within (a predicted
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suitability) or outside (predicted non-suitability) the hull. We also constructed a minimum bounding box in
environmental space to construct a similar global suitability prediction. The rationale for such an approach
is that these environmental conditions are presences in the native range, so similar environmental
conditions should lead to suitable habitat in new locations.

Backgrounds

In order to fit presence-only data in point process models, background points (or quadrature points, Renner
et al 2015) need to be selected. The user needs to select the number of points and the extent over which
the points are selected. We explored three levels of background extent. The ‘local’ background was a box
in geographic space (excluding ocean) that enclosed all presence points in the native range. A ‘continental’
background was constructed similarly, restricted within continental borders (except for those that span
continents, e.g. species occurring in Central America). The boundaries would be considered “generous”,
and were typically several multiples larger that the minimum box containing the observed presences,
though restricted by the size of the continent in question (see examples in appendices in the separate
document: CEBRA 1402B_appendices.pdf). Global backgrounds are as stated, consisting of points over the
entire globe. In all cases, 100 000 background points were chosen.

Expert based assessment

For each case study we developed an expert based assessment of possible proximal variables. This was
done by one author (Elith) reviewing the literature on the particular species.

Resolution

All analyses were undertaken on datasets at a 10’ resolution (~ 19km at the equator).

Table 3. BIOCLIM bioclimatic variables and their description.

Variable  Description

BIO1 Annual Mean Temperature

BIO2 Mean Diurnal Range (Mean of monthly (max temp - min temp))
BIO3 Isothermality (BIO2/BIO7) (* 100)

BlO4 Temperature Seasonality (standard deviation *100)
BIO5 Max Temperature of Warmest Month

BIO6 Min Temperature of Coldest Month

BIO7 Temperature Annual Range (BIO5-BIO6)

BIO8 Mean Temperature of Wettest Quarter

BIO9 Mean Temperature of Driest Quarter

BIO10 Mean Temperature of Warmest Quarter

BlIO11 Mean Temperature of Coldest Quarter

BlIO12 Annual Precipitation

BIO13 Precipitation of Wettest Month

BlO14 Precipitation of Driest Month

BIO15 Precipitation Seasonality (Coefficient of Variation)
BIO16 Precipitation of Wettest Quarter

BIO17 Precipitation of Driest Quarter

BIO18 Precipitation of Warmest Quarter

BIO19 Precipitation of Coldest Quarter
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5.2 Case studies

We evaluated the approaches using five species, namely the fire ant (Solenopsis invicta), Asian gypsy moth
(Lymantria dispar), Oriental fruit fly (Bactrocera dorsalis complex), myrtle rust (Puccinia psidii s.l.), and cane
toads (Rhinella marina). For each species we describe previous modelling efforts from the literature, and
compare and contrast our current approaches.

5.3 Protocol development for model fitting — Case Studies

In the ensuing case studies, we first present a brief review of modelling efforts to date from the literature.
We then explore, for various backgrounds, a range of different possible approaches:

* Fit GAMs using one of the choices of variables (BIOCLIM, MICROCLIM, CLIMEX, and ‘Expert’) and
backgrounds (local, continental, global).

*  For BIOCLIM, MICROCLIM, and CLIMEX variable options, choose the best fitting GAM based on
residual model deviance.

* Make a global prediction of the chosen model using the predicted Poisson intensity of the GAM.

* Make a global prediction of the chosen model using an alpha-hull.

* Make a global prediction of the chosen model using a bounding box.

Global predictions are also constructed using a GAM derived from either the first 19 BIOCLIM or all 35
BIOCLIM variables, one of the defined backgrounds, and one of the Poisson intensity, alpha-hull, or
bounding box methods.

Full details of all best fitting models are presented in Appendices | — V.

In the following sections we present a selection of the models we produced to showcase those that appear
to be predicting the best, and alternatives that demonstrate various issues in the model fitting and
prediction routines.
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5.3.1 FIRE ANT (SOLENOPSIS INVICTA)

Background

Fire ants (Solenopsis invicta) are native to southern Brazil, Paraguay, Uruguay, Bolivia and north-eastern Argentina. They have invaded the US, first in Alabama in
the 1930’s, then spreading throughout the south-eastern US and into Texas, New Mexico and California, with northern limits around Maryland and Delaware. They
have also recently invaded several Caribbean islands. In Australia and New Zealand they have been found in south-east Queensland, at Yarwun in central
Queensland, and at Port Botany in NSW; also at Auckland airport and the Port of Napier, NZ (Commonwealth of Australia 2015; DAFF 2015; Fitzpatrick et al. 2007,
Sutherst and Maywald 2005)

Fire ants are a serious pest, with social, environmental and economic impacts (DAFF 2015). Their ecology is reasonably well known (details at DAFF 2015). Efforts
to model their potential distribution globally include the following (Table 4), and see CSIRO (2015) for a reference list of other relevant publications.

Table 4. A selection of species distribution models from the literature for fire ants (Solenopsis invicta)

Source Model details Mapped predictions
Sutherst & CLIMEX — fitted the model to data in the US,

Maywald and projected world-wide. Explored likely

(2005) effects of irrigation on projected =

distributions. Fit parameters for soil moisture,
temperature, and stress (dry, wet, cold, heat),
and included constraints based on degree-
days to complete generation and to produce
alates. They comment in discussion that the
fire ant distribution in S America (native
range) is riverine and not climate-limited —
mentioned role of soil disturbance and
inundation.

Ot <10
10 to <20
20 to <0

Fig.11. Potential global distribution of the fire ant under natural rainfall as estimated by the CLIMEX ecoclimatic index,
EI
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Source

Model details

Mapped predictions

Fitzpatrick
et al. (2007)

GARP. Study of what “reciprocal modelling”
(native vs invaded range fits, projected
elsewhere) suggests. Predictors: used
elevation and 11 Worldclim variables at 10’
resolution (bio1,2,3,4,5,6,7,12,13,14,15).
Unclear what background was used, being
reciprocal modelling perhaps it was
continent-wide (S America vs USA). See
pictures — showed that native range records
fail to predict USA distribution and vice
versa). Quite a long and interesting discussion
of what all this means.

Models based on
native distribution

Models based on
invaded distribution

Ward (2009)

Specifically focussing on NZ and using 4
“modelling” approaches — in order, left to
right: DOMAIN on 19 WorldClim variables
(native and invaded range records), climate
matching on 4 climate variables, growing
degree days (mapping them from published
info, using LENZ data) and “foraging activity”
which is based on 10cm soil temp data, also
from LENZ. Made a consensus map)
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Source Model details Mapped predictions

Morrison et | A “dynamic, ecophysiological model” of

al. (2004) colony growth based on min and max temps;
superimposed precipitation data to identify
too-dry places. The model assumes soil temp
is key factor affecting colony survival, and is
based on estimates of how many alates are
produced per female are calculated.
Threshold number necessary from USA
northern range (coldest area known suitable).
Used daily temp data. Threshold of 510mm
rainfall selected.

Potential Distribution of Solenopsis invicta
Colony Reproduction Based on Temperature
@ Certain
A Possible
O Unlikely
Precipitation
Adequate
o Inadequate

For our models, we obtained presence records from Matt Fitzpatrick Pers. Comm.), who collated records from native and invaded ranges for his published
modelling, as described by him: “Native and introduced distribution data sets consisted of presence data only. We collected 74 native range occurrences of fire
ants within South America from primary literature. For invaded range occurrence data, we used latitude—longitude centre points of only those US counties under
‘entire county quarantine’ by the US Department of Agriculture, Animal and Plant Health Inspection Service, which constituted 741 counties in 2004” (Fitzpatrick et
al. 2007; references provided in quotation but omitted here). The USA county data included information of first recorded infestation.

We restricted ourselves to using the 74 native range recorded presences in our GAM modelling, for selecting the predictor variables. Alpha and minimum bounding
box projections were done once using the 74 presence points, and once using all available presence points (native and US).

Results, Fit-based:

The results for the best fitting BIOCLIM temperature (BIO3) and precipitation (BIO18) model for the distribution of the fire ant Solenopsis invicta are shown in
Figure 7, based on observed locations in the native range of South America and a continental-scale background. These use the model to predict relative intensities
worldwide. As with the previous modelling effort of Fitzpatrick et al 2007, the model fails to predict (omission errors) the observed distribution in the south-
eastern United States (Figure 7). At the Australia/New Zealand scale the projection is considered mixed, being misleading in places. The distribution in Australia is
plausible based on observed incursions (Brisbane and Gladstone), though the predicted suitability of cool moist mountainous regions in New Zealand and parts of
Tasmania doesn’t accord with what we think we know (Figure 8). In combination with its inability to predict the invaded US range, we would not consider this
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model reliable for projection. Allowing the model to be chosen from the best performing MICROCLIM temperature variable and BIOCLIM precipitation variable
results in little improvement (Figure 9).

Fire ant: bio03 + bio12

I~ 3e-05

[ 2e-05

 1e-05

-150 -100 -50 0 50 100 150

Figure 7. Best fitting GAM using BIOCLIM temperature (BIO3) and precipitation (BIO18) for fire ants (Solenopsis invicta) with continental scale background. Blue crosses in
South America denote occurrences. Aqua dots in the USA denote the invaded range (not used in model development).
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Fire ant: bio03 + bio12
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Figure 8. Projection of best fitting GAM using BIOCLIM temperature (BIO3) and precipitation (BIO18) for red
imported fire ant to Australia and New Zealand. Background is at continental scale.

Fire ant: micro03.0 + bio12

- 4805

- 3e-05

= 0e+00

T T . T
-150 -100 50 0 50 100 150

Figure 9. Best fitting GAM using MICROCLIM temperature (03.0) and precipitation (BIO18) for fire ants (Solenopsis
invicta) with continental scale background. Blue crosses in South America denote occurrences. Blue dots in the USA
denote the invaded range (not used in model development).

The equivalent GAM using a local background performs poorly, particularly in the native range, though it
performs better in the southern USA (Figure 10). The likely reason is the over-fitting to local features of
variables. This was apparent for many of the modelling approaches (see Appendix | in CEBRA
1402B_appendices.pdf). A similar result was found for the global background (see Appendix II, V in CEBRA
1402B_appendices.pdf). Neither global nor local background is considered further.
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Fire ant: bio03 + bio18
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Figure 10. Projection of best fitting GAM using BIOCLIM temperature (BIO3) and precipitation (BIO18) for red imported fire ant to Australia and New Zealand. Background is at
local scale.
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Neither does using expert chosen variables appear robust to whatever the inherent problems are in the fire ant data (Figure 11).

Fire ant: micro05.5 + micro06.5 + micro07.5 + bio12

[~ 0.0002(

- 0.0001%

~ 0.0001(

[~ 0.0000¢

—— 0.0000(

-150 -100 -50 0 50 100 150

Figure 11. Projection of best fitting GAM using expert chosen variables for red imported fire ant to Australia and New Zealand. Background is continental.
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Clearly no modelling approach performs satisfactorily in predicting the invaded range in North America. Sutherst & Maywald (2005) considered that unquantified
biotic interactions precluded using the South American native range for estimating model values. Such inference was made in the knowledge of the invaded range,
however, such knowledge will commonly be missing. Alternatively, it could be the quality of data from the native range may be poor (e.g. only collected along
rivers or roads). Again, such metadata on data quality will often be missing.

5.3.2 ASIAN GYPSY MOTH (LYMANTRIA DISPAR)

Gypsy moths (L. dispar) are voracious leaf feeders. They include several subspecies whose range together covers Europe, Africa, Asia, North America and South
America. The Asian gypsy moth (AGM, including Lymantria dispar asiatica, Lymantria dispar japonica, Lymantria albescens, Lymantria umbrosa, and Lymantria
postalba) is a particularly noteworthy biosecurity threat because — in contrast to European gypsy moths — the females are active fliers, capable of flying up to
30km, and therefore spreading throughout an invaded range (Matsuki et al. 2001; USDA 2015). It has a very broad host range. AGMs are genetically distinct from
European gypsy moths so are separable with DNA tests (Carroll and Marks, 2012), though hybrids of the two can form. The native range of the AGMs include
Russia, China and Japan (Carroll and Marks 2003). It also occurs in Europe along with the European Gypsy Moth, and has been found in the USA, though it is not
established outside of its native range (Matsuki et al. 2001).

Many models of gypsy moths focus on the European moths (Allen et al. 1993; Gevrey and Worner 2006; Pitt et al. 2007; Régniére et al. 2009). Those specifically
targeting Asian moths include those of Peterson et al. (2007) and Matsuki et al. (2001) tabulated below (Table 5)
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Table 5. Gypsy moth (Lymantria dispar) models in the literature.

Source

Model details

Mapped predictions

Peterson et
al. (2007)

GARP. Used 43 voucher specimens from East
Asia only (they excluded data from western
and central Asia because couldn’t assess flight
capability). Predictors: elevation, slope,
aspect, annual precipitation, annual temp,
mean max monthly temp, mean min monthly
temp, solar radiation. 0.1 degree. Compound
topographic index also used in most models.

Figure 3 Worldwide projection of native-range ecological niche model of Asian Lymantria dispar, showing areas globally that fit the
ecological niche profile of the species as characterized on its native range. Note that Australia is included based on a separate suite of models
because the compound topographic index coverage is not available for that continent. Darkest grey represents areas with complete
agreement of 10 ‘best subsets’ of GARP models, lighter grey shows lower agreement, white areas were not predicted by our model.
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Source Model details Mapped predictions
Matsuki et CLIMEX. If information from the literature
al. (2001) didn’t discriminate between AGM and EGM

they used all records; if it did, just used the
AGM info. We interpret the methods as: they
fitted the model so it fitted both European
and Asian moths.

See predictions to right. The authors
comment:

“agreement between the observed and
predicted distribution shows the poorest
match in south-east China, where there is a
subtropical climate ... It was not possible to
assemble a set of CLIMEX parameters that
were able to predict this area and at the same
time predict the major part of the gypsy moth
distribution. Heat stress is an important
excluding factor... The high temperatures
restrict the growth during the period when
the insect is not in diapause.

The model also predicts the presence of AGM
throughout dryer inland parts of China and
southern Russia where there are scarce
records. [In Morocco] diapause is completed
by February and growth is restricted by
moisture after May...The overall model for
AGM corresponds best at the northern cold
limits and the southern dry limits. It is
weakest for subtropical areas.”

.

Montpellier
foe X

Figure 2 cLimMex model predictions of the distribution of Asian gypsy moth, Lymantria dispar (circles). The recorded distribution is shown as the shaded
area (modified from Giese & Schneider (1979)). Crosses indicate climate stations where Asian gypsy moth is predicted not to survive. The size of

circle indicates the degree of suitability of the climate.

Manjimup

Figure 4 Predicted distribution of Asian gypsy moth in North America. The shaded areas show the area where European gypsy moth has been

ecorded. Crosses indicate clmate staions where Asian gypsy moth i predicted not to surive. The size of ircle indcates the degree of suitabily of FigUIe 5 Prediiction of the distribution of Asian gypsy moth in Australia and New Zealand. Crosses indicate climate stations where Asian gypsy moth is

the climate.

predicted not to survive. The size of circle indicates the degree of suitability of the climate.
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Asian gypsy moth: bio01 + bio12
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Figure 12. Best fitting GAM to BIOCLIM temperature (BIO1) and precipitation (BIO12) for Asian gypsy moth (Lymantra dispar). Blue crosses are recorded locations used in
model development with a continental scale background.

Page 39

—— 0.0000(



The results for the best fitting BIOCLIM temperature (BIO1) and precipitation (BIO12) model for the
distribution of Asian Gypsy Moth are shown in Figure 12. The projection to Australia predicts high suitability
in the coastal regions of southern New South Wales, Victoria and much of Tasmania (Figure 13). Across the
Tasman Sea, virtually all of the mountainous region of New Zealand is considered of moderate to high
relative suitability (Figure 13).

Asian gypsy moth: bio01 + bio12
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Figure 13. Projection of best fitting GAM using BIOCLIM temperature (BIO1) and precipitation (BIO12) for Asian
Gypsy Moth to Australia and New Zealand. Continental background.

If we take those same variables, and project using an alpha hull approach, the projection changes again
(Figure 14). Notably, areas in western Tasmania and the south-west of the New Zealand change from “hot”
to “not”. A probable explanation for this is the unbounded nature of the GAM creating edge type effects
arising from the extrapolation in the GAM projection. Both these areas have high rainfall, possibly outside
that observed in the native range, and hence not included in the hull.
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Asian gypsy moth: bio01 + bio12
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Figure 14. Project alpha-hull model using of best fitting GAM parameters BIOCLIM 01 (Annual Mean Temperature)
and BIOCLIM 12 (Annual Precipitation) for Asian Gypsy Moth. Continental background.

If we use expert chosen variables, however, we get a different projection, both in Australia and New
Zealand (Figure 15). In general terms, the risk map for Australia is similar, however for New Zealand it is
different, with the West Coast of the South Island considered the most favourable by a large margin in the
continuous predictions (Figure 15). Note though that those west-coast predictions must be extrapolations
because they are masked out when hulls are used to bound the predictions (Appendix 4, Figure 2).

Finally, if we generate a best fitting (including appropriate penalization) GAM from the first 19 BIOCLIM
variables we get a model whose projection contains very low suitability for both Australia and New Zealand
(Figure 16).
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Asian gypsy moth: bio04 + bio05 + bio06 + bio12 + bio28
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Figure 15. Projection of expert based GAM using BIO4 (Temperature Seasonality), BIO5 (Maximum Temperature of
Warmest Week), BIO6 (Minimum Temperature of Warmest Week), BIO12 (Annual Precipitation), and BIO28
(Annual Mean Moisture Index) for Asian Gypsy Moth to Australia and New Zealand. Continental background.

Asian gypsy moth: first 19 bioclim variables
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Figure 16. Best GAM derived from first 19 BIOCLIM variables. Continental background.
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5.3.3 THE INVASIVE / ORIENTAL FRUIT FLY (BACTROCERA INVADENS, B. DORSALIS, B. PAPAYAE, AND B. PHILIPPINENSIS)

Following Schutze et al. (2015) we will here treat B. invadens and B. dorsalis as one species complex (also subsuming B. papayae and B. phillipinensis). For
simplicity we refer to it as the Oriental fruit fly. Oriental fruit fly is a damaging pest of fruit and vegetable species because of its wide host range and ability to
attack some fruit green. A serious pest worldwide, the Queensland Government (2015) reports: “Oriental fruit fly is endemic in southeast and southern Asia and
has spread to Hawaii, Tahiti, Mariana Islands and Africa. It has been present in Papua New Guinea since 1992. In March 1993, it was detected for the first time in
Australian territory on the islands of Saibai, Boigu and Dauan, adjacent to the Papua New Guinea coast; and on Stephen and Darnley Islands close to the centre of
Torres Strait and was subsequently eradicated”. An incursion on mainland Australia (identified then as B. papayae) occurred in 1995 near Cairns, with eradication
declared in 1999 ((Cantrell et al. 2002)).

Previous models for either species include those of De Meyer et al. (2010) and Stephens et al. (2007) tabulated below (Table 6) (see species records used, below
table). Key results to note are the major differences in the projected suitability in Australia depending on the modelling approach and data used. Note also that the
distribution records used reflect previous concepts of two separate species: De Meyer et al. (2010) (Figure 17) and Stephens et al. (2007) (Figure 18) (right, native =
circle, x = invasive). The model of Stephens et al. (2007) does a pretty good job of mimicking the distribution B. invadens (now considered the same species) over
some parts of Africa. It does, however, appear to over-predict into southern parts of Africa based on known presence data (assuming that the species has had time
to disperse to all suitable locations), which raises the question as to whether the prediction into south-eastern Australia is sound.

Page 43



Table 6. Oriental fruit fly (Bactrocera dorsalis complex) models in the literature.

Source Model details Mapped predictions
De Meyer et | Models only fitted to native range data for B. invadens, GARP
al. (2010) identified from vouchered specimens (34 records across

India, Sri Lanka and Bhutan, mostly in Sri Lanka — See Figure
17). Predictors: WorldClim variables at 1km resolution:
annual mean temperature, mean diurnal range, maximum
temperature of warmest month, minimum temperature of
coldest month, annual precipitation and precipitation of the
wettest and driest months (=variables 1, 2, 5, 6, 12, 13, 14).
Used Maxent and GARP (both with defaults) — not clear what
background used, but possibly the extent shown here:

GARP_

Maxent

Page 44




Source

Model details

Mapped predictions

Stephens et
al. (2007)

CLIMEX. Based on B. dorsalis; records shown in Figure 18.
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o The climate suitability (EI) for the oriental fruit fly under the reference climate (1961-1990 averages) projected using CLIME
(O, unsuitable (0.00-0.49); =, marginal (0.50-9-99); M, suitable (10.00-19.99); M, optimal (20.00+)).
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Fig. 1. Distribution records for B. invadens. Native records in India (Ind), Sri-Lanka (Sri) and Bhutan (Bhu). Non-native records in Africa.

Figure 17. Distribution records for B. invadens used by De Meyer et al. (2010).

Figure 18. From Stephens et al. (2007), the distribution records for Bactrocera dorsalis used in their modelling (circles, native range; crosses; invaded) — as then considered a

separate species to B. invadens.
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Fruit fly: bio06 + bio12
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Figure 19. Best fitting GAM using BIOCLIM 06 (Min. Temp. of Coldest Period) and BIOCLIM 12 (Annual Precipitation) for the global distribution of the Bactrocera dorsalis
complex. Blue crosses are reported collections. Background is continental.
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The results for the best fitting BIOCLIM temperature and precipitation GAM for the distribution of the
Bactrocera dorsalis complex are shown in Figure 19. Of note is the observed occurrence along the Nile River
that is not well predicted, presumably on account of irrigation. The SDM is most similar to the MAXENT
model of De Meyer et al. (2010) (Table 6)

The projected Australian distribution of the Bactrocera dorsalis complex predicts highest suitability north of
Cairns, Kimberley Coast and the far Top End of the Northern Territory. The area of highest suitability is
marginally consistent with the incursion near Cairns in 1995 (Cantrell et al. 2002). This differs considerably
from the CLIMEX projection of Stephens et al. (2007) (Table 6) that predicted a widespread population
through QLD into NSW (Table 6).

Fruit fly: bio06 + bio12
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Figure 20. Projection of best fitting GAM using BIOCLIM 06 (Min. Temp. of Coldest Period) and BIOCLIM 12 (Annual
Precipitation) for the Bactrocera dorsalis species complex to Australia and New Zealand. Continental background.

The alpha-hull model corresponding to the GAM projects a qualitatively similar result, with a potential
distribution down the entire eastern seaboard of Australia and into parts of Northland, New Zealand
(Figure 21). Using a bounding box c.f. an alpha hull for the same variables generates a projection that would
be considered untenable, given the extensive distribution in desert regions. (Figure 22).
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Fruit fly: bio06 + bio12
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Figure 21. Alpha hull model based on best fitting GAM variables BIOCLIM 06 (Min. Temp. of Coldest Period) and

BIOCLIM 12 (Annul Precipitation).

Fruit fly: bio06 + bio12
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Figure 22. Bounding box model based on best fitting GAM variables BIOCLIM 06 (Min. Temp. of Coldest Period) and

BIOCLIM 12 (Annul Precipitation).
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5.3.4 MYRTLE/GUAVA RUST (PUCCINIA PSIDII S.L.)

Background

Myrtle rust or guava rust (Puccinia psidii sensu lato) has a large and varied host range with sometimes large impacts on infected species. Whilst there has been
debate over taxonomy (Carnegie and Cooper 2011; Glen et al. 2007; Simpson et al. 2006), here we use the broad definition of the P. psidii complex, which includes
Uredo rangelii. The native range of the species is South and Central America, including Brazil, Argentina, Uruguay, Jamaica and Puerto Rica (Elith et al. 2013, Online
Appendix 1).

Several models have been developed for predicted distributions of guava/myrtle rust including those tabulated below (Table 7).

Table 7. Myrtle rust (Puccinia psidii sensu lato) models in the literature.

Source Model details Mapped predictions
Biosecurity CLIMATE, using 16 temperature and rainfall- .

Australia related variables B

(2009)

[ 2500 5000 10,000 Kilometers

0 0 e @

closest match (2 points)

2nd closest match (44 points)
3rd closest match (242 points)
4th closest match (701 points)
5th closest match (980 points)

known locations
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Source Model details Mapped predictions
Elith et al MaxEnt, using the same 7 predictors as used ™ €, = T A v EZB:"."L
(2013) in our “expert” set (representing 1 - o G i ' G Eg;;g;
temperature, precipitation, humidity and e s {{GF S ot
aridity) and settings to produce relatively SN e e
smooth models (linear and quadratic P
features). Native and invaded range records g . \ , &
used to fit model. R g
e » sy .
.' { -W / U
I 4 4 WP =
Magarey et NAPPFAST — a weather-based system that
al. (2007) uses either daily (USA) or monthly data series

to predict years of suitable conditions over a
selected timeframe. For guava rust, settings
were: average daily max temp < 33°C;
average daily min temp > 13°C; 5-25, wet
days per month. If > 3 months met these
conditions, then the climate would be
suitable for the pathogen. The model was run
with 10 years (1993-2002) of weather data
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Source Model details Mapped predictions
Kriticos et CLIMEX — Ecoclimatic Index shown here.
al. (2013)
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The best fitting 2-variable GAM (fitted to only native range data, with continental background) is shown in

Figure 23. This SDM has some problems. At the Australian scale the predictions are somewhat
questionable, with observed occurrences not well matched by suitability projections (Figure 24).

Myrtle rust: bio11 + bio14
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Figure 23. Best fitting GAM for myrtle rust based on BIOCLIM variables BIO11 and Bl0O14.
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Figure 24. Best fitting GAM for myrtle rust based on BIOCLIM variables BIO11 (Mean temp. of coldest quarter) and
BIO14 (Precipitation of driest period) applied to Australia and New Zealand. Observations are small blue crosses.
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The alpha-hull model using the two variables chosen by the best fitting GAM, and only native range data,
performs very poorly, with a high proportion of known Australian occurrences clearly omitted and large
areas of central Australia that would be considered likely errors of commission (Figure 25).

Myrtle rust: bio11 + bio14

110 120 130 140 150 160 170 180

Figure 25. Alpha-bull myrtle rust model based on BIOCLIM variables BIO11 (Mean temp. of coldest quarter) and
BIO14 (Precipitation of driest period). Observations are small blue crosses.

Using variables identified previously as being important doesn’t seem to help, with different shortcomings
(Figure 26).

Myrtle rust: bio05 + bio06 + bio08 + bio13 + bio14 + RH + Aridity
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Figure 26. Projected suitability for myrtle rust from GAM based expert identified variables.
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5.3.5 CANE TOADS (RHINELLA MARINA)

Background

Cane toads (Rhinella marina, formerly Bufo marinus) are a well known pest in Australia, they are a useful case study since they are relatively unaffected by biotic
interactions and are well studied, with models including a mechanistic model published (Table 8). Their native range is in South America; Tingley et al. (2014)
discuss the effect of a closely related species, R. schneideri, on its native distribution.

Table 8. Cane toads (Rhinella marina) models in the literature.

Source

Model details

Mapped predictions

Tingley et
al. (2014)

Maxent fitted to data from native-range, and
5 predictors related to heat and water
balance: minimum temperature of the
coldest month, maximum temperature of the
warmest month, mean annual temperature,
mean humidity of the warmest quarter, and
precipitation of the warmest quarter.

Predictions are depicted in 10% suitability
classes ranging from white to orange to
yellow to green to blue.

N Vv L&
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Source Model details Mapped predictions
Kearney et Mechanistic model — not fitted to any
al. (2008) observed data; based on known physiology of | ©

the species.

Predictions are depicted in 10 equal interval
classes, with the highest class (royal blue)
depicting 9— 12 breeding months per year and
the white area representing no breeding
months per year.
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Cane toad: bio06 + bio18
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Figure 27. Best fitting GAM for the cane toad (Rhinella marina) based on BIOCLIM variables BIO6 (Min. Temp. of Coldest Period) and BIO18 (Precipitation of Warmest
Quarter). Observations are blue crosses. Background is continental.
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Cane toad: bio06 + bio18
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Figure 28. Projection of best fitting GAM for the cane toad (Rhinella marina) based on BIOCLIM variables BIO6 and
BIO18 and continental background. Model is fitted to native range only.

The best fitting cane toad GAM performs particularly poorly when projected to Australia (Figure 28). While
the “expert” set of predictors in combination with alpha hulls seemed to perform reasonably well for fire
ants, this is not the case for cane toads, particularly in the southern parts of the invaded range (Figure 29
and Figure 30)Error! Reference source not found.. Moving from an alpha hull type model to a bounding
box approach (both fitted to native range data) generates considerable additional commission errors
(Figure 31). The direction of errors, however, is not necessarily consistent, and using a bounding box
approach on expert identified BIOCLIM variables results in considerable omission errors (Figure 32).
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Cane toad: bio06 + bio18
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Figure 29. Alpha hull projection for cane toad, BIO06 and BIO18 (best fit GAM), continental background. Note the
area of predicted suitability in South America that is inhabited by the congener Rhinella schneideri.

Cane toad: bio06 + bio18
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Alpha hull projection for cane toad, BIO06 and BIO18 (best fit GAM), continental background.
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Cane toad: bio06 + bio18
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Figure 31. Bounding box projection for the cane toad, BIO06 and BIO18, continental background.
Cane toad: bio01 + bio05 + bio06 + bio13 + RH
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Figure 32. Bounding box projection for the cane toad, expert derived BIOCLIM variables, continental background.

Page 60



6 Problems with projections

Introduction

The previous chapters have identified a lack of explicit and unambiguous information about proximal
variables in the scientific literature. Based on this finding, a draft protocol was proposed to attempt to
empirically identify proximal variables. This was based on trying to find variables that were strongly
predictive, as the claim of proximal variables is that they will be strongly predictive regardless of
geographical location.

Analysis of this protocol across the case studies identified that no one approach made consistent, reliable
predictions. While some analysis choices may be worse than others there is no general automated
approach that can be recommended in all circumstances.

A partial explanation for this result is found in the scientific literature. There is extensive discussion of the
role of biotic interactions in confounding environmental patterns. For instance a predator or competitor
may impact the distribution of a species in its native range. In the introduced range the predator or
competitor may not exist and the species can spread to a wider range of habitats. In general, this will lead
to errors of omission in the predictions.

In performing this project we have identified that this is only one of the reasons that predictive
performance is poor. Another reason is that the statistical relationships between distribution and
environmental variables may be different in the native and invaded range. This effect is driven by the gap
between the real processes driving distribution and the observed summary environmental data available
for modelling. These relationships vary spatially leading to failures in predictions to new environments.
This effect can be potentially exacerbated by over fitting. We can make models fit more and more precisely
in the native range but this does not necessarily increase the quality of the predictions in the invaded
range. In the following chapter we discuss further our decision to restrict the model fitting to the native
range only.

In this chapter we explore this issue by using simulation. This will provide a clearer understanding of the
challenges in prediction, and allows consideration of new approaches.

Methods

To investigate the effect of incomplete process knowledge we seek to isolate this phenomenon from other
effects such as biotic interactions and biased sampling. If this is not done it will be more difficult to
interpret the results of the analysis. With this aim in mind it is clear that the use of observed data is not
optimal for this investigation — it explicitly confounds these competing effects.

Instead we consider simulating data. To do this we begin by considering the logical basis of the analysis.
The methods all assume that there is a “niche” within which the species occurs. Once this niche is defined it
determines the presence and absence of the species irrespective of location. To mimic this we choose the
simplest expression of it. We choose a temperature variable from the BIOCLIM set (1-11) and a moisture
variable (12-19). We set limits for each of these variables. Within these limits (a box in the environmental
space of these two variables) the species is always present. Outside of the box the species is always absent.
Thus these synthetic species exhibit pure niches, with no biotic interactions, and they have no stochastic
element, i.e. the probability of presence is zero or one. The limits were set based on a random selection
across the global range of the environments. These “niches” were then realised in South America and
Australia. Thus some simulated species might be rare in one of these continents and common elsewhere.

The simulations in this analysis consider the potential native range to be locations within the niche in South
America and the potential invaded range to be anywhere in Australia. Given we have gridded data for the
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BIOCLIM variables across this range we can produce the geographic distribution exactly based on the
environmental box defined in the previous paragraph. The important point to note is that we have “truth”
in both localities so we can unambiguously assess performance.

The issue that we wish to explore is the effect of incomplete process knowledge on our ability to predict
the invaded distribution. In practical terms it means that our predictor variables are often not close to
process. For example a species does not experience mean temperature, but rather a changing profile of
temperature minute by minute, the impact of which interacts with other environmental variables and the
species physiology and behaviour. We mimic this by predicting the species distribution not by the variables
that define its niche, but by the remaining BIOCLIM variables. These variables will be correlated with the
“causal” variable mimicking the usual problem in extrapolating these models. Note that the true variables
are NOT available to the model selection process. This is to explicitly consider the impact of less proximal
variables.

Based on these models there are three comparisons that are of interest:

1. Build model in native range and project into both native and invaded range.

2. Build model in invaded range and projected into invaded range

3. Build model in native range, build model in invaded range, based on the same data and compare
predictions.

For the purpose of this study we use generalised additive models with smoothness degrees of freedom set
to 4. These models will adequately fit the “true” distribution and will not unduly impact the results of the
analysis. The response is presence-absence. Predictors are selected as before —i.e. the pair of temperature
and rainfall predictors leading to smallest residual deviance are chosen. Predictions are assessed using area
under the receiver operating characteristic (ROC) curve. This ranges from 0 to 1, with random predictions
giving a ROC of 0.5, and ROC values reporting the proportion of times that a prediction at a randomly
drawn suitable (presence) site will be greater than the prediction at a randomly drawn unsuitable (absence)
site.

Results

Individual models

We simulated over one thousand different distributions to explore extrapolation performance. To fix ideas
we initially present two models chosen which show different extremes of performance. One performs
reasonably the other less so. In the first model the predictions are particularly poor. The South American
data is in significant spatial disequilibrium with the environmental covariates (i.e. the spatial predictions
into the native range have substantial mismatches with the observed truth), even though each was found
to be highly significant and the ROC >.75. In the second example the model performs significantly better as
the observed covariates are good surrogates for the underlying proximal covariates.

Example 1:

True niche — BIOCLIM 2 and BIOCLIM 19
Empirical niche — BIOCLIM 4 and BIOCLIM 14 selected as best fit.
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Figure 33. Simulated distribution, BIOCLIM variables 2 and 19.
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Figure 34 Actual niche. The block of + symbols show the presences, and small dots are absences. Note the axes are
not scaled identically in the two panels.
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Native range - observed niche Invaded range - observed nichi
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Figure 35 Empirical niche — observations shown along the selected variables, 9 and 14. Legend as above.
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Figure 36. Comparison of predictions from model fitted to South American data to model fitted to Australian data,
to all environments on the Australian continent.
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Figure 37 Predictions and actual data for South American data .
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ROC curve - native range ROC curve - Australian range
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Figure 39. ROC curves from native range model and for projections to Australia.

Page 66



Example 2:

True niche — BIOCLIM 11 and BIOCLIM 12

Empirical niche — BIOCLIM 5 and BIOCLIM 16

Figure 40. Simulated distribution, BIOCLIM variables 2 and 19.
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Figure 41. Actual niche.

Page 67



Native range - observed niche Invaded range - observed nich

o
D —
o w
o _] -
o
o™~
o .
o _| .
o o
b o D =
(O] (O] S
E E
S o k=S
a (=2 a
o
o
O p—
w
o 7
O —f.. i
w
D —
o -
1T T T T T 1 T T T T T
5 10 20 30 20 25 30 35 40
bioclim5 bioclim5

Figure 42. Empirical niche.

Page 68
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Figure 43. Comparison of predictions from model fitted to South American data to model fitted to Australian data.
Predictions based on Australian environmental data.
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Figure 45. Predictions from native range model, Australian model and actual data.
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Figure 46. ROC curves from native range model and for projections to Australia.
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These two examples highlight the challenges of predicting species distributions to new environments based
on limited environmental data. While a niche may be well defined and universally applicable, for example
Figure 40, this ceases to be true for the relationship based on surrogate variables. For an example compare
Figures 40 and 41. This is the central issue and in practical applications the “truth” is unknown. The impact
of this depends in the extent of degradation in relationships caused by the use of surrogate variables. In the
first example the effect is extreme to the extent that the model would be misleading for decision making. In
the second case the impact is less pronounced.

In either case the impact on the probability predictions is significant, to the extent that it would seem
particularly unwise to apply these in decision making. Even without the results from this simulation it is
easy to see that the two regions are different statistical populations and population statistics in one would
be only loosely related to population statistics in the other. In other words, the prevalence of the species
(the proportion of the land area occupied) is not the same on each continent. A reasonable question to ask
is whether the presented results are not representative. To explore this we have rerun the simulation for
random pairs of temperature and moisture variables. Using the same code for each random pair we have
recorded the performance, in terms of AUC in the home range against the performance in the invaded
range.

We present the results of this simulation in Figure 46. Note in this figure that all models have an AUC >.75
so would at least be anecdotally be considered reasonable. Note also the significant degradation that
occurs in many models performance when they are projected, some of it potentially extreme. In particular
note that predictive performance in the invaded range is in practical terms uncorrelated to predictive
performance in the native range.
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Figure 47. 100 randomly sampled models, ROC curve based on fit and projection to Australia.
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If we cannot identify models that will project well based on empirical performance perhaps there will be
particular variables that are associated with good projection properties. To explore this we sampled 100
random niches, randomising both the variables included (but constraining them to one BIOCLIM
temperature and precipitation variable) and the position of the niche along the gradient. For each
generated niche we fitted all 88 possible BIOCLIM rainfall x temperature combinations to the native range.
For each model we recorded the AUC of the projection onto the Australian data. These were averaged over
the 100 runs to produce average AUC’s for each variable combination. This is shown in Figure 47. Note that
there are no obvious patterns in this Figure.
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Figure 48 100 randomly sampled models, ROC curve based on comparison of projection to Australia against truth
observations in Australia.

Conclusions

This chapter has identified the significant challenges for prediction when dealing with incomplete
information. Many models will appear to fit due to the spatial nature of environmental variables but the
projections of these will often be unreliable. There are two approaches to dealing with this. First, more
detailed laboratory studies can be performed to better understand physiological tolerances. This is
potentially complicated by genetic variation across a species as well as the more pernicious issue that the
mechanisms controlling distribution may be multi-factorial. In this case it may not be possible to design
effective experiments to identify these issues. In addition, the time frames of many Biosecurity questions
are short — weeks and months, rather than years. It may not be possible to collect information in this
timeframe. The second approach is to accept this uncertainty and to factor it into the inference. We will
discuss this in the next chapter.
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7  Synthesis

7.1 Discussion

We have reviewed over 40 papers in the ecology literature related to variable selection in prediction and
consulted the statistical literature to consider the impacts of dimensionality on distance based predictions.
From this review we have concluded that there is no accepted position about what constitutes proximal
variables that will consistently predict accurately to new locations. There is some good conceptual thinking
for certain classes of organisms but no general agreement on how to translate this into a choice between
the set of available variables.

The review of this literature identified a number of areas of agreement about predicting the range of
invasive species. These are:

- There are fundamental issues with predicting to new environments because of biotic interactions.
These are generally viewed as irreducible.

- There is conceptual agreement that some variables are more predictive than others (the
proximal/distal debate) but there is no agreement about a constructive approach to identify these
variables. There is broad agreement that some variables can be identified as NOT being proximal
but there is no general agreement about determining the ranking of variables that are proximal.

These results are somewhat sobering. While the concept of proximal variables is often invoked (along with
the allied “expert ecological knowledge”), the literature remains conceptual without a developed empirical
basis and synthesis. While reasonable predictions can be made in some well-studied examples the absence
of a general theory means that empirical justification can be on tenuous logical ground (cum hoc ergo
propter hoc - "with this, therefore because of this"). The more “causal” variables we consider the more
likely we will find association (in the statistical sense of reasonable model fit), but as we have
demonstrated, these associations may not reflect actual process and may therefore not project well.

The inconsistent results obtained from the analysis of statistical approaches to identifying proximal
variables, using the five case study species, are also a cause for reflection. Proximal variables should be
predictive. The results show that we have difficulty in predicting in ways are consistent with current
knowledge / opinion on these species. Reasons may include: there could be strong biotic interactions;
dispersal limitations are strongly impacting distributions; the variables that are available to us are only
weakly related to process; or the data we have available for fitting the models is too poorly representative
of the species distribution to enable strong model fit. After contemplation this is perhaps not surprising.
The variables that are widely available to modellers are often coarse and/or abstract averages across
significant temporal and spatial scales and the processes that drive distributions relate to individual level
interactions that will occur at particular places in space and time. Thus the conceptualisation of a niche is
logically significantly removed from the mechanics of the modelling process and these difficulties in
projection should be anticipated.

This project sought to identify best practice approaches to developing distribution predictions. The logical
conclusion from the review and analysis of case studies is that a clear consensus on good practice does not
exist at this stage and that any process using existing methods will involve a significant expert component.
Without an objective method to determine variables there is no other way. The expert(s) are needed to
justify particular choices about possible causal relationships. This is still challenging — experts learn by
observation so their understanding of causation is built on a foundation of correlation. We learn by
observing correlations and building conceptual models to rationalise them. There will therefore inevitably
be errors within these conceptual models but provided the experts are seen as reliable by relevant
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stakeholders and processes have been put in place to minimise bias they still represent a constructive way
forward.

The reliance on experts could cause difficulties in contentious policy areas. If the only differentiator
between logical possibilities is the “expert”, competing interest can engage their own experts that espouse
views consistent with the party engaging the expert. While this is entirely reasonable in a contentious
debate it opens up questions about what is expertise in this context. It also introduces a moral hazard -
the lack of ability to resolve a question introduces the possibility of parties choosing positions based on
favoured outcomes rather than reason. Given humans capacity to confuse correlation with causation
significant challenges may arise. An additional problem occurs when decisions are time critical. In this case
extended debate between experts on topics that cannot be empirically resolved can lead to unacceptable
delays.

The implication of this is that groups with relevant expertise need to be convened to undertake these
analyses. When the results are time critical, such as in emergency response, the approach used to
manage/resolve variations in expert opinions need to be codified so that it can be applied efficiently to
support timely decision making. This will typically mean that it needs to be agreed at the policy level and
then applied as needed. When analyses are not as time critical greater flexibility in process can be
entertained.

In convening these experts it is important to provide sufficient opportunity for them to express their views
and have them constructively challenged as appropriate. To this end the project has compiled a range of
data sets, and tools that can be used to generate potential predictive variables as needed. These should
form the basis of a data library that can support these activities in the future and be added to as new
datasets are developed or identified. In particular these will provide the basis of a more systematic
approach to these problems.

While there are major challenges in assessing the predictive performance of models in new locations it is
still useful to model and analyse the distribution of the species in their native range. Hypotheses about
causal variables can still be assessed. Distributions of species in environmental space can be considered and
strong disjunctions explored. Different possibilities can be examined. But the experts must not rely purely
on predictive performance to guide a single choice. As we have demonstrated, this is a flawed approach as
fit in the home range is not a good predictor of extrapolation performance.

While we have demonstrated that a single approach cannot be recommended to perform in all
circumstances there are other general conclusions that can be made. In particular our analysis has
identified a number of approaches that should not be considered by experts. The use of statistical models
to produce probability-based predictions in invaded ranges should be used extremely cautiously. As we
have argued in this report, the probabilities are population specific and the dangers of extrapolating from
one population to another are well known. In particular the probabilities should never be interpreted as
reflecting the expected proportion of sites that will be invaded as this will typically have no logical
foundation. One could argue on the basis of “all things being equal” that the probabilities may be useful in
a relative sense but this relies as much on faith as on logic. As an alternative we recommend that
practitioners use enveloping methods such as alpha hulls to define the regions of environmental space that
are potentially inhabitable by the organism.

We also strongly recommend against over-fitting models in terms of including a large number of variables,
particularly if these are chosen based on availability rather than physiology. Specialisation of models to the
native range will typically not lead to better projections as the key process driver are unknown and
differentially related to the presences across the two locations. Smaller models are also more conservative
in the sense that they will predict over larger areas in the invaded range. It may be possible that models
with more than the two variables considered here would improve performance in some circumstances. The
difficulty with this is that there is no empirical way of identifying this. Again experts must be used to
determine this.

Extrapolation into regions with novel climates, in the sense that the climate does not exist in the native
range should also be considered carefully. Tools such as MESS (Elith et al 2010) should be used to identify
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these regions but its general utility in this context needs to be tested. How this enters into decision making
will depend on the context and the nature of the novelty.

The choice of background points is not clear cut. Based on the case studies the use of continental
background was favoured. There is still not a clear logic to any particular choice. Background points that too
closely follow the observed distribution may miss variables associated with broader scale distribution
differentiation. These may be important for continental predictions into Australia/NZ. But background
points selected on a global basis are clearly not relevant as they significantly confound dispersal barriers
with abiotic and biotic factors.

7.2 Protocol

The protocol we propose attempts to address the issues we have identified. The key points for the
Australian and NZ governments in decision making are:

- The lack of systematic approaches in the literature means that an ad-hoc approach to the species
prediction problem risks techniques that will not survive significant scrutiny in contested decision
making.

- A smaller set of variables that are more process relevant will provide a more defensible prediction
and a greater test of experts understanding than approaches that use large numbers of variables
and attempt to automate the analysis.

The protocol that we propose is systematic and will develop an appropriate knowledge base and code of
practice over time.

1. If detailed, well-supported physiological information exists, it should be used to make projections.
In particular the physiological information should be used as the basis for correlative modelling. If
detailed physiological information does not exist, experts (including organism experts AND
distribution modelling experts) should be convened to identify possible proximal sets of variables
and assess these by considering the correlative evidence from the native range. The expert process

I”

should be facilitated to ensure that uncertainty about possible “proximal” predictors is identified in
the analysis and carried forward. Thus they need to consider multiple sets of variables. Experts
should be beware of over specialising models and as a starting point include one temperature and
one moisture related variable.

2. The observed distribution data in the native range and each set of variables should be used to
construct alpha hulls if the number of variables is 3 or less. Currently, for dimension greater than
three there is no readily available code (in R) to assess whether points are within convex hulls or
alpha hulls.

3. An analysis using techniques such as MESS should be performed to identify any locations (in terms
of environment) in the invaded locations not represented in the training data.

4. Results should be presented for each predictor set identified by experts.

An important point in the protocol is that uncertainty around predictors is carried forward in the analysis to
the decision phase. At this point choices about the use of best/worst or most likely case can be done on a
policy basis depending on the context of the decision. For decisions that need to be made rapidly, such as
assessing costs/benefits of eradication, the process should be codified to ensure that models are
implemented consistently and decisions are made efficiently.
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7.3 Future developments

This study has identified a number of possible avenues of future research and synthesis.

A key result of this study is the identification of the lack of relevant theory regarding the choice of proximal
sets of predictors. There is a need to further develop the conceptualisation of the processes that determine
the distribution of species. There is also the opportunity to develop an empirical understanding of what
factors are associated with the observed distributions of different groups of organisms. New thinking and a
greater body of empirical evidence is needed to make progress on this topic. This study has identified that
there may be fundamental limits on our ability to predict species performance in novel climates.

Here we focussed on fitting models to records from the native range only, but some authors argue for
inclusion of records from invaded ranges where the species is long established (Chapter 2). We recognise
that there are valid arguments for this viewpoint, and testing whether inclusion of more records improved
performance in our approaches would be worthwhile.

This study has highlighted the inherent uncertainty that is involved in predicting species distributions in
new environments. The response to this has been to explicitly incorporate this into the protocol to ensure
that this uncertainty is carried through for consideration by decision makers. We anticipate that further
work needs to be done to determine ways of incorporating this efficiently in the decision making process.
Uncertainty on its own can impede decision making so it is important that this issue is addressed. We note
that different decisions could require different approaches to dealing with uncertainty. Techniques such as
model averaging could be useful to provide intermediate products that can be used directly in decision
making.

The study has posed a number of new questions about predicting invasive species distributions. In Chapter
6 we have briefly explored whether some variables are on average more predictive than others in
projecting from one location to another. This could potentially be investigated more broadly based on more
extensive information about native and invaded ranges rather than the simulated data used here.

The central role of experts in this process suggests that better tools to diagnose/estimate potential limiting
factors would be useful to support the experts’ discussions about proximal variables. While noting that this
project has highlighted the challenge of assessing causations, it is still important to provide experts with as
many tools as possible to assess hypotheses and validate/invalidate observations.

The final point to consider is that in many situations, knowledge of a species ecology and physiology will be
limited. Potential invaders can be difficult to predict and by definition come from locations outside of
Australia/NZ so practical experience about the species is often extremely limited. Thus we anticipate the
need to develop a default distribution of sets of potential variables that can be used in the analysis. The
choice of these variables needs to be considered further. At this stage the BIOCLIM set are used in a
majority of studies as a starting point. But the context here is different. Current studies select a subset of
these variables on the basis of correlation with distribution. We are interested in representing uncertainty
across possible proximal sets. Thus any final choice will require additional analysis and policy input. There is
the opportunity to investigate development of variables following the work of Sutherst and Maywald
(1985). In particular exploring approaches to statistical parameter estimation for simple models could be
considered.
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9 Appendices

9.1 Appendix Al:

Literature review of papers related to predictor variables and species distributions

Paper

Species, region,
data (bg =
background)

Variables (cell size)

Methods (models, testdata..)

Conclusions. Elith comments in [] brackets

1 Aalto et al. (2014).
The meso-scale
drivers of
temperature
extremes in high-
latitude
Fennoscandia

[this is simply on constructing climate variables —
i.e. how to model temperature extremes in
Fennoscandis (ie 68 to 70°N). Water cover and
topography drives min temps whereas elevation
drives maxima)

2 Ashcroft et al.
(2012a). Combining
citizen science,
bioclimatic
envelope models
and observed
habitat preferences

Bees (Halictus
smaragdulus),
native plus Hunter
Valley NSW, all
species records (46
GBIF plus 1029
Belgian reduced to
688 unique) vs
subset (19) based
on particular form
of bee

WorldClim 19
(2.5arcmin) or common
4 (annual temp & rf, max
temp warm, min temp
cold) or simple 2 (annual
temp and rf).

Models: Maxent defaults used,
Testdata: 10fold cv, etc: fitted extra
models with Hunter valley data too

[Gives interesting demo of effect of predictors on
predicted distribution]. Aim to test a combination
of SDMs, citizen science and fine-scale habitat
prefs to guide surveys for new occurrences [data
might be useful]

3 Ashcroft et al.
(2011). An
evaluation of
environmental
factors affecting
species

Veg on lllawarra
escarpment NSW.
37 canopy species.
PA data 600 sites,
carefully placed to
represent varying

Geology, 10 temp
predictors hand-made,
fine scale; another 10
from a previous time
slice (in case veg
affected by past temp)

Models: Maxent (BUT PA datal).
Testdata: 30% sites randomly
excluded.

Propose methodology: test with evaluation
dataset; test across species -> find predictive
variables. Use paired t-tests to look at drop in
AUC with exclusion of variable, across species.
Will be signif even if not across all species. [Some
useful but not good to use Maxent]. Geology and
winter min temps found imp. “Methods such as
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distributions veg. hierarchical partitioning (Mac Nally, 2002) and
the ones introduced in this article are designed to
increase inference on causal factors rather than
identify a single best model for any species.”

4 Austin (2007). [this is an overview setting up a template of how
Species distribution to think about models. Section 2.2.3 on “selection
models and of environmental predictors” within the “data
ecological theory: A model” section is relevant to our thoughts on
critical assessment predictors. Cite Huntley and Prentice et al. in
and some possible their use of physiologically based variables (mean
new approaches temperature of the coldest month, annual sum of

degree-days above 5 ° C and Priestley-Taylor’s, (an
estimate of the annual ratio of actual to pot’l
evapotran) and their rationale for that.

5 Austin & Van Niel Plants. Tabulate variables used Conceptual model: species abundance | [discusses the fundamental concepts of choosing
(2011b). Improving in 10 examples to show ~ f(light, temperature, nutrients, predictors that are ecophysiologically relevant
species distribution that even if people are water; CO2;disturbance, biota) and gives interesting examples] [Talks about
models for climate using ecological theory choosing a scale relevant to the processes
change studies: to choose predictors the affecting the species. Make a detailed case for
variable selection outcomes are quite light and its effect on physiological studies]
and scale variable in terms of what

they decide to use.
6 Barbet-Massin & Birds (243 species), | 19 WorldClim plus GDD, Models: Biomod (6 methods), Temp variables most important (PET, GDD,
Jetz (2014). A 40- USA, BBS = PA data | PET and Ml Testdata: spatial (repeated 50% split annual temp); annual precip the most imp precip
year, continent- sample) and temporal evaluations, Etc: | variable (though Ml also useful). Annual
wide, multispecies first worked out proxy sets then chose | predictors more useful than seasonal. Consistent
assessment of 1 variable from within each set, results across spatial and temporal evaluations.
relevant climate repeating thru all; fit and predicted
predictors for with the “full” set and minus one. The
SDM.. drop in AUC taken to indicate variable
importance.
7 Bertelsmeier & 14 ant species, PBG | 6 WorldClim variables, Models: Maxent for variable selection, | [Modelling not strong — global BG is not

Courchamp (2014).
Future ant
invasions in France

data, global data,
considering
predictions in
France. Presences

justified by some refs
that say that
temperature. 10 arcmin
(19km) resolution

ensemble of 5 (1- and 2- class SVMs,
neural nets, CART and Maxent) within
ModEco platform and used consensus
(weighted by AUC). Thresholded

defensible, ensemble untested, talked about
probabilities even though PBG data, treated
output as probabilities in comparing across
species, thresholded predictions at 0.5. Some of
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from online and
refs, BG 10K
random global.

output (p=0.5) for predictions.
Testdata: 10-fold cv; AUC.

the references for ants in introduction are
interesting. |

8 Besnard et al. Wetland birds (4 TWI plus spatial Models: GLMs with only linear fits [testing the usefulness of topographic wetness
(2013). T.opographic Passerine species) eigenvectors to account Testdata: model fit tested with AIC indices (4 v.ersic‘)ns of them); h.av.e entirely missed
wetness index in Western France. | for SAC between records Mfor inclusion of TWI or not. the Australian literature on this including John
predicts the PA data from 64 Gallant’s work] Found TWI potentially useful
occurrence of bird transects (though didn’t compare against predictors other
species ... than different variants of TWI).

9 Bradley et al. [Good discussion of the role of remotely sensed
(2012). Species data (NDVI, veg indices etc) in species distribution
detection vs. modelling, contrasting its use in plant and animal
habitat suitability: models, talking about predicting potential vs
Are we biasing actual distribution. Interesting paper in general
habitat suitability and worth knowing about, but we are unlikely to
models with use these variables in invasive species predictions
remotely sensed for potential distributions for exactly the reasons
data? they discuss]

10 Braunisch et al. 4 mountain birds 4 climate variables: Models: Maxent, GLM, GAM, BRT. Current predictions similar; future diverged.
(2013). Selecting Switzerland & part brteeding season and Testdata: 10-fold cv AUC plus back- [Adds good discussion t9 the correlated. variables
from correlated Germany. Data winter temp and rf. . , debate; they suggest using the set of climate
climate variables: a | from Swiss Ornith Derived from WorldClim; project to 1920°s AUC. variables rather than choosing one (though it’s
major source of Inst treated as PBG. | 5 topographic; not clear whether they think all models can
uncertainty for 10000K random BG | landcover. Made 5 handle that). Demonstrate shortcomings in
predicting species models varying in which testing correlations b/n variables in both times
distributions under climate variables used — without looking at how they actually change].
climate change 1 per model for 4, or all

for 5",
11 Bucklin et al. 14 vertebrates (6 7 predictor sets (4km Models: Biomod — 5 algorithms — GLM, | [this study has several dubious modelling choices

(2015). Comparing
species distribution
models constructed
with different
subsets of
environmental
predictors

birds, 4 mammals,
4 reptiles), Florida,
PO data though
half-treated as PA
by defining range
map and asserting
all non-P cells were
absences tho’

cells): two with
bioclimate (bc)
predictors only (8 of the
WorldClim variables; one
a preselected set and
one, an uncorrelated
set), and five
‘combination’ models

MARS, GBM, RF and Maxent. (!)
Testdata: held out samples (25%,
repeated splits), Etc: A prelim step
looked at variable importance in
models fitted to just predictors within
each group (climate, human influence
etc) and used this to specify later
groups of variables. Models evaluated

including small number of background points, and
it’s restricted to just Florida, so limited
usefulness]. Found small but consistent
improvements in prediction when adding
predictors to the “best 4” bc preditors. Human
influence predictors improved things [perhaps
bias in records an issue?]. [Their maps actually
show quite an effect across the diff't predictor
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interchangeably using bc plus additional on AUC and TSS in held out samples sets, so it’s not clear that the result is well
also called them predictors from: human (25%, repeated splits) and by variable analysed. ]
pseudo-absences. influence (6), land cover | importance = correlation b/n fitted

(8 classes, each as a values with the real variables vs a

proportion of cell area), permuted one. Also tested similarity of

extreme weather (8; maps (correlation coeff on continuous

meteorological events values and compared with range maps

over short 1-7 days for thresholded maps). Evaluated

times) or noise (8; results via GLMMs

spatially random data).

12 | Chatfield et al. Demersal fish, The [talks about finding important predictors and
(2010). Combining Recherche summarises their results from BRTs for 10
environmental Archipelago, species] Substrate type (reef, sand, cobble) was
gradients to explain | southern Western the most influential variable, and water depth
and predict the Australia. and macroalgal type influenced the probable
structure of occurrence of species even over the same
demersal fish substrate type.
distributions

[interesting as an example of marine but our
project is terrestrial so take no further]

13 Dubuis et al. (2013). | Plants (115 25m cells. Topography Models: Biomod using GLM, GAM, pH, total N found most important. [useful
Improving the species), Western (slope, topoposition), BRT, RF —results ensembled. Testdata: | discussion of effect of edaphic variables on
prediction of plant Alps, Switzerland. climate (degree-days, split sample (30%) repeated 10 times. plants]
species distribution | 252 veg plots, PA moisture index of
and community data. growing season, global
composition by solar radiation), plus 7
adding edaphic to edaphic: (1) pH; (2) the
topo-climatic content of nitrogen and
variables of (3) phosphorus; (4)

silt; (5) sand; (6) clay and
(7) carbon-to-nitrogen
ratio

14 Rodder & Engler [This is a paper looking at extrapolation and
(2012). suggesting a new technique for visualising
Disentangling changes in correlations between variables, based
interpolation and on residuals of linear model fitted to pairs of
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extrapolation
accuracies ...

standardised variables within training range.]

15 Fernandez et al. 10 invasive species | Made inter-annual Models: Maxent, default settings; Looked at improvement in AUC with extra
(2012). Does adding | (2 amphibians, 6 monthly climate testdata: withheld 50% of data. variables. It improved AUC for ~ 60% species
multi-scale climatic | plants, 1 bird, 1 variables (std dev, coeff Probably Maxent’s defaults for BG (not | [though is this overfitting? —it’s a random 50%)].
variability improve insect) worldwide. var); also used 19 stated). AUC. Inter-annual alone not so good as WorldClim
our capacity to WorldClim variables alone. [Variables are meant to be available but
explain niche website doesn’t work. Makes sense that variation
transferability in in climate over years might affect some species,
invasive species? but not sure about the rigour of this particular

study]

16 Higgins et al. 2012. 22 European tree Water availability (soil) Models: Thornley’s transport [This is quite different, and an attempt to model
A physiological species. An from cgiar (useful resistance (TTR) model, focussing on distributions via a physiological model. Worth
analogy of the niche interpolated reference), soil N, carbon and nutrient uptake. Used a reading. Fitted the parameters using distribution
for projecting the abundance product | WorldClim mean, min, genetic algorithm to fit parameters to | data. Good discussion of issues]. [don’t discuss
potential distribution from forestry plots, | max annual temp. 1km GIS predictors. value in projecting to new environments].
of plants reduced to sampled | mostly. . . [Interesting discussion of the value of a

PA. Testdata: Fit to data useq t(.) fit “structurally rigid” model, which to me sounds
parameters. AUC, commission errors .
- like CLIMEX's advantage].
on thresholded predictions.
Etc: can look at limiting factors.

17 Hof et al. (2012). 54 mammal 117 WorldClim, elevation, Model: Maxent. Testdata: withheld [not a bad intro about why elevation might be
The usefulness of plant species. veg classes 30%; AUC. something you’d want to use, but from then on lit
elevation as a Northern Europe. review and testing is not strong. Found ~ half of
predictor variable 75 studies selected used elevation. In their testing
in species elevation either no effect of elevation or some
distribution slight evidence it’s better to exclude it, but this
modelling seems to largely rely on tests of precision cf other

published “ranges”; unclear why that’s a good
test.]

18 Kearney et al. [this describes the MICROCLIM variables and was

(2014a). microclim:
Global estimates of
hourly microclimate
based on long-term

released with the dataset. We are basing some of
our new variables on these].
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monthly climate
averages

19 Kearney et al. [this describes the calculations behind the
(2014b). MICROCLIM variables in more detail, and
Microclimate presents a test of their accuracy in Australia]
modelling at macro
scales ...

20* | Landesman et al. Soil bacteria, 12 Soil properties (pH, Model: generalised dissimilarity Soil pH strongest effect on composition (as
(2014). Soil forests in eastern moisture, NH4, NO3, modelling estimated via turnover); an effect of the tree
properties and tree | US organic matter; species too. [interesting paper]
species drive R- geographic distance
diversity of soil
bacterial
communities

21 Lawson et al. Butterflies, UK, Site-measured: bare Model: generalised linear mixed model | Shows that fine-scale temperature variation
(2014). Topographic | small study at 16 ground, host plant cover; | (GLMM) in WinBUGs generated by topography drives spatial variation
microclimates drive | sites and with many | site-modelled: 5x5m in the microhabitat associations of a thermally
microhabitat transects “solar index” — constrained butterfly. [An interesting example of
associations at the microclimate model the idea of mechanistically derived proximal
range margin of a combining topography, predictors, though in this case at very fine spatial
butterfly radiation balance, scale. Very good intro with comparison of the

windspeed; 5km thinking behind correlative vs mechanistic
temperature models. Worth reading for that].

22 Low-Choy et al. [Interesting paper looking at Bayesian models and
(2009). Elicitation including expert opinion. They have an example
by design in for species distribution modelling, where they
ecology: using have developed software for showing sites on GIS
expert opinion to and electing likely presence-absence or
inform priors for abundance; discuss showing response curves in
Bayesian statistical underlying regression model too].
models

23 McBride et al. [Useful if interested in eliciting expert opinion
(2012). Evaluating and methods for doing that]. Use lower and
the accuracy and upper bound, best guess and confidence interval.
calibration of “Experts possess valuable knowledge but may
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expert predictions
under uncertainty.

require training to communicate this knowledge
accurately. Expert status is a poor guide to good
performance. In the absence of training and
information on past performance, simple
averages of expert responses provide a robust
counter to individual variation in performance.”

24 Mclnerny & Purves | Simulated data [This is interesting wrt trying to deal with errors
(2011). Fine-scale in variables, which can include the issue that the
environmental scale of your predictors doesn’t represent the
variation in species environment experienced by your species. Use a
distribution Bayesian latent variable model (with potential for
modeling ... including multiple species) to deal with the

uncertainty. A nice idea, and relevant to the issue
that we are likely operating at the wrong scale
ecologically. At this stage too difficult to
implement perhaps but worth keeping in mind]

25 McKenzie et al. Conifer species A range of climate Model: GLM. Testdata: interested in [Rather slow and detailed, but an interesting mix
(2003). Climatic and | within Washington | (annual temperature, model fit and explanation of variables and testing of models fitted in
biophysical controls | State USA. growing-degree days, different forests asking the question: are the
on conifer species annual and seasonal same variables and fitted functions selected
distributions in precipitation) to across forests? (which they took to imply that
mountain forests of biophysical variables more causal variables might have been
Washington State, (soil, hydrologic, and identified)]. Both climatic and biophysical
USA solar radiation) derived variables important in most cases; climate first.

from climatic variables.

26 Mellert et al. 14 tree species, 3 water-related (precop, | Model: GAMs. Testdata: withheld 25% | [A good example of using ecological theory — for
(2011a). Bavarian Alps, avail water capacitu, of data. Also tested extensively for choice of predictors started with ecological
Hypothesis-driven waterlogging), 3 energy model fit (including testing hypotheses and developed variables based on
species distribution (temp, radiation), interactions, spatial effects, uneven that. The idea of hypothesis-driven modelling
models for tree nutrition, coverage of gradients), realism of threaded through the paper. Worth a read.]
species in the geomorphodynamics response shapes, and predictions of
Bavarian Alps altitudinal limits.

27 Nystrom Sandman 5 benthic species (4 | Salinity, depth, slope, Model: GAMs. Testdata: interested in [This is about scale, but extent, not grain. It looks

et al (2013) . Scale-
dependent
influence of
environmental

macrophytes, one
animal) in Swedish
Baltic Sea coast. 5
extents (25 to

wave exposure and
substrate (some site-
measured)

deviance explained and variable
importance, not predictive
performance.

at the effect of changing extent on the
importance of predictor variables]. Conclude that
relationship b/n extent and relative importance
of predictor variables is complex and depends on
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variables on species
distribution..

1500km). 1730
sites subsetted
according to
extent. 120-200
sites used in each
model; PA data.

ecology of species. Indirect variables are likely to
become less important at larger spatial extent.
Persistent importance of depth across all extents.
Make the point that depth is fine grained but still
important over wide extents.

28 Olwoch et al. 4 tick species Comparing 3 different Model: a multivariate modelling [only interesting as an example of someone
(2003). Simulating sources of climate data— | method of Jeffree modified by comparing climate datasets. The methods for
tick distributions 2 interpolated (i.e. Erasmus Testdata: = same as training comparing the climate data are interesting. The
over sub-Saharan technique used for data subsequent modelling of ticks isn’t particularly
Africa: the use of variables in Table 2) and interesting for this project and truth is not
observed and one modelled (60km known.]
simulated climate cell)
surfaces

29 Parmesan et al. [Interesting and gives some ecophysiological
(2000). Impacts of data, but focuses on extreme weather which is
Extreme Weather not something we can deal with in this project.
and Climate on They provide all sorts of interesting evidence re
Terrestrial Biota species distributions. Butterflies in Nn hemi:

observed northward and upward range shift
driven by infrequent and severe climate events
impacting populations e.g. by causing breakdown
in synchrony of life stages with food hosts.
Songbirds in USA; northern limits set by nightime
metabolic requirements. Severe cold snaps can
cause death. Migratory birds shift abundance wrt
weather. Observed episodic local shifts in
population abundances can result in range shifts.
Freeze and precip tolerance for plants. Armadillo:
rainfall, days below freezing]

30 Pearce et al. (2001). [this looks at whether expert opinion helps in

Incorporating
expert knowledge
and fine-scale
vegetation mapping
into statistical
modelling of faunal

modelling fauna. Mostly no effect found; can be
useful in constructing of relevant variables for
expressing habitat availability. The difficulty in
translating results for this project is that this
study had good quality survey data for modelling,
cf the usual species data available for
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distribution biosecurity.]
31 Piedallu et al. 37 tree species in 1km grid. Variables well Model: GAMs with 4df on splines. [Very nice study of soil water balance as proximal
(2013). Soil water France; PA data thought out: growing Testdata: seems to be training data. predictor, cf common substitutes. Good
balance performs from 32828 sites degree days (>5deg), AUC and TSS. Looked at the effect on discussion of evidence for it as proximal variable,
better than climatic min winter temp, these of adding EITHER CWB (the plus other variables. Interesting comparison
water variables in climatic water balance indirect variable) or SWB on AUC. Also | across species. Provides good evidence for value
tree SDM (CWB) = precip — PET )2 evaluated mapped predictions of proximal predictors (though it’s not tested in a
variants), 2 variants of “predict to new environments” context). ]
soil water balance
(SWB); tested 3 seasonal
measures
32 Pliscoff et al. Rare plants in Chile | Made own climate Models: Biomod2 (8 methods) [good lit review at start re what has been done
(2014). Effects of and Peru. 13 monthlies @ 1km grid, Testdata: 30% split off to test (2 looking at alternate sets of predictors in SDM.
alternative sets of species of b/c inaccuracies in replicate splits). AUC, TSS (also looked | Unfortunately they evaluate thresholded rather
climatic predictors Heliotropium. PO WorldClim. Made 6 sets at projections into future; won’t report | than continuous predictions; show that effects do
on species data. 10000 BG of variables: (1) 19 of 48 | here). Analysed TSS and thresholded not necessarily show wrt predictive performance
distribution models | points. monthly; (2) 6 monthly; prediction results with GLMMs. Found | at points, but they do give different spatial
and associated (3) 19 BIOCLIM (bc); (4) effects on spatial patterns of patterns of predictions.]
estimates of 13 bc; (5) 6 bc; (6) first 6 | predictions but not on predictive
extinction risk: A PCA from #1. performance.
test with plants in
an arid
environment
33 Rodder et al. Slider turtle. 375 1km grid. WorldClim Models: Maxent, Bioclim. Testdata: [This is particularly about invasive species
(2009). Alien native PO records + | variables. (1) All 19; (2) complicated setup testing on different | prediction and has logical arguments in

invasive slider turtle
in unpredicted
habitat: A matter of
niche shift or of
predictors studied?

205 invaded range
that were
successfully
reproducing.

set of 7 commonly used
for other species; (3)
subset of 5 based on
known physiology of
species; also 100 random
sets of 7 and 5 to test
effect of # variables.

subsets of invasive records, | think.
Also all sorts of analyses of the data,
including how the predictions match a
“climate envelope” they make for the
species.

introduction about why it’s a good idea to target
physiologically important variables. The results
are a little difficult to interpret because Maxent
defaults are used so it’s partly a story about
overfitting. Still, they show clear effects of choice
of predictors on predictions, and they assess the
ecophysiologically based models as best. They
have good physiological info on turtle, which
could be used to create other predictors too (i.e.
not just WorldClim). Main conclusion is that the
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environmental dataset matters]

34 | Seoaneetal.
(2005). Effect of
Expert Opinion on
the Predictive
Ability of
Environmental
Models of Bird
Distribution

Birds in southern
Spain

[more evidence that expert selection of subsets
of variables doesn’t necessarily improve
predictive performance]

35 | Storlie et al. (2014).
Stepping inside the
niche: microclimate
data are critical for
accurate
assessment of
species'
vulnerability to
climate change.

Example is with
frogs.

[this is an alternative type of microclimate
variable to the one we are proposing in this
project. Storlie et al’s variable is “micro” in the
sense that it is statistically downscaled to a grain
and topographical accuracy that represents what
the species of interest experiences. Needs
microclimate data logged at multiple places, in
the types of conditions (eg under logs)
experienced by the species]

36 | Synes & Osborne.
(2011). Choice of
predictor variables
as a source of
uncertainty in
continental-scale
species distribution
modelling under
climate change.

Great bustard.
1,453 presence
records

30 arc-second (~1km);
WorldClim monthly and

bioclimatic variables,
with new variables made
from the monthly ones
(e.g. PET, growing
degree days). Lots of
different variable sets
chosen, based on quite
extensive reviews of the
literature looking at
what others have done.

Model: Maxent, default settings.
Testdata: 25% split sample, AUC.
Predictions thresholded, all with same
threshold. Then “map comparison
kappa” (kappa comparing maps,
allowing for differences in location)
calculated.

“Generalized variable sets produce an
unmanageable level of uncertainty in species
distribution models which cannot be ignored. The
use of sound ecological theory and statistical
methods to check predictor variables can reduce
this uncertainty, but our knowledge of species
may be too limited to make more than arbitrary
choices.”

Results: all AUCs high, but higher AUC for models
with more variables and smaller predicted areas.
Kappa varies substantially across variable sets.
Make a good case for importance of comparing
maps as well as predictive performance at points.

[This is a widely cited paper on choice of
37predictors. Looks at both current and future
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pr3edicted distributions. Useful review under
“creation of datasets” of what others have done.

37 | Tuanmu & Jetz [this is the paper referred to in the main text
(2014). A global 1- section, about deriving a new landcover product
km consensus land- that overcomes some of the shortcomings in the
cover product for source data]
biodiversity and
ecosystem
modeling

38 | Williamsetal. [this is comprehensive in terms of explaining
(2012). Which ecophysiological basis for variables. Appears to
environmental use expert opinion linked to the ecophysiological
variables should | theories to categorise their 64 variables into
use in my proximal etc. See their Table 2. Advice on how to
biodiversity model? select a particular set for modelling relies on

model selection or testing predictive
performance — e.g. “ We developed a repeatable,
systematic approach to model building based on
a forward stage-wise iterative procedure for
testing a large number of correlated variables
where it is impractical to test all variables
simultaneously”.

39 | Zimmermann et al. [just including this as a source of information on
(2007). Remote remote-sensing predictors and their use in SDM.
sensing-based Though compare the discussion with that in
predictors improve Bradley et al.]
distribution models
of rare, early
successional and
broadleaf tree
species in Utah.

40 | Zimmermann et al. [Interesting paper on use of “extremes”, which in

(2009). Climatic
extremes improve

this case is really variability: “ we generated a
climate predictor set containing long-term (1961—
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predictions of
spatial patterns of
tree species.

2006) averages of monthly, seasonal, or annual
predictors and standard deviations of the mean
values representing extremes”. Nice piece of
work and interesting use of variables. Has this
been done globally yet? — I think the data might
be available in the CRU dataset (there are time
series there). ]
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9.2 Appendix A2: The 35 bioclimatic variables in ANUCLIM

1) P1. Annual Mean Temperature

2) P2. Mean Diurnal Range (Mean(period max-min))

3) P3. Isothermality (P2/P7)

4) P4. Temperature Seasonality (Coefficient of Variation)

5) P5. Max Temperature of Warmest Period

6) P6. Min Temperature of Coldest Period

7) P7. Temperature Annual Range (P5-P6)

8) P8. Mean Temperature of Wettest Quarter

9) P9. Mean Temperature of Driest Quarter

10) P10.
11) P11.
12) P12.
13) P13.
14) P14.
15) P15.
16) P16.
17) P17.
18) P18.
19) P19.
20) P20.
21) P21.
22) P22.
23) P23.
24) P24.
25) P25.
26) P26.
27) P27.
28) P28.
29) P29.
30) P30.
31) P31.
32) P32.
33) P33.
34) P34.
35) P35.

Mean Temperature of Warmest Quarter

Mean Temperature of Coldest Quarter

Annual Precipitation

Precipitation of Wettest Period

Precipitation of Driest Period

Precipitation Seasonality (Coefficient of Variation)
Precipitation of Wettest Quarter

Precipitation of Driest Quarter

Precipitation of Warmest Quarter
Precipitation of Coldest Quarter

Annual Mean Radiation

Highest Period Radiation

Lowest Period Radiation

Radiation Seasonality (Coefficient of Variation)
Radiation of Wettest Quarter

Radiation of Driest Quarter

Radiation of Warmest Quarter

Radiation of Coldest Quarter

Annual Mean Moisture Index

Highest Period Moisture Index

Lowest Period Moisture Index

Moisture Index Seasonality (Coefficient of Variation)
Mean Moisture Index of Highest Quarter Ml
Mean Moisture Index of Lowest Quarter Ml
Mean Moisture Index of Warmest Quarter

Mean Moisture Index of Coldest Quarter
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