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1.  Executive Summary  
 
It is in the nature of risk for extreme events that there is no or very little directly relevant data, so 
expert opinion must be relied on heavily. But expert opinion must be as fully informed as possible 
– by the data that is available, by other experts, by reasoned opinions of stakeholders, and by the 
use of commonsense reasoning applied to the diverse reasons put “on the table”. We survey a 
variety of case studies and a number of quantitative and non-quantitative methods that show 
promise for improving extreme risk analysis. We argue that an “advocacy model” similar to that 
used in the Basel II compliance regime for bank operational risks and Biosecurity Australia’s 
Import Risk Assessments is ideal for permitting the diversity of relevant evidence to be presented 
and soundly evaluated. We recommend that the process be enhanced in four ways – by better 
education of the risk evaluators in certain statistical methods (extreme value theory, Bayesian 
methods of combining expert opinion with data, and robustness methods such as InfoGap Theory); 
by better education of statisticians in non-numerical methods including legal-style advocacy and 
causal modeling; by education of all parties in the psychological findings on expert judgement; 
and by the use of independent facilitators such as consultants to mediate between the 
regulator/evaluator and the client/stakeholder. 
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2. Introduction: Extreme risks and the poverty of data   
 
A risk is called “extreme” when it concerns an outcome that has happened very rarely or never. 
Normally “extreme” is used of events that are of high (negative) consequence as well as low 
probability, but since the methods to be discussed in this report deal with probabilities rather than 
consequences, the emphasis is on events of very low probability. Such an event is at the edge of or 
outside the range of what has occurred, possibly far outside. There is therefore very little or no 
directly relevant data, and any data set there may be is too small to be reliably representative. 
The probability of an extreme event must therefore be evaluated by putting together disparate 
sources of relevant evidence, none of which are reliable in isolation. The sources of evidence 
include what data there is, how far the event of interest is from the data, the opinion of experts 
(possibly in diverse disciplines), arguments from analogy (that is, from events whose similarity to 
the event in question is debatable), specialist scientific causal knowledge relevant to the case, and 
commonsense knowledge of “how the world works”. There is no established methodology either 
for eliciting the probabilities arising from these sources of knowledge or for combining them once 
elicited. But the reasons for the difficulty of reaching a correct answer are the same as the reasons 
why it is important to succeed – because of the paucity of data, neglecting any source of evidence 
or any method of interpreting it will lead to the misevaluation of extreme risks and hence to 
avoidable disasters. 
In this report, we survey first a number of cases and a variety of methods applicable to extreme 
risk analysis. Although they can be read separately, we believe that taken together they suggest an 
overall approach to extreme risk analysis that we call the “advocacy model”. In brief, the model 
envisages a tribunal that reaches a final decision after submission of evidence by stakeholders with 
different interests, evidence which may in principle be of any sort (quantitative, qualitative, or 
informed opinion). The model is inspired by the well-know adversary model of Anglo-American 
law where opposing counsel argue before a neutral judge and jury, but is more co-operative and 
more amenable to technical evidence. Our case studies include some in which a method 
recognisably like this has been applied. After our survey of methods, we set out the advocacy 
model in more detail and explain how the methods fit into it. We conclude by making 
recommendations on how to improve current practice and on some further research directions. 
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3.  Case Studies 
 
We next give an overview of several cases of extreme risk assessment in order to ground our 
conclusions on the relevance of the methods to be described later. 
 
3.1 Biosecurity Australia analyses of fire blight risk from import of NZ apples 

In response to requests from New Zealand to permit the import of apples to Australia, the 
Biosecurity Australia (or its predecessor) produced major analyses of the risk that importing 
apples from New Zealand would introduce disease to Australia. (AQIS, 1998; Biosecurity 
Australia, 2006). (Although the reports deal with many other pests we will confine attention to fire 
blight). Both reports were developed over considerable time periods and were informed by 
submissions from stakeholders. There was a formal process similar to the “advocacy model” to be 
described in section 6 below: BA compiles a draft report using its own and contracted expertise to 
evaluate information from public and scientific documents and from stakeholders, then after a 
period for stakeholder comment on the draft, a final report is issued that must show how the 
comments have been addressed. 

 The main stakeholders were strongly motivated by opposite concerns – the New Zealanders were 
concerned that the likelihood of disease had been over-estimated and representatives of the 
Australian apple industry were concerned that it had been under-estimated. Both sides presented 
detailed scientific analyses and the final report responded to many of the detailed arguments 
raised. The conclusions of the two reports in terms of risk were substantially similar, though the 
recommendations were different: the 1998 report recommended against import while the 2006 
recommended for it, but the 1998 report concerned a New Zealand proposal to import fruit without 
special measures to guard against pests, while the recommendation in 2006 would permit import 
only after adequate onerous and expensive inspection and disinfection measures. 

The analyses are considerably more complex, especially in evaluating quantitative probabilities, 
than most of Biosecurity Australia’s Import Risk Analyses. That makes them more robust in the 
politically charged atmosphere of apple import controversies, which has included grilling of 
AQIS’s Executive Director by a Senate committee on the possible motives of New Zealand 
scientists in looking for fire blight in Australian botanic gardens (Senate Hansard, 1997), direct 
recommendations by the Senate committee on how AQIS should conduct its risk assessment 
(Senate, 2005) including an allegation of a “methodological leaning towards qualitative rather than 
quantitative analysis”, and comment by the New Zealand Minister for Agriculture that “the 
concept of honest science has no meaning [in Australia]”. (Knight, 2005) In addition Australia 
needs to comply with the guidelines of the International Plant Protection Convention, and BA’s 
scientists naturally desire to show to themselves and to the international scientific community that 
their results are not swayed by political pressures. Such political pressures are stressful for all 
concerned, in much the same way as it is stressful to be cross-examined in court by an experienced 
QC. From the point of view of the advocacy model, however, that is not necessarily a bad thing. 
Pressures from different directions are integral to the advocacy situation and (at least if the 
pressures are reasonably balanced) can encourage care and transparency in the risk evaluation 
process. 

The analyses looked at the possible chains of causes by which fire blight from New Zealand might 
become established in Australia through the commercial import of apples (as opposed to illegal 
import such as by tourists). A particularly difficult point in the analysis, and the one most relevant 
to the study of extreme risks, came in trying to evaluate the probability of what was believed to be 
the most unlikely event in the most likely chain, the transfer of the pest from a discarded apple to 
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an Australian plant. The most likely scenario for transfer, it was believed, would be something like 
an apple core discarded near one of the few plants which can be affected by the pest, such as a 
cotoneaster, and being transferred to the plant by direct contact or by insects. There are a great 
number of imponderables in such a scenario – including specifying the scenario with any 
exactitude, knowing the possible mechanisms of transfer, dealing with the different possible levels 
of fire blight infection of the apple core, and noting the seasonal differences in the probability of 
transfer. Since the probability of transfer (that is, the probability of a potential host becoming 
infected, given that an apple core with fire blight is discarded near it) is believed to be of the order 
of one in a million, experimentation is not feasible – it would take several million experiments to 
achieve any moderately reliable estimate of the probability. The analyses therefore relied on an 
expert review of marginally relevant evidence (Roberts et al, 1998), a paper which emphasises the 
lack of any experimental confirmation of any possible modes of spread of the fire blight 
bacterium. The paper said merely “Trials where a contaminated fruit was suspended adjacent to 
open flowers produced no infection in those flowers. With much uncertainty, P(5) [the probability 
that the bacterium present in a fruit near a host is transferred to the host] is estimated as between 
0.001 and 0.00001 with a median value of .0001.” (Roberts et al, 1998, p. 25) That is a very wide 
range of probabilities. Biosecurity Australia’s conclusion was that the probability in such a case of 
the bacterium being transferred to the host and then establishing on the host was “in the range of 
Uniform (0, 10-6)”, that is, somewhere between zero and one in a million. (Biosecurity Australia, 
1996, p. 90). That is also a wide range of probabilities and one poorly based on data – but 
inevitably so, given the low probabilities involved. 

The analysis of chains of causes is a relevant topic, both in biosecurity work and in, for example, 
air accident investigations, where a chain of errors is typical in the causation of disasters. There 
are low-probability events in the chain, but the chain is repeated many times.  Breaking the chain 
into many units for analysis of probabilities is obviously desirable, but choosing the correct unit, 
especially for the “choke point” of lowest probability, is difficult, and there are difficulties with 
determining correlations between errors at different points in the chain. A more detailed survey 
has not been attempted in this report, but is certainly desirable. 

 

3.2 Bank operational risk in the Basel II compliance regime 

Bank operational risk (“oprisk”) is more than a single case study. It is a rapidly developing area in 
which massive resources have recently been committed to the study of, in part, the quantification 
of extreme risks. We therefore append a more complete report on the field of bank oprisk, 
especially as it applies to extreme risk evaluation. Here we provide a very short introduction to the 
area and what can be learned from it. 

In banking, a powerful international body, the Committee on Banking Supervision of the Bank for 
International Settlements in Basel, enforces the Basel II standards. (Bank for International 
Settlements, 2004; Marrison, 2002, ch. 23). Banks are regulated in various ways, but from the 
point of view of risk the most important target of regulation is banks’ reserves against risk. The 
nature of a bank is to take in funds, then lend most of them out for profit while reserving some 
against risks. The risks are varied: of default by creditors, of movements in exchange rates, of the 
disappearance or devaluation of assets, and “operational risk”, a grab-bag of unusual and extreme 
events ranging from massive internal fraud to tsunamis, typing errors in crucial places, 
incompetent CEOs and major technological change. We concentrate here on operational risk, since 
credit and market risk are rich in data and statistically tractable, whereas operational risk includes 
the extreme risks of the sort that are the focus of this report. 
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Basel II permits larger banks to evaluate their risks using any internal models and sophisticated 
statistical technology they wish, provided they disclose them to the (national) regulator (in 
Australia, the Australian Prudential Regulation Authority, APRA) and the regulator approves. 
That naturally allows free rein for statistical expertise, both on the side of banks and on the side of 
the regulator. It promises to improve risk evaluation greatly, by enforcing best practice in data 
collection and statistical methodology.  

Operational risk (“the risk of direct or indirect loss resulting from inadequate or failed internal 
processes, people and systems or from external events”) is a classification covering a great variety 
of risks, mostly of a rare and/or extreme nature. (Bank for International Settlements, 2002; King, 
2001) They include the risks that may cause complete collapse of a bank. Merely classifying the 
kinds of operational risk and establishing who has expertise in those various areas is a substantial 
intellectual exercise. A table of some of the kinds of operational and related risks is given at the 
end of Appendix 1, at the end of the supplementary report on Quantifying Bank Operational Risk. 

It is widely agreed that there are unusual difficulties in the way of a bank’s quantifying its 
operational risks adequately, or even of getting a “ballpark” figure for many of them. Availability 
of data is a major challenge. Internal frauds, for example, are rarely reported publicly by 
individual banks unless they are catastrophic. Therefore an individual bank has very little data on 
past events of the sort it fears may impact on it severely in the future. It is not usual for individual 
banks to hold data on public events like tsunamis; banks are not in the business of environmental 
modelling. (Rosen and Corregia, 2004) 

It is also generally agreed that the diversity of operational risks creates methodological difficulties 
both in quantifying the individual risks and in estimating their interactions. Given that the 
(downside) tails of the distribution of events are crucial and that there is little data on tail events, it 
is necessary to avoid assuming that the events follow a standard distribution (such as the normal 
distribution) even if that fits the middle range of events well. Extreme value theory is the study of 
the extrapolation of the tails of distributions beyond the range of existing data, and is a specialised 
topic in statistics that still needs further study and wider dissemination of what is already known. 
(Embrechts, Klüppelberg and Mikosch, 1997; Embrechts, 2000) The paucity of data on 
operational risks also means that it is essential to combine what data there is with expert opinion. 

The calibration of expert opinion by small data sets is itself a difficult theoretical area. (Bedford 
and Cooke, 2001; Clemen and Winkler, 1999). These issues and how they are dealt with in bank 
practice are taken up more fully in the supplementary report. 

3.3  Ernst & Young Structured Asset Portfolio Case 

EY kindly gave our team briefings on a case in which they acted as consultants. The details remain 
confidential, but the important structure of the case involved EY’s client marketing an innovative 
financial product which required a reliable stream of income over a considerable number of years. 
Unusually, the stream was to be covered by the income from a structured asset portfolio, including 
infrastructure, property and fixed interest. EY were asked to quantify the economic risk behind 
using structured assets to meet a defined cashflow stream and quantify the risk profile over time 
and how it could be offset by management actions.  They did this by performing a detailed 
analysis of the risks for the company and assessing the requirements to hold a required reserve to 
reduce the probability of risk within the risk appetite of key stakeholders including the board, 
management and regulators. The bulk of the task was the analysis of the risks involved in meeting 
the liability cashflows from the asset portfolio, developing models to project risks and 
management behaviour in response to those risks, and the attendant process of embedding risk 
management systems in the company's activities.  
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It is in the nature of many non-financial assets such as property or an infrastructure asset that one 
must rely in part on judgments about the prospects of an individual asset, such as a pipeline, rather 
than on market averages. There will be relevant data, but it must be combined with opinion on the 
unique characteristics of the individual asset.  In the long time scale required in this case, one must 
also consider the probability of major downturns in the asset value. Taking property as an 
example, there has not been a significant downturn since the one that followed the stock market 
crash of 1987, so data is again scarce. Then there is the possibility of natural disasters, terrorist 
attacks and the like (which could affect several properties at once, for example if they are all 
located in the CBD). 

EY approached this problem in part by developing a suite of risk scenarios, preparatory to 
evaluating the risk of the product. Scenarios to which the product must be robust are not purely 
fanciful – they should be ones of low but non-negligible probability – of the order of one-in-a-
thousand chance of occurring in a year. To obtain ballpark figures for the probability of risks such 
as natural disasters, EY was able to draw on their experience and data. In what could be termed a 
consensus method, such information was used to make a reasonable judgment of, say, the 
probability that all assets in a common location would be weather-damaged and unusable for a 
year. This risk figure comprises the estimated financial impact of such an event (again, drawing on 
market figures), along with the probability. In evaluating such scenarios, there is relevant data, but 
there is an essential step in intelligently applying it to the particular case and in then convincing 
the stakeholders that the application to the case is reasonable.  An important component of the 
analysis was to disaggregate the risks into the component parts each on a timeline and identify 
actions that could be taken at each point in time should an adverse event occur that threatened 
cashflow. 

At the same time, management and mitigation strategies – how can we reduce the risk? how could 
we deal with such an eventuality? – must be developed. Some risks, for example physical damage, 
are insurable, so insurance is one potential mitigation strategy. But if insurance is taken out, the 
potential gaps in the insurance cover (that is, the risk remaining after insurance) must be evaluated. 
It is a requirement of the regulator – and essential for the company – that risk management 
systems be in place. However, such systems necessarily alter the sensitivity to risk, so there is a 
feedback process between quantifying risks and controlling exposure to them.  

3.4  The Vargas Flood Tragedy, Venezuela 

In December 1999, a daily precipitation event of magnitude 410mm was recorded at Maiquetia 
International Airport, in Vargas, Venezuela – almost three times the magnitude of the previously 
recorded maximum (Figure 1). It was the main cause of the worst environmentally related tragedy 
in Venezuelan history and one of the largest historical rainfall-induced debris flows documented in 
the world. Massive flooding and landslides washed away an entire state, producing a number of 
deaths that has been estimated at between 15,000 and 50,000. Around 8,000 residences and 700 
apartment buildings were destroyed or badly affected with damages being estimated at around 
US$2 billion (Coles et al 2003). 
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Figure 1: Daily rainfall values recorded at Maiquetia International Airport, Venezuela. (Source: Sisson et al, 
2006). 

A natural question to ask is what was the likelihood of the observed disaster occurring, before it 
was witnessed, based on historical rainfall records? Recorded rainfall data exists from 1951 for 
annual maximum daily rainfall, and from 1961 for daily observations. Standard models fitted to 
the pre-1999 data attach a probability of virtually zero to the actual 1999 event. It was therefore 
argued that the event itself was impossible to forsee. Given that this event was observed in only 50 
years of recorded data, an objective observer may have reservations regarding this conclusion. 
Implicitly, this suggests a model failure, either because of a violation of the assumptions on which 
the model was built, or because of a sudden change in the meteorological climate (Coles et al 2003 
found no evidence of climate change).  

We will show how extreme value theory can be applied in this setting in order to produce expected 
“return periods,” measured in years, for the 1999 event. We will demonstrate that careful statistical 
modelling is required. Naïve application of extreme value theory can result in clearly erroneous 
estimates that the 1999 event will occur once every 18 million years on average (Coles and 
Pericchi, 2003). More considered approaches, including the utilisation of Bayesian inference, can 
provide more realistic inference. We will return to this study shortly. 

3.5  The Sinking of the M. V. Derbyshire 

On 9th September 1980 the bulk carrier M. V. Derbyshire sank in the Pacific Ocean when she was 
caught in Typhoon Orchid while transporting iron ore from Canada to Japan. All 44 people on 
board died. The Derbyshire remains the largest UK ship to have been lost at sea, and in spite of 
being in good operating condition, appears to have sunk suddenly and without warning. Evidence 
that the Derbyshire may have suffered a structural design weakness came from incidents involving 
two of her sister ships, both of which suffered a particular form of structural failure. Following an 
earlier investigation that tentatively blamed crew error for the sinking, a high-court enquiry was 
heard during April—July 2000 (Coleman, 2000). 

Underwater photography suggested that the hatch cover on the front-most hold failed during the 
typhoon. The safety standards at the time of the ship’s construction required that the hold covers 
were capable of withstanding an impact pressure of 42 kilopascals (kPa). Interest was therefore in 
the probability that the pressure of wave impacts on the hold cover exceeded its collapse pressure 
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of 42 kPa at any point during Typhoon Orchid. Uncertainty about the precise state of the vessel, 
her speed during the typhoon and wave conditions meant that risk analyses were performed on a 
range of scenarios, in order to identify the conditions most likely to lead to the sinking. However, 
previous studies showed greater sensitivity to the choice of statistical model rather than from 
vessel or wave conditions. These analyses fitted a Weibull distribution (widely used in modelling 
wave impacts) and Gumbel distribution (poorly justified under an extreme value theory argument) 
to wave impacts generated from a wave test tank for each of 60 different scenarios, comprising 15 
sets of wave and initial damage conditions, and four different ship speeds. However, it was soon 
found that differences were more dependent on the statistical model than the differing scenarios, 
thereby masking evidence for the cause of the sinking. For example, under one set of wave and 
vessel conditions, estimates of the probability of a hull breach were in the range [0.73, 1.00] for 
the Weibull model and [0,0.3] for the Gumbel model. 

Two extreme value theory specialists (Heffernan and Tawn, 2003, 2004) were brought before the 
enquiry to resolve these problems and perform a modern statistical analysis. We shall return to this 
study in the section on Extreme Value Theory. 

3.6  The Challenger Disaster 

On January 27, 1986, the night before the disastrous launch of the Space Shuttle Challenger, a 
long teleconference with faxed data sheets was held between a number of engineers and managers. 
Discussion focussed on the issue of the performance of the solid rocket motor’s O-rings at low 
temperatures, the problem that in the event caused the disaster. The team of engineers in Utah 
from Morton Thiokol, the manufacturers of the rockets, expressed various doubts on the reliability 
of the O-rings at the predicted launch temperature of 31°F. All previous launches had taken place 
at temperatures between 53°F and 81°F, so it was rightly understood that the main issue was 
whether there was any relationship between O-ring performance and temperature.  
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Figure 2: Incidents of Thermal Distress to O-rings prior to the Challenger launch (Source: Report of the 
Presidential Commission on the Space Shuttle Challenger Accident, Volume 1 p. l46, 
http://history.nasa.gov/rogersrep/v1p146.htm) 

 
The engineering and management backgrounds of the participants led them to generally 
concentrate on causal considerations concerning individual cases rather than graphing the various 
observed faults against temperature. (Lighthall, 1991) Even then, the data presented had a major 
flaw. Above, from the report of the Presidential Commission of inquiry, is a graph of the 
information actually presented to the teleconference (top), and what should have been presented 
(bottom). (Even the top graph is very much clearer than the tables in fact presented (printed in 
Vaughan, 1996, pp. 293-9 and analysed in Tufte, 1997, pp. 39-45)). The top graph has only the 
data points (a minority) in which damage to the O-rings occurred, the data from flights where there 
was no damage having been omitted in the erroneous belief that it was uninformative. 

The information presented to the teleconference makes it appear that there is probably no 
relationship between temperature and O-ring damage, whereas the graph with all the data makes it 
obvious that all the flights with the coldest temperatures suffered damage, whereas very few of the 
high-temperature launches were damaged. The fact that the worst damage occurred on the coldest 
previous launch, which at 53°F was still very much warmer than the 31°F predicted for the 
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forthcoming launch, should have raised alarm. Though that fact is in theory visible in the 
information actually presented, the absence of the full data set hid the trend. That allowed the 
managers in Florida keen to launch on schedule to concentrate attention on the other unusual data 
point, the damage to two O-rings at the warm temperature of 75°F. The Morton Thiokol engineers 
broke off the teleconference for half an hour to discuss among themselves. They then accepted the 
reasoning of the managers that if there were a problem with cold temperature then damage at 75°F 
would be most unlikely. The launch was approved. 

Later elaborate analyses by statisticians using logistic regressions and other possible models (Dalal 
et al, 1989; Lavine, 1991; Tappin, 1994), add little to the basic point. The trend obvious by eye in 
the second (full) graph is not made more convincing by the fitted models – on the contrary, the 
models are appropriate choices mainly because they agree with the intuitive fit. What was lacking 
in the teleconference’s analysis was not any sophisticated statistical model or formula, but a basic 
statistical perspective that would have understood the importance of graphing all the data points on 
a chart with the relevant variables on the axes, and an appreciation that extrapolation far beyond a 
data set is dangerous and is not compensated for by causal narratives, especially ones that 
concentrate on one or two extreme data points. 

3.7  The Browns Ferry nuclear reactor fire 

This remarkable event, one of the worst nuclear reactor accidents in a Western country, is a classic 
reminder of what philosophers of science call the “threat of the unknown hypothesis”: the 
probability that a disaster is a result of a concatenation of causes entirely outside the range of what 
one has considered in one’s risk analysis. (Earman, 1992, pp. 168, 228-9) As one account 
describes it: 

On March 22, 1975, a fire at the Browns Ferry Nuclear Power Plant fundamentally changed the 
concept of fire protection and associated regulatory requirements for U.S. nuclear power plants. 
Plant workers were fixing leaks in the cable spreading room outside the reactor building. The 
workers used a candle to test seals for air leaks into the reactor building. The polyurethane foam 
seal, however, was not fire-rated. The flame from the candle ignited both the seal and the electrical 
cables that passed through it. 

By the time firefighters extinguished the fire, it had burned for almost 7 hours. More than 1600 
electrical cables were affected, 628 of which were important to plant safety. The fire damaged 
electrical power, control systems, and instrumentation cables and impaired cooling systems for the 
reactor. Operators could not monitor the plant normally and had to perform emergency repairs on 
systems needed to shut the reactor down safely. (USNRC, 2006) 

There were also major inadequacies in the human response to the unfolding disaster. 

Plainly, statistical methods are not capable of finding the chance of something entirely unexpected 
happening, since statistics is based on counting events in some pre-defined space of possibilities, a 
space which is by definition not available for unknown hypotheses.  
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4. Relevance of individual data points 
 
Before moving to a survey of methods, there is one lesson for extreme risk evaluation that is 
suggested by the case studies. A characteristic of extreme risk assessments is the existence of 
individual data points whose relevance is itself a matter of dispute. Certain disasters or near-
disasters that have actually happened will be well-known, but for the very reason that they are 
known, steps will have been taken to prevent them happening again, so the relevance of the 
incident to present evaluations is unclear and needs to be assessed – certainly, before the data point 
is included in a data set to which statistical methods will be applied (methods which will typically 
make much of an extreme value). 

An example is NAB’s loss of about $330m from rogue trading in 2004. It is one of the few large 
(known) operational risk losses in recent times by an Australian bank. Its relevance to present 
operational risk evaluations, whether for NAB or other banks, is unclear, since NAB has had to 
submit to APRA detailed evidence of the steps it has taken to tighten procedures to prevent a 
recurrence (and APRA believes other institutions have been encouraged by the case to improve 
their risk management as well.) It is typical of bank operational risk data, especially in the stable 
Australian environment, that the few comparatively large losses are from some years ago and 
hence are of doubtful relevance (the lack of recent losses of the same order itself suggesting that 
procedures are now improved). Yet the operational risk analysis, if conducted rightly with heavy-
tailed distributions, will be very sensitive to these few data points, and in fact most of the reserved 
capital for operational risk may be due to them. 

Another instance of a data point needing debate comes from Biosecurity Australia’s 1998 Import 
Risk Assessment for New Zealand apples. The Assessment mainly dealt with the risk of imported 
apples causing an outbreak of fire blight, a disease that is not present in Australia. In 1997, while 
the report was being prepared, fire blight was discovered on two shrubs in the Royal Botanic 
Gardens, Melbourne, and the assessment was suspended pending study and eradication. It never 
became clear how the disease entered the Gardens or how long it had been there. On the one hand,  
the outbreak had been there for an unknown time without spreading, while on the other hand it 
was rather unlikely that the outbreak had been caused by the import of commercial fruit. The IRA 
concluded that nothing of relevance to the IRA could be learned from the episode. (AQIS, 1998, 
pp. 9, 21) 

Argument about such individual cases is essential to the analysis of extreme risks for several 
reasons. The cases are probably well studied, so that there may be much that can be learned from 
them, and reasonable judgments can be made as to whether the same could happen again (or 
something different but in some way from a similar cause). It is unsatisfactory to either simply 
delete the data point as no longer relevant or simply leave it in to drive some quantitative statistical 
method. 

Methods for predicting extreme values are very sensitive to the few most extreme values in the 
data, so great care needs to be taken in determining if they are “from the same distribution”, that 
is, fully relevant to the prediction problem at hand. Mechanical methods (though sometimes 
applicable for identifying outliers) are not suitable for examining data points where there is extra 
knowledge of the particular case. An advocacy model will allow that knowledge to be brought to 
bear before the data point contaminates any later analysis. 

Equally important in principle is the problem that extremes may be missing from the data. For 
example extremes of rainfall in hurricanes may be missing because the worst floods were large 
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enough to wash away the recording instruments. (Hellin et al., 1999) Plainly the data needs to be 
queried for such possibilities before any quantitative analysis is applied. 
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5. Methodology 
Next we survey a number of methods and bodies of knowledge, both quantitative and qualitative, 
that are at present not standardly used in risk analysis but which show promise of application in 
that area. 

 
5.1  Outlier detection and fraud detection 

Before any statistical method for extreme risks is applied, it is crucial to distinguish extremes from 
outliers. Extremes are the data points at the edge of the distribution, such as years of particularly 
high rainfall. They are the important data points on which the assessment of extreme risks will 
most depend. Outliers, by contrast, are points that are not part of the distribution at all. Typically 
an outlier is a mistake (e.g. drunks have urinated in the rain gauge, data entry typists have put the 
decimal point in the wrong place) and it should be deleted from the data set. But an outlier may 
also indicate some kind of contamination of the data by “another distribution”, which could 
indicate an event deserving further investigation. For example, an outlier reading of some measure 
of an environmental pollutant may indicate an illegal discharge – the normal range of data comes 
from natural processes, but the illegal discharge is a completely different cause or distribution. (On 
this way of understanding the concepts, outliers and extremes are different by definition, and there 
is a statistical problem, sometimes difficult, of knowing whether a given data point is one of the 
other.) 

So a basic knowledge of statistical methods of outlier detection is essential for the analyst of 
extreme risk. 

Hodge and Austin (2004) summarise its applications to monitoring: 

Outlier detection is a critical task in many safety critical environments as the outlier 
indicates abnormal running conditions from which significant performance degradation may 
well result, such as an aircraft engine rotation defect or a flow problem in a pipeline. An 
outlier can denote an anomalous object in an image such as a land mine. An outlier may 
pinpoint an intruder inside a system with malicious intentions so rapid detection is essential. 
Outlier detection can detect a fault on a factory production line by constantly monitoring 
specific features of the products and comparing the real-time data with either the features of 
normal products or those for faults. It is imperative in tasks such as credit card usage 
monitoring or mobile phone monitoring to detect a sudden change in the usage pattern 
which may indicate fraudulent usage such as stolen card or stolen phone airtime. Outlier 
detection accomplishes this by analyzing and comparing the time series of usage statistics. 
For application processing, such as loan application processing or social security benefit 
payments, an outlier detection system can detect any anomalies in the application before 
approval or payment. Outlier Detection can additionally monitor the circumstances of a 
benefit claimant over time to ensure the payment has not slipped into fraud. 

There are various methods, both visual and formula-based, for testing the discordancy of a 
suspected outlier with the rest of the data. (We do not survey them here but refer to Barnett, 2004, 
ch. 3; further in Hand and Bolton, 2004; for established “control-charting” graphical methods 
suitable for univariate time series data not too far from normal see Fox, 2007) They all involve 
modeling the data in some way, that is, finding some distribution that fits (most of) the data well, 
and which if true implies that the outlier is very unlikely to have occurred. An outlier, as the 
Encyclopedia of Statistical Sciences defines it, is “some observation whose discordancy with the 
majority of the sample is excessive in relation to the assumed distributional model for the sample, 
thereby leading to the suspicion that it is not generated by this model.” That points up the problem 
of knowing the distribution of the data, especially in cases where the data itself, including the 
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outlier(s) (rather than some causal knowledge), is the only source of knowledge of the distribution. 
There is no good solution to this fundamental problem; Barnett (2004, p. 55) writes: 

In practice, this dilemma is well recognized and it is usually resolved by a judicious mix of 
historical precedent (`such and such a model has always been used in this problem’) broad 
principle (`randomness in time and space implies a Poisson form’), association (linking the 
problem to apparently similar types of situation), some data-fitting (e.g. probability 
plotting), and an element of wishful thinking (as in all areas of model-based statistics). 

The best-developed theories of outlier detection (also called in various contexts “novelty 
detection”, “anomaly detection” and “exception mining”) deal with univariate (one-dimensional) 
data, where the data are points on a line and an outlier is a point well beyond the limits of the rest 
of the data. In a very simple example, 

 

 
 

 
Figure 3: An outlier in a 1-dimensional data set 
(Source: http://www.chem.uoa.gr/Applets/AppletQtest/Text_Qtest2.htm) 

 
The outlier detection problem for multivariate data is essentially harder, since the data are not 
ordered so it is not so clear what “beyond the rest of the data set” means. Nevertheless it is 
sometimes clear why a data point is far from the natural model of the rest of the data, as in this 
example, where a straight line fit seems intuitively appropriate for the main body of the data: 

 

 
 

Figure 4: Outliers in a 2-dimensional data set 
(Source: http://www.ecfc.u-net.com/cost/compare.htm) 

 
Visual methods and some of the formula-based methods are not so easily applicable to data with 
many dimensions – and the impressions easily gained from one- or two-dimensional data sets do 
not easily carry over to high-dimensional space. 

But here there have been many recent advances driven by the needs of fraud detection. The 
problem in fraud detection typically involves a large data set with each data point having many 
attributes, and the aim is to identify by automatic methods “unusual” or “fringe” data points that 
warrant further investigation. A challenging application area is the detection of fraud in credit card 
transactions, where millions of requests per day need to be scanned for possible frauds of 
unpredictable kinds, and action taken in real time to refuse suspicious transactions and suspend the 
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card (while not annoying legitimate customers with false alarms). Many of the details of how it is 
done are not publicly available, for obvious reasons, but the methods used include a combination 
of supervised and unsupervised approaches. Supervised methods learn from existing tagged data, 
so can take advantage of persistent known patterns in fraud, such as sudden multiple purchases of 
jewellery by cardholders who have not purchased jewellery before. Unsupervised methods, which 
look for new patterns far from existing data, are added to deal with the ever-developing ingenuity 
of fraudsters. (Bolton and Hand, 2002, section 3) There have been uses of these methods in such 
problems as AUSTRAC’s money laundering detection and the detection of intrusion in computer 
systems, but so far less application to such potential areas as environmental monitoring, epidemic 
alerting or quarantine inspection. 

 
5.2 Extreme Value Theory: Scope and Limits 

We now introduce the basic ideas involving the statistical modelling of extremes. Further details 
can be found in e.g. Coles (2001), Kotz and Nadarajah (2000), Beirlant et al (2004). 

Suppose we have a sequence of independent random variables X1, X2, … , Xn drawn from a 
common distribution function F. Classical extreme value theory models focus on the statistical 
behaviour of 

 
Mn = max { X1, X2, … Xn }. 

 
The Xi usually represent (continuous) values of a process observed on a regular timescale, such as 
daily rainfall amounts or log daily returns of some stock. Biosecurity applications have not been 
much studied but could include daily levels of a contaminant or the distance travelled by a spore. 
Mn therefore represents the maximum of the process over “blocks” of n units of observation – e.g. 
if n is the number of observations in one year, then Mn corresponds to the annual maximum. In 
theory, the distribution of Mn is known exactly, as: 

Pr(Mn ≤ z) = Pr(X1 ≤ z,X2 ≤ z,..., Xn ≤ z)
= Pr(X1 ≤ z)Pr(X2 ≤ z)...Pr(Xn ≤ z)

= F(z)[ ]n
 

In practice however, the distribution [F(z)]n→0 as n→∞, so that the distribution of Mn degenerates 
to a point mass on the smallest value such that F(z)=1. To avoid this, and in analogy with the 
central limit theorem, a linear re-normalisation is performed 

 
Mn* = (Mn – bn)/an 

 
for sequences of constants {an > 0} and {bn}. Appropriate choices of the constants stabilise the 
location and scale of Mn* as n increases. It can be shown that for suitable choices of constants 

Pr((Mn – bn)/an ≤ z) → G(z) as n→∞ 
 

where G(z) is the Generalised Extreme Value (GEV) distribution, with distribution function 
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where [a]+ = max(0,a). The parameters µ, σ and ξ correspond to location, scale and tail shape 
parameters respectively. The GEV distribution incorporates into a single formulation, three 
families of extreme value distributions: the Weibull, Gumbel and Fréchet distributions. The limit 
of Mn* converges to one of these types – for example, if F is the normal distribution then the limit 
distribution of the block maxima is the Gumbel. Limit discrimination arises through the value of 
the tail shape parameter. For ξ<0 the GEV yields Weibull tails with a finite upper endpoint of 
μ −σ /ξ . Realising a Weibull distribution is often of high practical importance, as there is a clear 
maximum bound for the process under study. For example, Heffernan and Tawn (2003, 2004) 
established Weibull tails for their study of maximum wave impacts in the Sinking of the M. V. 
Derbyshire case study (see later). For ξ>0 the GEV gives Fréchet tails with no upper endpoint. 
This is a polynomial decay, where the larger the value of ξ, the heavier the tail. Fréchet tails are 
common in environmental applications, such as precipitation (Smith 1989, Sisson et al 2006), and 
in financial applications, such as insurance (Bottolo et al 2003). In the limit as ξ→0, the GEV 
reduces to the Gumbel distribution, with exponential decay tails. While certain distributions F do 
lead to Gumbel block maxima, it is uncommon to estimate ξ = 0 from data, as the uncertainty in 
the parameter estimate would also place the model in both Weibull and Fréchet domains. Insisting 
on the Gumbel in these situations can have severe implications (Coles and Pericchi, 2003). 

For example, if the common distribution function F is known, the distribution of Mn* may then be 
calculated explicitly. For example, if X1, X2, … , Xn is a sequence of independent exponential 
Exp(1) variables, F(x) = 1 – exp(-x) for x>0. In this case, letting an=1 and bn=log(n), 

 

Pr Mn − bn

an

≤ z
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= 1− exp − z + log(n)( )( )[ ]n

= 1− exp(−z) /n[ ]n

→ exp(−exp(−z))

 

 
as n→∞ for each fixed z. Hence with the chosen {an} and {bn}, the limit distribution of Mn as n→∞ 
is the Gumbel distribution, corresponding to ξ=0 in the GEV family. 

In many applications, the distribution F is unknown. One possibility for inference is to use 
standard statistical techniques to estimate F from observed data, and then to use this to estimate 
Fn. Unfortunately, very small discrepancies in the estimate of F can lead to substantial 
discrepancies for Fn. In practice then, a better approach is to take advantage of the single GEV 
formulation of the Weibull, Gumbel and Fréchet distributions, by statistically fitting this 
distribution to the observed sample maxima. The estimated value of the tail shape parameter will 
determine which family the sample maximum belongs to. Of course, in basing estimation on 
observed, finite data, one is making an explicit assumption that the distribution of Mn for the 
observed finite n, has converged sufficiently closely to the distribution of Mn as n→∞, that the 
differences in finite and asymptotic maxima distributions are negligible. This assumption can 
sometimes break down. For example, Koutsoyiannis (2004) shows that even when the asymptotic 
distribution is Gumbel, the convergence of the sample maximum to this limit can be very slow and 
that fitting the full GEV distribution to observed data rather than any particular sub-family 
(Weibull, Gumbel, Fréchet) should be recommended in practice. This point is also made by Coles 
and Pericchi (2003) and Sisson et al (2006).  
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Similarly, the practitioner must make a conscious decision when partitioning observed data into 
blocks of size n, amounting to the trade-off between bias and variance: blocks that are too small 
mean that approximation by the limit model is likely to be poor, leading to bias in estimation; 
large blocks generate few block maxima leading to large estimation variance. In practice, 
pragmatic considerations often lead to the adoption of blocks of length one year. For example, 
daily temperatures are likely to vary according to season, violating the assumption that the Xi have 
a common distribution F. (Daily temperatures are also not independent, an issue discussed below.) 
If the data were blocked into block lengths of around 3 months, the maximum of the summer 
block is likely to be much greater than that of the winter block, and an inference that failed to take 
this non-homogeneity into account would be likely to give inaccurate results. Taking instead 
blocks of length one year means the assumption that individual block maxima have a common 
distribution is plausible, though formal justification for this is invalid (Coles, 2001). 

Common approaches of fitting extreme value distributions include maximum likelihood, the 
method of moments, L-moments and graphical and quantile-based methods. Kotz and Nadarajah 
(2000) examine numerous methods. Maximum likelihood is common given the attractive 
properties of these estimators. Smith (1985) showed that for maximum likelihood to give reliable 
results, ξ > -1/2 is required. This is not usually a practical problem as ξ ≤ -1/2 corresponds to a 
very short bounded upper tail, where ξ > 0 for most environmental problems, and 2 < ξ < 4 for 
many financial applications. 

Once estimates of model parameters are obtained, the GEV distribution function (1) may be 
inverted: 

 

zp =
μ −

σ
ξ

1− −log(1− p){ }−ξ[ ] ξ ≠ 0

μ −σ log[−log(1− p)] ξ = 0
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where G(zp) = 1 – p.  In common terminology, zp is the return level associated with the return 
period 1/p, since to a reasonable degree of accuracy, the level zp is expected to be exceeded on 
average once every 1/p years. More precisely, zp is exceeded by the annual maximum in any 
particular year with probability p. 
Returning to the Vargas Tragedy case study, Figure 5 illustrates a return level plot of the Gumbel 
and GEV models fitted to block maxima data where each block corresponds to one year. The data 
used for fitting excluded the 1999 datum. Visually, the GEV model appears to fit the upper values 
of the data better than the Gumbel. Interpreting the plot more precisely, the return-period estimate 
of the 1999 event of 410mm under the GEV model is approximately 4,280 years. Under the 
Gumbel it is around 17.6 million years. Both estimates attach a virtually zero probability to the 
1999 event, implying that an event of this magnitude should be considered impossible, had it not 
been observed. It also illustrates the dangers of not fitting the full GEV model. Coles and Pericchi 
(2003) demonstrated that in a hypothesis test of GEV versus Gumbel (i.e. a test that the tail 
parameter ξ = 0) could not reject the Gumbel in favour of the GEV. However reducing the 
extreme value model to the Gumbel has multiple orders of magnitude of difference in the return 
level estimates of the observed event. This arises as the Gumbel and Fréchet  distributions have 
substantially differing tail decay rates. The Gumbel decays only exponentially, whereas the 
Fréchet decays polynomially thereby giving greater weight to extremely large events. Model 
simplifications when parameters must be estimated from the data should therefore be treated with 
extreme caution. 
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Figure 5: Return level plots for Gumbel (lower solid) and GEV (upper solid) models of Venezuelan annual 
maximum daily rainfall. Dotted lines correspond to 95% confidence intervals. Points correspond to empirical 
estimates [i/(n+1), Mn

(i)], i=1,…,50, where Mn
(i) is the i-th largest block maxima. (Source: Sisson et al, 2006). 

 
It may be argued that block maxima analyses are wasteful of data, which is by definition 

already naturally scarce. Only the largest value in each block is used to fit the model. If other data 
on extremes are available they should also be used. An alternative formulation to extreme value 
modelling is based on threshold exceedance models (Smith, 1989). It is natural to regard as 
extreme events those of the Xi that exceed some high threshold u. For instance, rather than fitting 
(say) a Gaussian distribution to observed market daily returns, and then extrapolating into the tails 
of this distribution to estimate extreme quantiles, one may model the quantiles directly. In this 
manner, modelling assumptions regarding the form of tail decay for the body of the data, which 
may be too light (e.g. Gaussian distributions modelling daily returns), are not enforced on extreme 
levels of the process. It can be shown that for large enough u, the distribution function of Y = (X – 
u), conditional upon Y > 0, is approximately distributed as a generalised Pareto distribution, with 
distribution function 
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where ˜ σ = σ + ξ(u − μ) is a function of the threshold and respective GEV block maxima 
parameters. That is, the parameters of the generalised Pareto distribution of threshold excesses are 
uniquely determined by those of the associated GEV distribution of block maxima. In particular, 
the tail shape parameter ξ is identical. However, choosing different block sizes n would affect 
values of the GEV parameters, but not those of the corresponding generalised Pareto distribution 
of threshold excesses: ξ is invariant to block size, while calculation of ˜ σ  is unperturbed by the 
changes in μ and σ which are self-compensating. 
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The duality between the GEV and generalised Pareto families means that the shape parameter is 
dominant in determining the qualitative behaviour of the generalised Pareto distribution. If  ξ < 0 
the distribution of excesses has an upper bound of u − ˜ σ /ξ , if ξ > 0 the distribution has no upper 
limit. The distribution is also unbounded if ξ = 0, which should again be interpreted by taking the 
limit ξ → 0 in (2), leading to an exponential distribution with parameter 1/ ˜ σ .  

Inverting the Pareto distribution function gives 

 

xm = u +
σ
ξ

(mζ u)ξ −1[ ] 

 
the level (xm) that is exceeded on average once every m observations, provided that m is 
sufficiently large to ensure that xm > u. Here ζ u = Pr(X > u) can be estimated from the data. For 
presentational convenience, if there are ny observations per year, setting m = N × ny will yield the 
N-year return level.  

Choice of threshold is similarly akin to the variance/bias trade-off of block maxima. Threshold 
choice also remains somewhat ad-hoc, based on mean residual life plots or by fitting models to a 
range of thresholds, and identifying thresholds with parameter stability (Coles, 2001). It may also 
potentially be estimated by specifying models for non-extreme data, although arguably this cannot 
be justified as F is unknown. 

 

Returning again to the Vargas Tragedy case study, fitting the threshold excess model to the daily 
rainfall observations, followed by inversion of the distribution function, yields a return period of 
752 years for the observed event of 410mm (Coles et al 2003). This compares favourably with the 
estimates of 4,280 and 17.6 million years obtained via using annual maximum data only, as it now 
seems at least possible that we could have observed such an event within the 50 years of observed 
data. 

However, in modelling the data on a daily threshold exceedance level, we are now probably in 
violation of the assumption that these data are drawn from the same distribution – rainfall patterns 
are unlikely to be constant over the entire year. In fact, meteorology in the Caribbean region can 
be broadly classified into “dry” and “wet” seasons (González and Córdova, 2000). One common 
approach in practice is to permit the model parameters σ and ξ to vary with time: σ(t), ξ(t). In the 
Venezuelan case, we can specify two seasons, and permit different (constant) parameter values 
within each season. Knowledge of where these seasonal “change points” occur is problematic 
though. We will return to this issue in the Bayesian setting shortly. 

Returning to the M. V. Derbyshire case study, Heffernan and Tawn (2003, 2004) fitted the 
generalised Pareto distribution to the wave tank datasets under 60 different vessel and wave 
condition scenarios, previously analysed by Weibull and Gumbel distributions. Visual diagnostics, 
such as QQ-plots for the fitted models, revealed that the Weibull distribution substantially 
overestimated the probability of large events, and the Gumbel distribution did not fit the middle of 
the distribution. In contrast, the fit was remarkably good for generalised Pareto exceedances. 
Information about vessel and sea conditions was incorporated into the analysis by permitting the 
model parameters σ and ξ to be a function of these conditions. It was discovered that the estimates 
of the tail shape parameter were not dependent on the scenario conditions, and so the data could be 
pooled to estimate this parameter. 
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Since many of the estimated risks were small, Heffernan and Tawn (2003) were asked to provide 
estimates of the worst possible impact that the ship could have received in each set of conditions. 
This was only possible since their estimated tail shape parameters ξ were negative, and so the 
estimated maximum impact distributions had finite upper end points. 

Paragraph 6.13 of the Judge’s report (Coleman, 2000) states that the analyses were of “absolutely 
fundamental importance to the outcome of this Investigation.” The report also raised questions 
about the adequacy of current regulations governing the strength of hatch covers. 

At this point it’s worth discussing two related issues. The first concerns whether the observations 
Xi of the process being modelled, come from the same distribution F. For example, in the Vargas 
Tragedy, there is a case for arguing that the December 1999 event was generated by a different 
meteorological process (with distribution F2 say) than the pre-1999 event data (with distribution 
F1). Obviously, before observing the December 1999 event, one may only make statistical 
inference based on the data drawn from F1. Once we have observed the outlier event, we 
effectively have a random sample drawn from the mixture distribution 

 
F = ωF1 +(1−ω)F2  

 
where ω denotes the (large) proportion of observations from the first component (Coles et al 
2003). Statistically estimating parameters based on all available data then effectively models and 
makes prediction according to the process F. That is, inference is based on the observed process 
without knowing anything about the causal process (this is the power of the mathematical results 
behind extreme value theory). However, there is still the assumption that the observations are 
drawn independently from F. That is, the December 1999 F2 event could have occurred at any 
time in the observation period, with probability (1-ω). If it were the case that the occurrence of the 
December 1999 event had changed (or signalled the change of) the underlying generating process, 
then beyond this point all observations would be drawn from some new process distribution F3. 
The data generated from distributions F1 and F2 would then be uninformative in making inference 
on future occurrences drawn from F3. The exception to this is if there is some knowledge about 
how the effects of the processes (in terms of generating extreme events) may be linked (e.g. the 
likelihood of a similarly extreme event is reduced by some factor), in which case modelling may 
proceed under this assumption using all data. 

The second issue then is that under both GEV and threshold modelling frameworks, there is an 
underlying assumption that the Xi are independent. This is clearly unlikely to hold in practice – 
maximum daily temperatures or rainfall amounts on consecutive days are highly correlated. The 
block maxima approach avoids this problem unless the dependence extends onto the (say) annual 
scale. In fact, for asymptotic convergence to hold, some form of weak dependence is permitted 
(Leadbetter et al. 1983), although convergence to the GEV or Pareto limit is accordingly slower. 
The permitted dependence is sufficiently weak that it cannot be justified for the modelling of 
dependent observations.  

In practice there are two options for modelling dependent observations, depending on the form of 
the dependence. The first is to permit the model parameters to depend on some quantity (e.g. time, 
space or other predictors), which will account for the relationship between observations. This 
approach would be appropriate for the modelling of e.g. daily temperatures, which are expected to 
be higher in summer than in winter months. If this approach is not sufficient, then one must model 
the dependence explicitly. This requires moving to multivariate extreme value methods.  

Multivariate extremes can be modelled analogously to their univariate counterparts. Consider a bi-
variate setting where (X1,Y1), (X2,Y2), … is a sequence of independent vectors with common 
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distribution function F2. The extension to the multivariate setting is immediate. Similarly to the 
univariate setting, define: 

 
Mx,n = max { X1, X2, … Xn },   My,n = max { Y1, Y2, … Yn }, 

 
and then specify 

 
Mn = (Mx,n, My,n) 

 
as the vector of component-wise maxima. Note that the index i, for which the maximum of the Xi 
sequence occurs, need not be the same as that of the Yi sequence, so Mn does not necessarily 
correspond to an observed vector in the original series. Asymptotic theory then states that as n→∞, 
not only does the distribution of each marginal distribution converge to a GEV limit, but the joint 
distribution also converges to a class of bi-variate (multi-variate in general) extreme value 
distributions. This is a large class of distributions incorporating the full range of dependence (from 
complete independence to total dependence).  

A similar multivariate representation exists for threshold exceedance models (Haan and Resnick 
1977, Pickands 1981). As in the univariate setting, all multivariate representations may be derived 
as special cases of the point process representation. 

When modelling multivariate extremes, in addition to the greater scarcity of data, a particular 
difficulty can arise. Consider, for illustration, a vector (X,Y) which is distributed as bivariate 
Gaussian with correlation ρ=0.999999. The pair is very strongly dependent, and so when X is 
large, Y also tends to be large. Define 

 

χ =
lim

z → ∞
Pr Y > z | X > z( ) 

 
to be a limiting measure of the tendency for one variable to be large conditional on the other 
variable being large (Coles et al 1999). For the bivariate Gaussian pair, no matter how strong the 
correlation between X and Y, subject to ρ<1, the limit χ=0 states that they are asymptotically 
independent from each other (Sibuya 1960). The opposite effect can be conceived in financial 
markets: everyday market shifts in two unrelated stocks mean that at low—large levels, increases 
or decreases in their stock prices are likely to be unrelated to each other. However, consider a 
market crash situation. A precipitous drop in one stock is quite likely to occur concurrently with 
one in the other. That is, in this setting, the two processes are independent until “asymptotically” 
large levels are reached, when dependence is achieved. Evaluating return levels can lead to 
differing results at very large levels depending on the type of asymptotic dependence the model 
adopts. Exploration of models that admit both asymptotic independence and asymptotic 
dependence is one area of current research (e.g. Ledford and Tawn 1996, 1997, Coles and Pauli 
2002). 

In summary, extreme value theory is a very powerful, mathematically justified mechanism for 
making inference on extreme levels of a process. It is capable of evaluating the likelihood of future 
extreme values occurring beyond both the levels and the time-span of the observed data. To have 
some belief in the outcome, one is required to have belief in the underlying assumptions: that there 
is sufficient data for the limiting asymptotic models to be valid; that any form of dependence in the 
data has been adequately modelled; that for predictive purposes the future state of the model (e.g. 
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incorporating estimated trends, or explicitly modelled system change-points) is known or 
estimated. Violation of any of these principles may produce unreliable inference.  

An additional assumption is that the statistical framework adopted for estimation and prediction is 
adequate. Coles and Pericchi (2003) and Sisson et al (2006) argue that the statistical framework of 
choice should be Bayesian. We now examine the Bayesian approach to inference, and evaluate the 
benefits it brings to the statistical analysis of extremes. 

 
5.3 The Bayesian perspective  

Bayesian inference offers a competitive alternative to “classical” statistical methods, and its use 
has been growing rapidly over many disciplines in the last 20—25 years. The essential difference 
between the two inferential frameworks is that Bayesian inference regards the parameters as 
uncertain and hence they have a probability distribution in the parameter space. Contrast this to the 
classical view that there is a single true value for each parameter.  

Accordingly, joint information about the parameters, θ, and data, x, is encoded in distributional 
form  

 
π (θ,x) = π (θ | x)π (x)
= π (x |θ)π (θ).

 

Rearranging this gives 

 
π (θ | x) = π (x |θ)π (θ) /π (x). 

 
That is, the distribution of the parameters having observed the data π(θ|x), is proportional to the 
distribution of the parameter before observing the data π(θ), multiplied by the model π(x|θ), often 
the likelihood. For observed data, the term π(x) is just a constant and may often be ignored. Put 
another way, given one’s initial belief about the model parameters through the prior distribution 
π(θ), one is able to update these beliefs to obtain the posterior distribution having observed the 
data π(θ|x) by considering the product of model and prior. 

Once the posterior distribution is known, all information about the model can be derived. For 
example, a predictive distribution h(y|x) of some future value of the process having observed the 
data x, may be derived through the integration 

 
h(y | x) = h(y |θ)π (θ | x)∂θ∫ . 

 
Thus the predictive distribution averages out the uncertainty inherent in the value of the model 
parameters. Accordingly Bayesian prediction is less sensitive to the estimated parameter value in 
comparison to classical (e.g. maximum likelihood) inference, where only a single point estimate of 
θ is obtained and used. In certain situations this may have huge implications – see the Section on 
Bayesian extreme value theory below. 

The prior distribution is then an opportunity to incorporate expert opinion on the state of the model 
parameters into the analysis. Deriving the prior distributional form from such experts, known as 
prior elicitation, can require careful thought, however (O’Hagan et al 2006). Priors incorporating 
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expert opinion are known as subjective priors. Often an objective prior is adopted so that a 
benchmark analysis may be performed, free of subjective bias. An objective prior expresses vague 
or general information about a parameter. Objective priors have been developed for broad classes 
of models. In data poor situations, the prior will have a strong influence on the form of the 
posterior, and so the form of the prior is highly important. When there is plenty of data, the data 
will dominate and the influence of the prior will be minimal, so there is less need for precision. 
The exception to this is where the prior is overwhelming (e.g. a point mass on some parameter 
value). 

In practice, one is required to perform integrals of the above form in order to evaluate posterior 
predictive quantities of interest. Aside from trivial cases, analytical integration is untenable and so 
numerical approximation is needed. Suppose we are able to draw samples θ1, θ2, …, θN directly 
from the posterior distribution π(θ|x). We may then use the Monte Carlo approximation 

 

h(y |θ)π (θ | x)∂θ∫ = E h(y |θ)[ ] ≈
1
N

h(y |θi)
i=1

N

∑ . 

 
to estimate any integral of interest. The summation and integral are equivalent as N→∞. 

Drawing samples directly from the posterior is not necessarily trivial, and generic algorithmic 
procedures are the subject of much current research. A number of popular methods include the 
Gibbs and Metropolis-Hastings samplers (e.g. Gamerman and Lopes, 2006). 

 
5.4 Bayesian Extreme Value Theory 

Bayesian inference is particularly suited to extreme value theory (Coles and Powell, 1996). The 
requirement of prior specification means that the natural scarcity of extreme data may be 
supplemented through an informative prior formulation from a subject matter expert (e.g. Coles 
and Tawn, 1996). The Bayesian approach naturally incorporates parameter uncertainty in a 
probabilistic framework, which is particularly useful for predictive inference as parameter 
uncertainty can be integrated out. As an extension of this concept, Bayesian inference may also 
incorporate model uncertainty into the analysis. This may generate posterior model probabilities 
on competing models, if this is of interest, or can integrate over each model (and the parameters 
within each model) in making predictive inference. 
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Figure 6: Bayesian predictive distributions for various models fitted to the Venezuelan rainfall data (without 
the 1999 event). Points correspond to empirical estimates [i/(n+1), Mn

(i)], i=1,…,50, where Mn
(i) is the i-th 

largest block maxima. (Source: Sisson et al, 2006). 
 

As an illustration, we return to the Vargas Tragedy study. Figure 6 displays Bayesian predictive 
return level plots for four different models. The lower two curves denote the Gumbel and GEV 
predictive densities based on annual maxima data. The top two curves represent generalised Pareto 
threshold exceedance models, corresponding to a two-season rainfall structure (top) and a 
homogeneous model (lower). The Bayesian homogeneous Pareto model predicts the return period 
of the observed 1999 to be 260 years. The effect of integrating out parameter uncertainty (rather 
than conditioning on fixed maximum likelihood estimates) is clear when comparing to the 
classical predictor return level of 752 years. 

We previously discussed that the meteorology of the Caribbean can be broadly classified into 
“wet” and “dry” seasons, in which it may be reasonable to assume that the process exhibits 
different behaviour, and accordingly it should be modelled by different extreme value parameters. 
Exactly where the change point between the two seasons occurs is unknown. However, under the 
Bayesian framework, we can introduce two new parameters that specify the boundaries of one 
season, and let these be estimated by the data (Coles and Pericchi, 2003). Each possible 
combination of seasonal change points represents a different model as data are then allocated to 
different seasons. Posterior distributions on the likely location of the seasonal change points are 
immediately available. Incorporating this parameter/model uncertainty into the predictive process 
gives the “seasonal” generalised Pareto model in Figure 6 Under this more realistic model, the 
1999 event is even more likely, with a return period of 131 years. 

In a second analysis, Sisson et al (2003) did not model the daily rainfall data directly, but rather a 
series derived from the 3-day aggregate rainfall data set. Their data then corresponded to the 
maximum observed 3-day “storms.” Given that the December 1999 event was immediately 
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flanked by two additional days of extreme rainfall, this is probably a more realistic dataset to 
consider. Fitting the Bayesian seasonal generalised Pareto model as the model of choice yielded a 
return period of 308 years for the whole 3-day storm. Wieczorek et al (2001) revealed that the 
mudslides of the 1999 event exposed very large riverbed stones in a region far from their natural 
location. From their size and location, they could only have been moved there by a 
rainfall/mudslide event in the past at least as severe as the December 1999 event. Based on 
geological and sediment analyses, Wieczorek et al (2001) concluded that the exposed event 
occurred within the last 500 years or so. In view of this, the estimated return period of the 1999 
event, 308 years, seems quite realistic, thereby giving at least weak confirmation of the analysis 
with an independent source of evidence (while emphasising again the sensitivity of results to 
individual data points). 

Sisson et al (2006) took this modelling a little further in two ways. Firstly, they permitted the 
number of seasons itself to be an unknown number to be estimated. In this setting the posterior 
model probabilities gave overwhelming support to a two-seasonal model.  

In another example of Bayesian inference allowing the practitioner to avoid specifying a single 
model, Coles and Pauli (2002) developed a bivariate extreme value distribution that, under 
differing parameterisations, incorporated both asymptotic dependence and asymptotic 
independence. In this analysis, the authors were able to use a Bayesian approach to weight the two 
dependence classes, and thereby average over their uncertainty as to the true asymptotic state. 

In the Vargas Tragedy analyses, the parameter prior distributions were specified as independent 
“vague” priors for each parameter (e.g. a Gaussian distribution with a large variance), in an 
attempt to be uninformative in order to provide an objective analysis. Objective priors permit 
benchmark analyses without subjective bias, a valid criticism in subjective prior specifications. 
However it is currently unclear how to specify a truly objective prior – independent vague 
parameter priors are unlikely to provide this, as they are dependent on the model parameterisation. 
This is a subject of current research. 

A number of useful prior formulations have been developed. The first allows subject matter 
experts to provide their opinion on the return periods/levels of extreme events (Coles and Tawn, 
1996). These opinions, effectively treated as priors on extreme quantiles of the process, may be 
transformed into priors on the extreme value parameters, from which the Bayesian inference 
proceeds as before. Thus, the awkwardness of the extreme value model parameterisation is 
avoided, in favour of more conceptually accessible quantities. 

Botollo et al (2003) illustrate the higher-level structure of a hierarchical prior. Assume that the 
observed data may be partitioned into different data “types” e.g. different categories in insurance 
loss data. One approach to modelling is to fit different extreme value models to each data type 
independently. With few data observations in each model, parameters will be poorly estimated. An 
alternative is to pool all available data and estimate a single set of parameters. This will improve 
parameter estimate variability, but will also ignore the varying data types. The hierarchical model 
provides a compromise between the two. Firstly consider fitting different extreme value 
distributions to each data type. Now state that all the (say) tail shape parameters are related, in that 
they all derive from some common distribution. This common distribution induces dependence 
between the tail shape parameters, thereby permitting the information within each data type to help 
estimate the parameters of all other data types. This is a useful representation for structured data, 
and may be combined with (say) the quantile prior approach of Coles and Tawn (1996). 

 There is a greater computation requirement for Bayesian inference over maximum likelihood 
estimation. However given even a moderately powerful desktop or laptop, many routine Bayesian 
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analyses can be performed in minutes. Exceptions to this can include poorly written code, or 
highly complex models with strong parameter dependencies. Some current research has developed 
Bayesian inference procedures that admit inference under models with analytically or 
computationally intractable likelihoods (Bortot et al 2007, Sisson et al 2007). Such methods 
require repeated simulation of datasets from the model in lieu of likelihood evaluation, and have 
natural application in extreme value modelling (Bortot et al 2007) and extreme risk estimation 
(Peters and Sisson, 2006). These procedures are very highly computationally intensive, and 
depending on the nature of the problem, the time to perform the calculations can be measured in 
hours, days or even weeks. 

In summary, the power of the Bayesian approach to inference makes it highly competitive with, 
and often superior to classical approaches to extreme value theory. On the down side, while the 
incorporation of prior information into the analysis is a powerful benefit, it is not always clear on 
the best way this might be achieved, and the computation requirements can sometimes be high. 
Overall though, the benefits of the Bayesian approach probably outweigh its disadvantages. 

 
5.5 Robustness: imprecise probabilities, sensitivity analysis, InfoGap 

In traditional statistics, probabilities are based on large sets of data or on physical considerations 
and are thus quite precise numbers – for example, the bias of a coin is a definite number that may 
be approximated very precisely by observing many throws of the coin. That is not the case in areas 
such as extreme risk evaluation or criminal trials, where small data sets and opinion combine to 
produce high or low probabilities, but where any attempt to impose numerical precision on the 
probabilities results in (potentially dangerous) distortion. The law, for example, has solidly 
resisted quantifying the criminal standard of “proof beyond reasonable doubt”: any attempt to lay 
it down as a precise number will not actually lead to any consistency in decision-making, as it is 
impossible to determine a numerical probability that a defendant is guilty on the evidence (even if 
it is clear that he is guilty “quite certainly” or “only on the balance of probabilities”). (Franklin, 
2006) 

There is always some psychological resistance to dealing explicitly with imprecision in 
probabilities. Surely a probability is already a measure of uncertainty, so dealing with “uncertainty 
in uncertainty” or “probabilities of probabilities” is over-elaborate and too confusing in practice? 
That is not correct. For the brain and natural language, it is imprecision that is natural and easy and 
precision unnatural and costly. The ubiquity of fuzzy language in discussing probability, such as 
“extreme risk”, “quite likely”, “a remote chance”, is a sign that people are comfortable with 
imprecision and find it adequate in representing their ideas on probability. 

There are four ways of dealing with imprecision in probabilities. All have value and one (or more) 
can be chosen according to the pragmatic needs of the problem, such as how much the imprecision 
matters in the decision to be reached. In increasing order of sophistication they are: 

• Keeping to fuzzy natural language and studying its grounding in numerical probabilities 

• Restricting numerical probabilities to one significant figure 

• Representing imprecise probabilities in some simple way such as by probability bounds or 
triangular distributions and using them to conduct sensitivity analyses 

• Using InfoGap theory to study directly the robustness of decisions to imprecision in the 
probabilities 
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It is beyond the scope of this report to discuss these in detail, but we comment briefly on what is 
achievable by each method. 

People certainly operate naturally with fuzzy probabilities such as “very likely” and prefer to use 
them for reporting so as to avoid precision in which they do not believe (or to “maintain 
deniability”) (e.g. Olson and Budescu, 1998). Their prevalence in scorecards as well as in informal 
risk discussions makes it imperative to determine whether there is consistency among different 
people’s understanding – do all parties to a discussion mean the same numerical range by 
“extreme risk”, for example? Biosecurity Australia’s apple risk analysis (2006, p. 43) uses the 
following table to translate probability words into numerical probability ranges: 

 
 

Table 1: Nomenclature for qualitative likelihoods, corresponding semi-quantitative probability intervals 
(Source: Biosecurity Australia, 2006, Table 12. 

 
Likelihood Qualitative descriptors Probability interval 

High The event would be very likely to 
occur 0.7 → 1 

Moderate The event would occur with an 
even probability 0.3 → 0.7 

Low The event would be unlikely to 
occur 5 × 10-2 → 0.3 

Very low The event would be very unlikely 
to occur 10-3 → 5 × 10-2  

Extremely low The event would be extremely 
unlikely to occur 10-6   → 10-3 

Negligible The event would almost certainly 
not occur 0 → 10-6    

 
 

Although by and large reasonable, such translation tables encounter the problem that the fuzzy 
words of natural language are in general highly context-sensitive (a small elephant is bigger than a 
big mosquito because being a small elephant is being small for an elephant – with reference, that 
is, to the mean in the appropriate, context-dependent, reference class). Research shows that there is 
some consistency in how subjects translate verbal to numerical probabilities, but some individual 
variability (Wallsten, Budescu and Zwick, 1993; further in Caponecchia, 2007, section 4) and 
sensitivity to context. (Fox and Irwin, 1998) The upshot is that verbal probabilities and translation 
tables to numerical probabilities are only usable in the elicitation and communication of risk 
judgments with extreme care. One will have to check very carefully whether experts and non-
experts mean the same by such expressions as “extreme risk” and whether they mean the same in 
one risk setting as in another – and even if an organisation achieves standardisation internally, it 
has little control over the use of words by its stakeholders or audience. As an illustration, one may 
compare the translation table above with one in Burgman (2005, p. 77), taken from a paper on 
geological risk in petroleum exploration: 

 
Table 2: A Kent scale used to evaluate geological risk of petroleum exploration prospects (Source: 
Burgman 2005, p. 77, from a 1998 paper by P. Watson) 

 

Expression Synonyms Percent 
probability 
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Proven True 98-100 
Virtually certain Convinced 90-98 
Highly probable Strongly believe, highly likely 75-90 
Likely Probably true, chances are good 60-75 
Even chance Slightly better, slightly less than even 40-60 
Probably not true Unlikely, chances are poor 20-40 
Possible but very 
doubtful A slight chance, very unlikely 2-20 

Proven untrue Impossible 0-2 
 

 
Thus a 1% probability counts merely as “low” in Biosecurity Australia’s table but as “proven 
untrue” in the petroleum exploration table. That is natural in the different contexts, since BA’s 
table needs to differentiate between very low probabilities while petroleum exploration is more 
concerned with high probabilities (of striking oil). So, obviously the numerical meaning of natural-
language probability expressions cannot be simply taken over from one context to another. A 
particular contextual matter, often commented on in bank operational risk, is the need for clarity in 
the time period to which the risk refers: a loss that has one-in-a-thousand chance of happening in a 
day is quite likely to happen in a year. It is much easier to clarify such matters with numbers than 
with words. (Relevance to Biosecurity reviewed in McCarthy et al., 2007) 

Reporting numerical probabilities to only one significant figure (for example, 0.4 or 2 × 10-6 but 
not 0.41 or 2.4 × 10-6) is a common practice but one usually done unreflectively. (But see Phillips 
and LaPole 2003 for some efforts at using restrictions on significant figures to report uncertainty.) 
It relies on the fact that it is quite rare for decisions to be sensitive to differences in probability of 
less than one significant figure: a chance of three-in-a-million may warrant higher precautions than 
a chance of one-in-a-million, but it is hardly likely that one will take much notice of the difference 
between one-in-a-million and 1.3-in-a-million, even if one is convinced that the difference in the 
chances is real and not just measurement error. (But see Caponecchia, 2007, section 4 for the 
salience of relative extreme risks such as “the risk has increased by 30%.”) 

To report a probability to one significant figure is to make implicit use of an interval-valued 
probability, since by “probability 0.4” one means “probability in the range 0.35 to 0.45”. It is 
possible to make more explicit use of bounded probabilities (Walley, 1991; Ferson et al., 2004). 
One may either use the interval, perhaps with the implicit assumption of a uniform distribution 
between the bounds, or use a triangular distribution, with a “midpoint” that is the best estimate of 
the probability and a (not necessarily symmetric) range of uncertainty on either side (some 
sceptical comment in Burgman, 2005, pp. 78-9). The use of interval probabilities encourages 
sensitivity analyses, since it is easy to calculate what would happen if the ends of the ranges were 
used. For example, Biosecurity Australia’s apple risk analysis (pp. 114-5) concludes that “a 
maximum value three times larger than the value agreed by the IRA team for every exposure value 
results in an overall risk with the recommended risk that just exceeds Australia’s appropriate level 
of protection.” There is however a conceptual difficulty with the idea of interval-valued or 
bounded or triangular probabilities – the ends themselves appear to be precise but of course really 
are not (since if the probability itself is not known precisely, it is hardly likely that bounds on it 
will be), and normally harder to estimate than the central value. That translates into a practical 
difficulty for any sensitivity analysis based on the bounded probabilities, since one has little 
confidence that the probability is really bounded between the values stated. 

The Info-gap decision theory of Yakov Ben-Haim (Ben-Haim, 2006; Regan et al., 2005) also deals 
with the sensitivity of decisions to uncertainty in the inputs to a problem, including the 
probabilities. After the input-output function of the problem has been modeled, info-gap theory 
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explores the sensitivity of the output to the full range of uncertainty in the inputs (rather than 
merely looking at the change in the outputs to several possible perturbations of the input as 
sensitivity analyses normally do). A decision maker can thus impose a range of acceptable 
possibilities for the output and make a map of what range of inputs would lead to outputs within 
the acceptable range. 

All these techniques will be needed in the suite of methods in the toolkit of the analyst of extreme 
risk, where in the nature of the case there is normally considerable doubt as to the numerical value 
of the risks involved. One must report the uncertainty in the risk and examine how sensitive 
decision-making is to that uncertainty. 

 
5.6 Strengths of commonsense reasoning under uncertainty 

We summarise from Franklin (2001, pp. 324-5), some of the reasons for believing that the 
untutored brain is an excellent organ for probabilistic reasoning, in many circumstances (further 
references are available therein). Those circumstances are many, but the extreme risk situation is 
particularly important because of the lack of directly relevant data and hence the need to rely on 
intuition and analogy: 

That the vast majority of probabilistic inferences are unconscious is obvious from considering 
animals. For it is not just the human environment that is uncertain, but the animal one in general. To 
find a mechanism capable of performing probabilistic inference (as distinct from talking about it), 
one need look no further than the brain of the rat, which generates behaviour acutely sensitive to 
small changes in the probability of the results of that behaviour. Naturally so, since the life of 
animals is a constant balance between coping adequately with risk, or dying. Foraging, fighting and 
fleeing are activities where animal risk evaluations are especially evident; in general, the combining 
of uncertain information from many sources is of the essence of brainpower in the higher animals. 
Some further light on what the brain does is cast by the simple “artificial neural nets”, whose 
behaviour after training on noisy data can be interpreted as implicit estimates of probabilities. These 
animal and machine studies confirm in the most direct possible way that to behave probabilistically, 
it is not necessary to have anything like explicit estimates of probabilities or ways of talking about 
them. 

  The human species inherited the mammal brain, with these abilities already loaded and in 
automatic use. In human life, the only certainties, proverbially, are death and taxes, and of these, 
the time and amount, respectively, are quantities rarely known. The “Iceman” discovered in the 
Alps in 1991 was certainly one who took a calculated risk. It is clear at least in principle how 
evolutionary pressures select for rational techniques of risk management; the roads continue to 
select against those whose evaluation of risk is below par. There are psychological studies which 
show how much of cognition generally is “intuitive statistics”. Even such a basic operation as the 
discrimination of stimuli (for example, in deciding whether two sounds are the same pitch or not) 
is a probabilistic process of extracting a signal from a noisy background. And perceiving and 
remembering both involve unconscious testing of hypotheses on the basis of imperfect 
correlations. Very nearly all uncertain inference is unconscious, performed at the sub-symbolic 
level by the neural net architecture of the brain … 

Human subjective assessments of risk expressed in words are reasonably accurate in many 
circumstances. Indeed, in business forecasting of such movable quantities as stock prices, human 
“judgmental forecasting” is still generally comparable to the best statistical methods (and it is 
possible to say which statistical methods it resembles). Child development studies show the 
gradual development of reasonable risk estimates in words. However, there are some strange 
features of the brain’s implementation of probabilistic reasoning that result in systematic 
deviations from rationality. Estimates are age-specific, for example. They rely on mental “models” 
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or “prototypes” in some sense, leading to such problems as overconfidence in estimates and over-
sensitiveness to the order of presentation of evidence. The relationship between words used to 
express risk estimates and what the brain is really doing is a problematic one: driver behaviour is 
related more closely to objective risk than to stated risk, and learning of relative frequencies is 
often best in the absence of clumsy attempts to make conscious statements about them. On the 
other hand, having a theory can help bring order into data and correct mistakes in it. Of interest in 
connection with the relation between numerical and purely linguistic expressions are experiments 
that show a reasonable consistency between phrases like “very likely” and the “fuzzy” numerical 
estimates of probabilities that they mean. Since people often use words in preference to numbers 
in discussing risks, to avoid committing themselves to accuracy they do not possess, it is fortunate 
that probabilistic words are reasonably well calibrated. 

 
These considerations suggest this important conclusion, which is central to the point of view of 
this report: 

It is reasonable to give human intuition the “last word” in risk assessment, while at the 
same time trying to use formal statistical methods as a kind of prosthesis to supplement its 
known weaknesses. 

A problem where the superiority of human intuition over formal methods is especially evident – 
and one very relevant to extreme risks – is the “reference class problem” (also called in artificial 
intelligence “multiple inheritance”). The most basic evidence for probabilities in an individual 
case is observation of a relative frequency (in a class of which the case is a member). For example, 
the probability that Tex is rich, given that Tex is a Texan and 90% of Texans are rich, is 0.9. But 
typically, a case is a member of very many classes, in which relative frequencies vary. And there 
is no useful theory explaining how to combine the probabilities arising from the different 
“reference” classes. For example, if the evidence is that Tex is a Texan philosopher, that 90% of 
Texans are rich and 10% of philosophers are rich, then it is impossible to say how to combine 
these two numbers to achieve a numerical probability that Tex is rich, on the given evidence. 
(Hájek, 2006) The problem has caused a great deal of trouble in, for example, the law of evidence, 
where there is often evidence of different classes but it is of dubious legal relevance (Colyvan et 
al, 2001; Tillers, 2005), and in attempts to construct medical diagnosis expert systems, where 
combining evidence from different symptoms is essential but how to do it is theoretically poorly 
understood. (See also Caponecchia, 2007, section 4 for its relevance to communicating 
probabilities.) 

Yet humans are very good at combining different kinds of evidence. Where they have an 
advantage over formal methods is that they can learn from long experience the comparative 
relevance of different reference classes. For example, they can learn enough about being Texan, 
being a philosopher and being rich to have some sense of whether being Texan or being a 
philosopher is more likely to be relevant to being rich. The vocabulary of natural languages is 
already attuned to naming concepts that are relevant to living, that is, are positively relevant in 
probabilistic inferences; which of them are most relevant to a particular inference is something 
that itself can be learned – but only over a long period, and in the context of very many other 
concepts. 

That wide base of experience and the resultant tuning of concepts is not something that should be 
put aside when it comes to extrapolating from experience when evaluating extreme risks. On the 
contrary, is it a foundation that must be built on. It is the wide base of analogous cases that can 
compensate for the lack of data of directly relevant cases that is a feature of extreme risk analysis.  



Assessment of strategies for evaluating extreme risks 
  

  
 

Australian Centre of Excellence for Risk Analysis Page 36 of 61 
 

An “advocacy” model, we argue in section 6 below, is ideal for taking advantage of the strengths 
of innate human probabilistic reasoning, since on the one hand it gives human intuition the last 
word in combining the evidence to reach a final conclusion, but on the other hand gives maximum 
space for the use of any technical methods on the way. 

 
5.7 Psychological evidence on strengths and weaknesses of expert opinion 

In extreme risk evaluation, especially when performed by a committee or formal process, the 
intuitions relied on will often be those of experts. Much has been written on the weaknesses of 
expert opinion, rather less on its strengths. The systematic errors of experts are well documented – 
their overconfidence, inability to know where their expertise ends, sensitivity to framing effects, 
confusion over base rates and conditional probabilities, and so on (survey in Burgman 2005, 
sections 4.5-4.6). The recent study of Tetlock on medium-term political judgement also supports a 
very pessimistic view of the quality of expert opinion, especially when it is expressed confidently. 
(Tetlock, 2005) Those consistent results certainly imply that one should not trust experts in 
general. 

One could however suspect a certain negative bias in the reporting of expert opinion, since it is 
common experience that in certain areas experts can perform well, and much better than non-
experts. Of day-old chicks labeled female by expert chicken-sexers, 98% grow up to lay eggs, 
though they look exactly the same as male chicks to the untrained eye. (Martin, 1994; Biederman 
and Shiffrar, 1987) Surgeons often find that patients have the conditions diagnosed by physicians, 
the voting in elections is rarely far from that predicted by experts, biologists are much better at 
identifying species than non-experts, the predictions of the Manhattan Project physicists on the 
size of the atomic bomb explosions were close to the truth, and there is reasonable correlation 
between exam markers (at least in the more technical disciplines). (e.g. Caryl, 1999) Even the 
much-maligned weather forecasts (which come from expert opinion on the basis of computer 
extrapolations of data) are of reasonable quality – for the rather variable British weather, the UK 
Met Office achieves a little over 80% accuracy for its next-day maximum temperature forecasts 
(within 2°C), which is well above what is possible with simplistic methods like persistence 
forecasting (Met Office, 2006). 

There is also reason to believe that some of the heuristics on judgement that are errors in general 
work quite well in the contexts where they are normally used. That may explain away some of the 
findings on human irrationality in probabilistic reasoning, though far from all. (Gigerenzer and 
Todd, 1999) 

Further, Tetlock’s careful and extensive study in the notoriously unpredictable area of political 
judgement found that some experts were better than others. The difference between better and 
worse ones was not what they thought (for example, left versus right, or “Doomster” versus 
“Boomster”). It was rather a difference when it came to cognitive style. Experts who were (self-
rated) “Hedgehogs” – who applied a one-size-fits-all pet theory to all cases and stuck to it – were 
less successful at prediction that “Foxes” – who know “many little things”, hedge their bets when 
they should, change their minds in response to evidence, and are less inclined to invoke excuses 
when they get it wrong. (Tetlock, 2005, ch. 3) 

Plainly, there is a need not so much for scepticism in general about expert opinion, but for an 
understanding of where experts can be trusted and how to improve the performance both of those 
that are not trustworthy and those who are. From the examples, it is clear that some sort of 
pressure has to be exerted on the experts to punish bad judgment and reward success. The media 
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political pundits in Tetlock’s study, for example, received nothing but positive reinforcement from 
being confidently and consistently wrong on television. 

The best tutor is feedback from experience. It is certainly possible for experience to improve 
performance, at least if it is based on enough data for there to be significant estimation of whether 
the experts’ probability estimates were reasonably accurate. (Benson and Önkal, 1992) 

Unfortunately, the area of extreme risks is one where such feedback is not available, since in the 
nature of the case the events in question occur very rarely (and the non-occurrence of the events 
will merely tend to reinforce the optimism of experts). 

That is why we suggest replacing the ideal feedback of real experience with the “virtual” feedback 
provided by the advocacy model – scrutiny of experts’ assessments by a neutral panel of “judges”, 
informed by the scenarios and reasoning put forward by possibly hostile stakeholders. 

Justification and accountability improve judgement (Hagafors and Brehmer, 1983). Lee et al. 
(1999) write: 

Accountability (or the need to justify one’s judgments and decisions to others (Tetlock and 
Tetlock)) motivates complex and effortful information processing and encourages decision 
makers to engage in cognitive activities that promote (or at least seem to promote) high-
quality decision making. Accountability also increases decision makers’ concern about 
committing potentially costly judgmental errors (Kruglanski and Kruglanski) and 
encourages decision makers to engage in more analytic and less intuitive cognitive processes 
(Hagafors and Brehmer). Moreover, accountability has been found to influence persuasion 
by causing accountable message recipients to hold flexible, moderate positions on an issue 
when an unknown audience will evaluate their position (Cialdini and Leippe). 

But true accountability requires that the person to be held accountable fears his judges. He must be 
motivated by anxiety as to what their views might be. As Tetlock (1983) puts it, “Findings suggest 
that accountability leads to more complex information processing only when people do not have 
the cognitively lazy option of simply expressing views similar to those of the individual to whom 
they feel accountable.” Facing an audience of known views simply leads most people, especially 
the socially anxious, to move their estimates towards those of the audience. That is not an option 
where the audience’s views are either not known or, as in the advocacy model, are known to be 
varied. It is no use asking for the justifications of the decision later, either, as that merely leads to 
the generation of reasons why the original decision was right all along and sometimes to more 
extreme positions (Lerner and Tetlock, 1999). Also significant is the distinction between outcome 
accountability (rewards for getting the decision right) versus process accountability (rewards for 
showing that one’s decision process was justified); it appears in general that process accountability 
leads to more productive effort (Simonson and Staw, 1992; Siegel-Jacobs and Yates, 1996). Very 
relevantly for the advocacy model, the authority to which justification is submitted must be 
perceived as legitimate and itself having the expertise to evaluate the justification. Lerner and 
Tetlock (1999) summarise: 

Self-critical and effortful thinking is most likely to be activated when decision makers learn 
prior to forming any opinions that they will be accountable to an audience (a) whose views 
are unknown, (b) who is interested in accuracy, (c) who is interested in processes rather than 
specific outcomes, (d) who is reasonably well-informed, and (e) who has a legitimate reason 
for inquiring into the reasons behind participants’ judgments. But even among studies that 
incorporate this very specific kind of accountability, effects are highly variable across 
judgment tasks and dependent variables … 



Assessment of strategies for evaluating extreme risks 
  

  
 

Australian Centre of Excellence for Risk Analysis Page 38 of 61 
 

They add an impressive table of the cognitive biases that are found to be attenuated by 
accountability, including hastiness in judgment, lack of awareness of one’s own judgment 
processes, overconfidence, over-sensitivity to the order in which information appears, pursuing 
sunk costs and groupthink (but accountability was not helpful with some of the other classic 
cognitive biases, such as insensitivity to base rates and insensitivity to sample size). 

So accountability is not perfect as a device for improving probabilistic thinking, but the 
psychological findings on its advantages provide a solid theoretical foundation for believing that 
an advocacy model will have benefits. 
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6.  Adversary and advocacy models of public judgements 
 
We now provide some more details on the advocacy model and the reasons for favouring it. We argue that 
a model of risk evaluation similar to those used in the Basel II compliance regime for bank operational risks 
and in Biosecurity Australia’s Import Risk Assessments is a good approximation to best practice in the 
area, as it permits the diversity of relevant evidence to be presented and soundly evaluated. 
The essential idea is that a well-tried method of finding what is wrong with someone’s product 
(for example, their risk analysis) is to have an adversary look for its weaknesses. An independent 
or antagonistic consultant can discover what the creator of the product will never see in his pet 
project. 

Such methods have proven useful in, for example, software testing, where a team independent of 
the developers of software is employed solely to find bugs (Myers, 2004, p. 15), or in computer 
security where one can employ teams of hackers to conduct tests of the vulnerability of one’s 
system to penetration. (Klevinsky et al., 2002) These methods are especially applicable to 
software because of the possibility of non-destructive testing. Though less easily applicable 
elsewhere, the success of adversarial approaches to finding “unexpected” risks is still relevant. As 
a writer on software testing puts it, “removing wallpaper is not easy, but it is almost unbearably 
depressing if it was your hands that hung the paper in the first place. Similarly, most programmers 
cannot effectively test their own programs because they cannot bring themselves to shift mental 
gears to attempt to expose errors.” Unexpected risks can best be found by someone who wants to 
find them, that is, by an adversary of the system’s makers or guardians (operating in an overall 
environment where both sides will in the end be listened to). 

The most developed and best-known use of adversaries in is the system of legal trials in Anglo-
American law. The two sides are represented by counsel who have wide discretion to put their 
cases as they think fit, though the judge moderates the process to some degree. The final decision 
is made either by a jury which acts as a “black-box” fact evaluator which does not need to give 
any reasons for its decision, or by a judge or panel of judges who deliver reasons for their 
judgment. The model encourages effort to present a rational case that will be as convincing as 
possible, while leaving the final decision to disinterested parties. It is a problematic model where 
there is a need to evaluate technical complexity, for example in medical negligence or complicated 
financial cases where the evidence may be beyond the understanding of juries or legally-trained 
professionals. It also tends to be impervious to discoveries of systematic errors, for example, to 
psychological evidence on the low reliability of eyewitness identification evidence. (Wells and 
Olson, 2003) 

Compliance regimes that regulate industries and ensure adherence to standards have come to adopt 
what might be called an “advocacy model”, which has some of the qualities and advantages of a 
trial but also some fundamental differences. Typically, a compliance body, such as the Australian 
Prudential Regulation Authority (APRA), Biosecurity Australia (earlier the Australian Quarantine 
and Inspection Service)’s, or the Aged Care Standards and Accreditation Agency, is a permanent 
authority that oversees the compliance with published standards by the players in the regulated 
industry. A body seeking a determination from the authority (for example that import of New 
Zealand apples should be allowed or that an aged care home should be allowed to continue to 
operate) submits extensive documentation, typically about risk measurement and mitigation. The 
documentation may be prepared by specialists, sometimes outside consultants who work with 
insiders on understanding the body’s operations in detail. The documentation is examined by 
experts from the regulator, who can and typically do demand further documentation on matters 
they consider possibly suspicious. After some rounds of queries and possibly inspections, a 
decision is reached. A generally co-operative attitude is maintained between the regulator and 
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body regulated, except in extreme cases. The degree of confidentiality of the process varies; in 
cases of accreditation like APRA or in aged care, confidentiality is normal during the process to 
encourage honesty in sharing of data, but a public report is issued at the end of the process. The 
regulator is responsible to some outside body such as Parliament, and is also subject to 
embarrassment if a risk it has overlooked appears as a media scandal involving losses of millions 
in rogue trading or a cluster of deaths in an aged care facility. 

The case studies described above in which an advocacy model was used in one form or another 
(bank operational risk, the Ernst & Young case, and Biosecurity Australia’s apple risk analysis) 
show, we believe, how the model has acted to force the parties involved to work hard to identify 
and quantify all the risks and to honestly lay them out for inspection. A close study of what those 
cases have in common is the best way forward in creating on overall framework for best practice 
in the analysis of extreme risks. In planning the implementation of an advocacy model, a number 
of administrative issues arise such as the exact locus of final judgment, security of tenure, financial 
arrangements for tribunals, stakeholders and consultants, and the like. These are important issues 
in ensuring the independence and credibility of the decisions reached by the process – indeed, 
there are a few cases of spectacular failures of semi-judicial tribunals from problems in these 
areas. (Franklin, 2007) Research on these questions needs to draw on expertise in public 
administration and corporate governance. 
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7. Recommendations 
 
In the light of what we have found we make these recommendations to teams involved in the 
evaluation of extreme risks and to ACERA. The essential thinking behind these recommendations 
lies in our earlier conclusion that we repeat here: 

It is reasonable to give human intuition the “last word” in risk assessment, while at the same time 
trying to use formal statistical methods as a kind of prosthesis to supplement its known 
weaknesses. 

The recommendations are: 

Education of extreme risk evaluators in Extreme Value Theory, basic Bayesian theory and 
imprecision/robustness concepts 

These technical methods have proved to have application in certain areas in evaluating and 
communicating extreme risks. They are not panaceas, but have advantages over older standard 
statistical methods in providing the necessary flexibility to deal with difficult extrapolations 
beyond the range of existing data. In particular they guard against dangerous illusions of false 
precision in extreme risk estimates and underestimates of tail probabilities. A team involved in 
extreme risk evaluation should have some general understanding of the scope and limits of such 
methods and be should be able to call on experts in those methods when the case indicates the 
need for them. 

Education of statisticians involved in extreme risk evaluation in more qualitative legal 
perspectives, outlier detection, data mining methods of fraud detection, and methods of 
causal chain analysis 

The strongly quantitative style of education in statistics, valuable as it is, can lead to a neglect of 
the more qualitative, logical and causal perspectives needed to understand data intelligently. That 
is especially so in extreme risk analysis, where there is a lack of large data sets to ground solidly 
quantitative conclusions, and correspondingly a need to supplement the data with outside 
information and with argument on individual cases. 

Psychological study of the full advocacy model 

Although we have provided reasons for thinking an advocacy model will lead to better risk 
analyses, and have described case studies where some approximation to an advocacy model is 
used, there needs to be much more rigorous research into whether it actually works. We 
recommend ACERA fund and oversee such research, employing advisers skilled in methods of 
psychological experiment. They will have the skill to devise experiments with proper controls to 
determine whether an advocacy model really does lead to better identification, evaluation and 
communication of extreme risks. 

Investigation of newer statistical methods such as data-mining, spatial and spatiotemporal 
methods, capture-recapture methods and prediction markets 

A number of new statistical (or marginally statistical) methods have emerged in recent years, 
which prima facie have good possibilities for application to extreme risk analysis. We recommend 
that ACERA fund and oversee investigations into them. Data mining has shown the possibilities of 
extracting value from large data sets and has proved its value to business in understanding 
customer behaviour; its applications to fraud detection are especially relevant to extreme risks. 
Many risks are spatially variable (for example the chance of transfer of fire blight from discarded 
apple cores to hosts is very dependent on the spatial distributions of cores, hosts and vectors), and 
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the general inadequacy of coverage of the space by data means there is (or should be) strong 
interaction between the methods of spatial statistics and extreme risk analysis. The capture-
recapture methods recently used to estimate populations from small samples and to estimate the 
numbers killed in human rights abuses (e.g. Silva and Ball, 2006, section 5.7.5) extrapolate 
beyond observations so hold promise of applicability to extreme risks. Prediction markets promise 
to hold those making predictions accountable for what they say, thus creating a public predictive 
mechanism more reliable than the “sum of its parts”; disaster prediction is among the leading 
potential applications. 

Use of independent facilitators such as consultants to mediate between risk evaluator and 
stakeholders 

We were impressed with the role of consultants in the Ernst & Young case in mediating between 
the final risk evaluator (APRA) and the client whose risk analysis had to pass inspection. The 
possibility of the consultant representing each side to the other over several rounds of negotiation 
was most valuable in bringing the risk evaluation “up to scratch”. Consultants are expensive, but 
in cases where it is very important to achieve the best possible result, we recommend their use. 

Adoption of more transparent attribution policies for authors of texts 

The advocacy model relies on the authors of risk analyses “standing behind” their assertions. 
Accountability requires clear attribution, which is not always the case in reports. For papers and 
reports by academics and members of the CSIRO and similar organizations, it is clear who the 
authors are (and which one takes prime responsibility) and it is possible to find websites on each 
of the authors where their qualifications, list of publications and contact details can be found. That 
is not normally so with government and especially commercial organizations, where reports, if 
publicly available at all, are attributed to the organization as a whole or to some large and 
anonymous group. Even if authors are known, the organization’s website does not usually give 
any information about them. Under those conditions, reports are in effect unattributed and hence 
accountability is poor. We recommend that where possible government and commercial 
organizations adopt academic practice in displaying personal websites of their report-writing staff 
(and former staff) with lists of what they have written. 
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9.1 Executive Summary 
The modelling of operational risk has taken a prominent place in financial quantitative measurement, as a 
result of the Basel II regulatory requirements on banks and similar financial institutions. This report details 
the modelling of extreme and rare events in the context of operational risk, with particular focus on the 
Australian financial sector. Initially the regulatory environment in banking within Australia is discussed in 
the context of operational risk. There is a focus on quantification requirements for operational risk and why 
such quantification is important in relation to regulatory standards.  Definitions and discussion of 
operational risk and the associated risk categories introduced by Basel are detailed. 

Then the different methodological and modelling approaches that are allowed for in the regulatory 
guidelines are presented from the most basic to most advanced approaches, including associated regulatory 
requirements.  This is followed by an overview of the different phases that may be required to implement 
such a methodological and cultural change in a financial institution embarking on modelling operational 
risk. 

Following this is a section which discusses the issues and difficulties associated with modelling operational 
risk. In particular aspects of operational risk which make modelling difficult at the most fundamental level 
are detailed. A strong focus of this section is on the different forms of data that can be incorporated in 
operational risk quantification. This includes an overview of issues associated with data collection and the 
analysis of data prior to modelling. 

Preceding this is a section addressing the industry standard modelling framework, Loss Distributional Approach (LDA). This 
section includes discussion of popular statistical models utilised to model the annual loss distributions of risk profiles that fall under 
the banner of operational risk. To complete the discussion of quantitative approaches, a section on statistical models and 
methodology for particular data sources is presented. 

Finally a section on the management aspects of operational risk is presented which relates the regulatory 
requirements for dealing with assessed and modelled risk profiles. 

 
9.2 Background and Context within Australia’s Financial Industry. 
In January 2001 the Basel Committee on Banking Supervision proposed a New Basel Accord known as 
Basel II which was to replace the 1988 Capital Accord. This proposal considers three pillars which by their 
very nature emphasise the importance of assessing, modelling and understanding operational risk profiles. 
These 3 pillars are; minimum capital requirements (refining and enhancing risk modelling frameworks), 
supervisory review of an institutions capital adequacy and internal assessment processes and market 
discipline which deals with disclosure of information. Since this time the discipline of operational risk and 
its quantification has grown in prominence in the financial sector. 

Operational risk, for a business or organisation, may broadly be defined as the risk involved in such an 
entity carrying out its normal operations. For a bank, the Basel Committee on Banking Supervision ("the 
Comittee") defines operational risk to be "the risk of loss resulting from inadequate or failed internal 
processes, people and systems or from external events." (Basel Committee on Banking Supervision, 2006, 
p144) 

So, operational risk is indeed a broad category. The Comittee gives a further classification into seven types 
of operational risk (Basel Committee on Banking Supervision, 2006, Annex 9): 

 Internal Fraud, 
 External Fraud, 
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 Employment Practices and Workplace Safety, 
 Clients, Products and Business Practices, 
 Damage to Physical Assets, 
 Business Disruption and System Failure, 
 Execution, Delivery and Process Management, 

which serves to further illustrate the disparate nature of events in this class. Reputational and strategic risk 
do not fall under the operational risk umbrella, and market and credit risks are treated separately, but almost 
any other event that may result in a loss to a bank, including legal action, may be termed an operational 
risk.  In Appendix 1 we provide some specific examples of types of operational risk.  

Basel II regulatory requirements have significantly changed the view that financial institutions have on 
operational risk. Under the three pillars of the Basel II agreement set out in the framework1, internationally 
active banks are required to set aside capital reserves against risk, to implement risk management 
frameworks and processes for their continual review, and to adhere to certain disclosure requirements. 
These regulatory requirements, which are overseen and enforced in Australia by APRA, have encouraged 
many banks to deploy significant resources to the task of quantifying operational risk. Whilst many 
operational risk events occur frequently and with low impact (indeed, are `expected losses'), others are rare, 
and their impact may be as extreme as the total collapse of the bank. In any case, most institutions will not 
have sufficient internal data to accurately model their operational risks, especially with respect to extreme 
rare losses. The modelling and development of methodology to capture, classify and understand properties 
of operational losses is a new research area in the banking and finance sector.  

Accordingly, the Basel II agreement incorporates a lot of flexibility. The Comitteee itself is made up of 
representatives of both central banks and banking supervisory authorities from each of the G10 countries, 
and the framework has been developed and revised in consultation with the authorities and the industry in 
member and non-member countries. The timing and degree of implementation is determined by the 
supervisory authorities in each country. Thus the agreement allows for differences in banking practices and 
regulations that occur across borders and evolve with time. It further allows for differences in size and 
activity of financial institutions by prescribing three different methods by which operational risk capital 
may be calculated. In order to implement each of the two more sophisitcated methods, a bank must meet 
certain qualifying criteria: in essence, it must prove to the regulator that it has sufficient resources and 
systems in place to properly carry out and audit/review the more sophisticated calculations. At the same 
time, institutions are expected to use (or to move towards using) the most sophisticated method that they 
`can'. 

It is important to understand where operational risk fits into the overall risk picture within Australian 
institutions as this will help motivate the effort to spend time and resources on modelling many of these 
rare events in the presence of significant constraints. In Australian retail banking, the largest profit centre 
typically revolves around consumer credit and lending. The mortgage and home loan products represent the 
majority of profit. Other profit centres include markets and trading on the Australian stock exchange or 
global markets. Modelling of credit portfolios has been developed over many years and is reasonably well 
established in the banking sector. There are large databases, there are credit rating agencies, standards and 
rules for assessing and scoring credit ratings. The modelling of annual loss from a credit perspective, 
including rare event modelling, is well-established, and quantiles of the annual loss distribution are used to 
produce risk measures such as Value at Risk (VaR) figures which provide capital estimates. So in both 
methodology and in systems and process development, including accountability and incentives to report 
and maintain business processes, this area of modelling for extreme losses is highly developed.  

At the other end of the spectrum one has operational risk.  The infancy of modelling of operational risk 
relative to other risk disciplines was recognised by APRA early in the introduction of this new risk 
discipline: "...measuring and managing operational risk is still very much an emerging discipline" [Laker, 
2006, p6] . . . "Unfortunately there is neither a history, nor  broad agreement on the methodologies, for 
 
                                                      
1Note that the agreement covers market, credit and operational risk, however we shall restrict our 
consideration here to operational risk. 
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modelling operational risk." [Egan, 2005, p4]. As a response one of the key drivers put in place by APRA 
in Australia, in order to push the effort in developing a methodological framework for operational risk and 
implementation of this framework in an integrated manner throughout a financial institution, is the fact they 
have tied the accreditation of an advanced approach to credit modelling with an advanced approach to 
operational risk, typically termed Advanced Measurement Approach [APS 115].   

We shall presently summarise the different approaches that are proscribed for quantifying operational risk. 
For now we note the significance of this move from APRA. The capital charge required to be held for 
credit lending typically dominates relative to other risk classes, certainly within retail banking. Hence the 
advanced approaches to modelling from a banking perspective are expected to lower this required reserve, 
freeing up capital to be used to grow the business. At least in Australia, this puts a very significant 
monetary incentive in place for financial institutions to adequately model operational risk over time. 
Looking at the picture from another perspective, banks should be very prudent in modelling rare events and 
developing understanding of the processes -  such as system failure, infra-structure failure and rogue 
trading - that lead to massive losses, all of which have the potential to debilitate a financial institution or its 
subsidiariessiduaries. 

The guidelines presented by APRA, as with those in Basel II, are not prescriptive in terms of 
implementation and methodological development. In particular, from a quantitative perspective, they do not 
advocate particular models for extreme or rare events. The most important quantitative guideline to date 
from APRA is APS 115. The key requirements specified in this standard are that a bank must have a 
“framework to manage, measure and monitor operational risk commensurate with the nature, scale and 
complexity of the institutions operations” and “approval from APRA to use an Advanced Measurement 
Approach to operational risk for determining the institution's operational risk regulatory capital 
requirements”.  

We now outline the three broad approaches that a bank may use to calculate its minimal capital reserve, as 
specified in the first pillar of the Basel II agreement.  

The Basic Indicator Approach 

Under this approach, capital is simply a fixed percentage of a bank's gross annual income. The gross 
income is taken as the average of that of the past three years, excluding any years in which the income was 
negative or zero. Currently, the committee has set the percentage at 15%. 

The capital estimate provided by this method is likely to be an over-estimate, although, given the amount of 
resources required for the complex task of accurately quantifying operational risk, it may be the best 
method for some smaller banks. In general, internationally active banks and those with "significant 
operational risk exposures" are expected to use one of the more sophisticated approaches. In order to do so, 
certain systems must be in place. Specifically, before using the standardised or a higher-level approach, at a 
minimum, a bank must be able to show that 

1. Its board of directors and senior management are actively involved in the oversight of the 
operational risk management framework; 

2. It has an operational risk management system that is conceptually sound and is 
implemented with integrity; and 

3. It has sufficient resources in the use of the approach in the major business lines as well as 
the control and audit areas. (Basel Committee on Banking Supervision, 2006, p148) 

The Standardised Approach 

This approach is similar to the basic indicator approach, in that gross income is used as the basic indicator 
of risk. In this approach, the gross annual income is considered separately for each of eight business lines - 
corporate finance, trading & sales, retail banking, commercial banking, payment & settlement, agency 
services, asset management, and retail brokerage – and a different percentage multiplier is applied to each 
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business line's income to give a business line capital charge. Again, the multipliers (termed "betas") are set 
by the committe; the current values are 12% (for retail banking, asset management and retail brokerage), 
15% (for commercial banking and agency services), and 18% (for corporate finance, trading & sales and 
payment & settlement). Some analyses of these betas is provided in (Moscadelli, 2004) which estimates 
equivalent betas from a numerical study of many financial insitutions and then compares to the current 
values set by the Basel committee. 

The business line capital charges are then summed to give a raw annual total for the bank. The minimum 
reserve in a given year is the average of this raw total over the previous three years, with any negative 
capital charge replaced by zero (rather than that year being excluded, as in the above approach).  

The Alternative Standardised Approach (ASA) 

The ASA is essentially the standardised approach, but with further flexibility, particularly in the treatment 
of the retail banking and commercial banking business lines. One option is to divide a bank’s operations 
into two categories: "retail and commercial banking" and "other". The capital charge for the former is based 
on assets rather than income -  it is the product of the total outstanding loans and advances of the section 
with the beta for commercial banking (15%) and a fixed factor m.  The capital for the "other" grouped 
business lines is then just 18% of the gross total income, and the two are added to give total capital charge.  

In Australia, APRA has proposed that banks adopt at least this option in the ASA. As discussed earlier, 
most of the activity of Australian banks (or ADIs: "Authorised deposit-taking institutions") occurs in retail 
and commercial banking, with the majority of assets (at least in smaller banks) in residential lending. Thus 
this approach is deemed to provide a more realistic estimate than the basic indicator and standardised 
approaches [Laker, 2006, p2-3]. Of course, the accuracy of the capital estimate is expected to increase with 
the complexity of the approach, and several of the larger Australian banks are in the process of adopting the 
Advanced Measurement Approach.  

The Advanced Measurement Approach (AMA) 

A bank adopting the AMA must develop a comprehensive internal risk quantification system. This 
approach is the most flexible from a quantitative perspective, as banks may use any methods and models 
they believe are most suitable for their operating environment and culture. However it is also the most 
restricted in that banks must gain supervisory approval before beginning to  implement the AMA, and their 
models must satisfy further stringent qualitative and quantitative criteria outlined in the Basel II agreement. 
To start with, a bank is required to have an independent operational risk management section that is 
reponsible for the measurement of operational risk as well as the development of strategies for its 
management and mitigation. It must have an embedded `risk culture', where the day to day operations of 
the bank integrate risk control, measurement and reporting. All risk management processes must be well-
documented and subject to regular internal and external audits... and so on. [Basel Committee on Banking 
Supervision, 2006, p150-2]. The key quantitative criteria are that a bank's models must sufficiently account 
for potentially high-impact rare events, and incorporate the use of each of 

1. internal data;  
2. external data;  
3. scenario analysis; and  
4. business, environment and control factors.  

The detail in implementing these guidelines and meeting these requirements for a bank typically involves a 
strong interplay between the bank and the supervisory authority. Representatives from APRA regularly 
visit banks applying for the AMA approach to assess and provide feedback on all aspects of operational 
risk models and management frameworks being developed. The process also typically involves one or more 
outside independent parties such as KPMG, Ernst & Young, PricewaterhouseCoopers and Deloittes. These 
act as intermediaries, providing for APRA assurances and validations of approaches, models and 
implementations of business and data frameworks developed within banks.  

This is an important part of the process in applying to the regulator for approval to use the AMA approach, 
since APRA is interested in external validation reports [see point 20 in attachment A of APS 115]. The 
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reason for this will become more clear in subsequent sections discussing modelling approaches and data 
management. Additionally, in October 2006 all banks applying to use the AMA in operational risk were 
required to take part in an exercise termed QIS5. This included producing a report on  

1. the modelling approach implemented to date (including data management and recording systems 
covered in IT departments); 

2. the road map for the following year leading up to deadlines for accreditation in the first round; and 
3. (most importantly) VaR numbers for operational risk in Australia and any subsidiary holdings, including 

both standardised and AMA figures. 

We note that the calculationualtion of Value at Risk as a risk measure is hotly debated in the academic 
community, especially relating to issues such as coherency in a risk measure [see Artzner et al, 2000] and 
the difficulty of estimating the quantile level of the annual loss distribution reported (Q0.9992). For such 
rare events as terrorist attacks, natural disasters and so on, these figures may not be sensible or stable over 
time. This was highlighted recently at the Quantitative Methods in Finance conference by a senior member 
of the German Financial Supervisory Authority. Dr. Gerhard Stahl discussed in his talk the concerns an 
ADI should have over the level of accuracy that is attainable for reporting at a 0.999 quantile level, and 
how stable this will be over time. 

It is also worth considering what is involved in the practical implementation of an operational risk 
framework in a financial institution, as it is a massive undertaking. Crudely, the process can be separated 
into four phases. We shall briefly describe these phases before moving on to the core section of this case 
study, which revolves around one of these phases “methodological developments”. By understanding how 
this framework needs to be integrated with the business, one gets a sense of the significance of developing 
models which will as best possible capture the behaviour of these rare events in operational risk. The 
business is now becoming accountable since managers will need to actively assess and manage their 
operational risk profile, which is passed to them from the models developed. Clearly this provides a 
significant incentive to ensure models are transparent and well understood by the risk community. Further 
this knowledge needs to flow on through the business managers who are being assessed on how well they 
actively manage such losses and events occuring from operational risks. 

Phase 1 – The first step in the process is typically to build a core team for the development and 
implementation of the entire framework. This may include business representatives, risk specialists and 
quantitative analysts, policy developers and database experts, business analysts, auditors and validators. 

Phase 2 – A key question faced by many financial institutions regards the development of an inhouse 
framework versus an “off the shelf” or “plug and play” solution, which would be modified for the given 
business model or hierarchy. The framework includes  

1. areas of database design and the set up for the capturing of the Internal Loss Data; 
2. choosing the desired modelling methodology and modelling of the actual annual loss distribution under 

this approach; and 
3. reporting and integration of results from modelling into other sections of the institution, including 

education and assessment of risk profiles.  [Cruz 2002] 

Key reports and information flows in this space include the reporting of economic capital (an internal 
measure of capital – typically at a different quantile level to regulatory capital) and profit after capital to the 
bank's risk committee. In a truly integrated operational risk framework one could even go as far as 
assessing individual managers' Key Performance Indicators (KPIs) according to the performance of the 
operational risk capital charge on individual business units. Clearly this impacts the entire institution. Thus 
another aspect to consider, from a practical perspective, when developing these models is how to obtain 
substantial “buy-in” from business units who will want to understand how they are exposed to different 
levels of extreme events relative to other business units. 

 
                                                      
2 APS 115 - Point 20 
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Phase 3 – Development of the model methodology. In this area APRA has given significant flexibility to 
Australian financial institutions. This is reflected in the many varied approaches implemented throughout 
Australia. In Australia the key requirements from the regulator are set out in a series of documents which 
include draft prudential standards, draft prudential practice guides, response to industry progress and 
discussion and guidelines. The most recent versions of the draft prudential standards released for Australia's 
financial industry are APS114, APS115 and APG115. 

Of these documents the one which is directly relevant to operational risk quantitative methodology is 
APS115. In this document the first section outlines the process a bank must undertake to obtain approval 
for an AMA. From the perspective of modelling rare events, points 18 through to 26 provide the guidelines; 
the allocation of capital charge to business units according to their risk profile is then covered in point 27. 
Point 18 gives an indication of the level of detail provided:  “the [bank's] operational risk measurement 
system must be sufficiently comprehensive to capture all material sources of operational risk across the 
bank, including those events that can lead to rare or severe operational losses.” In addition to this note, 
which refers briefly to the nature of the modelling required, another important point to be adressed regards 
soundness standards over a universal annual modelling period. Statements such as “This soundness 
standard provides significant flexibility for [a bank] to develop an operational risk measurement system that 
best suites the nature and complexity of the [bank's] activities” and “Given the subjectivity and uncertainty 
of operational risk measurement modelling, [a bank] must be conservative in the assumptions used in its 
operational risk measurement model, including assessment and incorporation of severe loss events”, 
illustrate the significant challenge involved in constructing appropiate methodology.  Further discussion on 
the soundness standards and the ten principles that underpin them can be found in [KPMG 2005] 

Even before models can be developed, questions such as how best to understand the nature of rare and 
extreme events that may lead to large losses must be asked. The answers that a bank provides to these 
questions will dictate many of the modelling assumptions that can be made. Questions related to data 
sufficiency and validity, in addition to likely sources of information, and how best to integrate and fuse 
information on rare events, become critical to the process. In this context one needs to carefully assess how 
useful different data sources are for a given institution. Typically this requires thorough understanding of 
sources of bias present in data. Operational risk is inherently an area where data is still scarce and precious. 
Thus incorporation of expert opinion in many cases becomes a key driver in the measurement models.  

The level of a business hierarchy at which relevant operational risk information can be extracted (and 
suitably modelled) directly affects the approaches many banks take in modelling, including the granularity 
of modelling for a given business hierarchy. In this respect, granularity is a term used to refer to the number 
of levels of the business unit risk type hierarchy used in modelling. For example a model which is not 
granular could model at the bank level by collecting all the loss data for a given risk type and combine it 
together then fit a statistical model. In Australia many banks model data at different levels of granularity 
ranging from assessment and modelling of internal loss data or external loss data at an institution level 
through to survey and scenario analysis at sub Business Unit and Risk Type (internal fraud, external fraud 
etc.) levels.  

This then influences how easily expert opinion on extreme losses from different business units can be 
extracted, and how comprehensive this information is for a given business unit's risk profile locally within 
the business hierarchy. In turn, this affects how efficiently a business unit manager can understand, monitor 
and improve on their operational risk performance.  

It should be noted that recent years have seen the emergence of typically 3 different data sources, 
combinations of which are used in different models implemented in banks. These data sources are 

1. scenario analysis or survey data; 
2. internal loss data collected to date (can be very scarce and typically does not contain any truly large 

losses); and  
3. external data which comes from external companies such as FITCH.  
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However, the use of external data is severly hampered by the fact that many providers do not have complete 
records, and do not release institutional information. Hence scaling of loss amounts according to institution 
size - which is critical if data from external sources is to be combined with internal data - is very difficult, if 
not impossible in many cases. This in a sense compounds the problem, since many of the actual events 
recorded in these external data bases are the truly large or extreme losses that have been witnessed in the 
industry. 

Once these questions are understood within the context of the bank's business framework, then the models 
for measurement of operational risk can be developed. The approaches taken will be elaborated on in future 
sections of the report. 

Phase 4 – Calibration, sensitivity analysis and improvements to scenario analysis approaches. Again, this 
phase requires a lot of quantitative attention on how best to calibrate the model and how sensitive different 
modelling approaches are to key assumptions, inputs and approximations. 

 
9.3  Model Frameworks for Operational Risk. 
9.3.1 Issues Associated with Modelling Operational Risk. 
It is relevant to start the consideration of operational risk models with an understanding of what makes 
developing quantitative models and methodology difficult. There are many reasons. Firstly the sheer size of 
financial institutions and their subsidiaries makes co-ordination and understanding of approaches to 
operational risk a practical challenge. This raises issues such as the need for different business units located 
in different sections of Australia and overseas to understand requirements of assessment, and  to act to 
establish management frameworks. This is important as the line managers of such business units need to 
actively assess and manage risk according to the behaviour of their reported “modelled” risk profile. In this 
regard there is typically an information asymmetry, with much of the expertise in understanding the models 
developed - and therefore the key assumptions made in the process - located in centre functions, physically 
far away from many of the business units actually affected by operational risks. 

The second issue is whether a bank is to implement in their models a “top-down” or a “bottom-up” 
approach. A top-down approach will do the mathematical modelling of the risk profile at a high level, for 
example the Bank level. All the loss data for the bank will be assumed homogeneous in terms of truncation 
and threshold levels and will be modelled as one set of data. This makes explicit assumptions about 
properties of the collected loss data, however it has the advantage of plenty of data for statistical modelling. 
For mathematical details see [Panjer 2006]. Once modelled at the top level of the hierarchy the capital 
results will be allocated to business units according to some weighting factors. A bottom-up approach will 
model data and expert opinion at much lower levels of the hierarchy. For example individual business units 
will assess material risk types for their business and any loss data associated with this business unit and risk 
type will be modelled at this level. Then an aggregation process will be performed to combine all the 
business unit risk type loss profiles to a bank level.  

This again will significantly influence the types of models, and in particular, how data is used in such 
models. The chosen approach is usually dependent on how well a bank believes they can capture 
information from expert judgement and then integrate this with other loss data in the quantification process. 
Largely this process also involves significant business interaction, “buy-in”, to develop a team of experts in 
the business unit who actively assess the local risk profile and take part in risk assessment exercises. This 
will be discussed in more detail in the next section, where we discuss the modelling of the individual data 
sources in operational risk. 

Operational risk can borrow ideas from insurance mathematics in the area of methodological development. 
Many models and approaches which are based around the mature field of insurance mathematics have been 
advocated by researchers in academic institutions [Cruz 2002; Panjer 2006]. However, there are several key 
differences which will be explored in the context of operational risk. The most significant is the fact that 
operational risk is still a very new “science” and is inherently an inexact science where model assumptions 
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and expert opinions are critically important to capture. Understanding the implications for a model of such 
judgements and assumptions is also a key part of the model development journey. 

9.3.2 Modelling Methodology for Operational Risk and the Loss Distributional Approach. 
Once the level of framework granularity is decided for the operational risk model (as a function of the 
relevant data thats obtainable for each level of  the hierarchy), the next step in the process is to apply a 
modelling framework.  Of the methods developed to model operational risk, the majority follow the Loss 
Distributional Approach (LDA). The idea of the LDA is to fit severity and frequency distributions over a 
predetermined time horizon, typically annual as specified in the APS115 section on soundness standards.   

The fitting of frequency and severity distributions as opposed to simply fitting a single parametric annual 
loss distribution involves making the mathematical choice of working with compound distributions. This 
would seem to complicate the matter, since it is well known that for most situations, analytical expressions 
for the distribution of a compound random variable is not attainable in an analytical form. The reason for 
modelling severity and frequency distributions seperately then constructing a compound process is 
summarised in detail in [Panjer 2006]. Some of the key points relating to why this is important in most 
practical settings are;  

• The expected number of operational losses will change as the company grows. Typically growth 
needs to be accounted for in forecasting the number of operational risk losses in future years based 
on previous years. This can easily be understood when modelling is performed for frequency and 
severity separately. 

• Economic inflationary effects can be directly factored into size of  losses through scaling of the 
severity distribution. 

• Insurance and the impacts of altering policy limits and excesses is easily understood by directly 
altering severity distributions.  

• Changing recording thresholds for loss events and the impact this will have on the number of losses 
required to be recorded is transparent. 

The most popular choices for frequency distributions are poisson, binomial and negative binomial. The 
typical choices of severity distribution include exponential, weibull, lognormal, generalised pareto, and 
recently in academic literature the g-and-h family of distributions [Dutta et al. 2006, Peters and Sisson 
2006]. On the other side of the methodological divide there is a set of models being developed utilising 
concepts and ideas from Extreme Value Theory EVT [Embrechts et al 2006]. This divide mainly concerns 
approaches taken to fit such distributions and is discussed in detail in [ Embrechts et al 2006]. 

A key note to make is that the most important processes to model accurately are those which have relatively 
infrequent losses. However, when these losses do occur they are distributed as a very heavy-tailed severity 
distribution. These processes are by their very nature the most difficult to model, due to scarcity of data. 
From a practical perspective, this is where the importance of eliciting expert opinion and performing 
surveys or scenario analysis becomes critical. 

The reason why these simple parametric models are widely used is that from a practical perspective they 
are relatively simple to fit, and to apply goodness of fit tests to (for purposes of model selection). 
Additionally, given the scarcity of most data sources, the fitting of parametric distributions with more than 
two parameters can quickly become problematic and unreliable. This is a practical issue, however there is 
also the theoretical issue of whether this class of distributions adequately captures the true behaviour of the 
extreme events lying deep in the tails of these severity distributions. Industry consensus tends to suggest 
many of the extreme events, at least in the Australian financial sector, can be adequately modelled by 
lognormal and generalised pareto distributions. Returning again to EVT, in this space one can fit heavy 
tailed distributions for the severity distribution. Typically, fitting these models can be performed using 
either Points Over Threshold (POT) techniques of block maxima [ Embrechts et al 2005]. There has also 
been some literature on fitting EVT models from a Bayesian persepective [Sisson et al 2006]. This 
approach will be discussed in another section of the report. 
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There are many approaches which can be used to fit these parametric distributions and the approach 
adopted by a bank will depend on the data source being modelled and how much confidence one has in the 
data source. This is highly subjective. Techniques commonly adopted to fit frequency and severity models 
include extreme value theory [Cruz, 2002], Bayesian inference [Schevchenko et al. 2006; Cruz, 2002], 
dynamic Bayesian networks [Ramamurthy et al. 2005], maximum likelihood [Dutta et al. 2006] and EM 
algorithms [Bee, 2006]. (In the next section we present a framework for modelling and a set of statistical 
tools which can be used to fit these distributions to different data sources and then select between the 
different proposed models.) After the best-fitting models are selected, these are combined to produce a 
compound process for the annual loss distribution: 

∑
=

=
N

i
iXY

1
,       (1) 

where the random variable Xi ~ f(x) follows the fitted severity distribution. The random variable N ~ g(n), 
the fitted frequency distribution, is commonly modelled by poisson, binomial and negative binomial 
distributions [Dutta et al. 2006]. From this compound process, VaR and capital estimates may be derived. 

Once compound processes have been fitted for each business unit and risk type, the next step in the process 
is to aggregate these annual loss random variables for each individual {business unit-risk type} 
combination, and thus to obtain the institution-wide annual loss distribution. This report will not discuss the 
issues associated with correlation and dependence modelling. For more information on typical approaches 
to introducing correlation in an aggregation process, including copula methods, correlation of frequency, 
severity or annual losses, see [Cruz 2002].  

At a given level of the hierarchy structure, (which we may call a {business unit-risk type} tree), if there are 
M {business unit-risk type} combinations present3, this process of determining the distribution of the 
annual loss involves an M-fold convolution: 

     YlevelM = Yi
i=1

M

∑ ,    

Then the distribution of such an annual loss random variable will be given by, 

  flevelM (y) = ... fBuRT (i)(τ1 − τ 2) fBuRT ( i)(τ1)dτ1dτ 2 ...dτ M∫∫∫ , 

Since each of these distributions fBuRT i( )  for each {business unit-risk type}, at the lowest level of the 
business unit risk type tree, takes the form of a compound process developed from the LDA model 
framework, solving these convolution integrals for an analytic expression is not possible [Panjer 2006]. 
Hence, typically in practice, different forms of simulation are used to estimate these compound 
distributions. Then the convolved institutional level annual loss distribution, and finally the regulatory 
capital estimate are obtained (typically by using a VaR at the specified Q0.999). 

An aside on approaches that have been used to simulate such compound processes to estimate the annual 
loss distribution can now be presented. The reason the compound distribution of Y has no general closed 
form is that it involves an infinite sum over all possible values of N, where the nth term in the sum is 
weighted by the probability Pr(N=n) and involves an n-fold convolution of the chosen severity distribution, 
conditional on N=n. Actuarial research has considered the distribution function of Y for insurance purposes 
through Panjer recursions [Panjer, 2006]. Other approaches utilize inversion techniques such as inverse 
Fourier transforms to approximate annual loss distributions, although they typically require assumptions 
such as independence between frequency and severity random variables [Embrechts et al. 2003].  

 
 
                                                      
3This number M will depend on the level of granularity of the model being used by the bank. 
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9.3.3 Modelling the Different Data Sources, Elicitation of Expert Judgement and Models to Fit 
this Information. 
Before mentioning some techniques that can be used to fit parametric severity and frequency distributions 
to actual loss data or expert elicited judgements in the form of survey or scenario analysis, it is worth noting 
some recent theoretical results regarding the aggregation of compound processes. 

Recent work found in “Multivariate models for operational risk” [Bocker et al 2005] provides some 
analytical results for the asymptotic quantiles of an annual loss distribution constructed by aggregating 
several compound processes. This is useful as it provides mathematical insight on bounds for the VaR at 
high quantiles (such as those required for operational risk capital reporting) after aggregation of several 
different types of compound process. In this paper, the key findings of the authors can be interpreted as 
stating that in the independent compound process case, the combined VaR measure at the next level of the 
hierarchy, after aggregation, will be asymptotically in the quantile level, convergent to the single compound 
process  expression for the quantile with dominating VaR.  

That is, if the VaR values of the individual ranked compound processes are dominated by one particular 
processes VaR then this will be the asymptotic VaR of the aggregated annual loss distribution at the next 
level, in the independent case. This study proves these results for classes of sub-exponential severity 
distributions which comprise Poisson processes. A subexponential distribution F satisfies, for ( ) NiiX ∈  i.i.d. 
random variables,  

   
( )

( )( ) 1
,...,max

...
lim

1

1 =
>

>++
∞→ xXXP

xXXP

n

n
x   

for some value of n. So without concern over the mathematical technicalities presented above, broadly ‘this 
translates into a statement that for sub-exponential distributions the sum of the random variables will be 
dominated by one single large loss and not by the summation of several small losses’. This is particularly 
relevant to Operational Risk analysis. In [Bocker et al 2005] the authors provide an analytic result for an 
example of a bi-variate VaR, that is, one calculated from the aggregate of two compound processes. The 
frequency distribution for both processes is chosen to be Poisson; for the severity distributions the selected 
distributions are Weibul for one process and Lognormal for the other. When convolution of the two 
compound annual loss random variables is achieved, the VaR for the annual loss distribution at the 
aggregated level is dominated by the compound process produced by the Lognormal and Poisson 
distributions. 

Additionally, in earlier work by the same authors they demonstrate in an LDA setting, that the tail quantiles 
of a compound process with sub-exponential severity distributions will be simply a  multiplicative function 
of the mean of the frequency distribution and the quantile of the severity distribution. Hence showing 
asymptotically that the quantiles of the compound process will be independent therefore of the over-
dispersion effects that can be added when including for example Negative Binomial processes. This is 
important from a modelling perspective as it indicates that when concern is in estimation of VaR, one can 
stick to fitting Poisson processes which come with well understood properties. These include independent 
modelling increments, exponentially distributed inter-arrival times for loss events both of which makes 
fitting such models to actual data significantly simpler. 

 These results clearly have implications which are yet to be realised and studied for the dependent processes 
case which is typically considered relevant in practical settings. An example of this is where frequency 
random variables for different business unit risk type processes are dependent on each other.  

9.3.4 Survey Data and Scenario Analysis 
From a practical perspective the most important data source in the Australian financial sector comes from 
survey or scenario analysis. This is largely a result of scarce data on rare events for process’s such as 
terrorist attack, natural disasters, rogue trading and infra-structure failures. There is two broad approaches 
to dealing with expert opinions, Scenario Analysis and Survey Data. Scenario Analysis  typically involves 
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setting up workshops with each business unit for which operational risk is being assessed and going 
through a sequence of exercises to assess potential loss amounts for each non-negligible risk type.  

The term scenario analysis is used since a workshop facilitator will extract loss information from the 
business expert participants through a sequence of questions relating to internal events, external events both 
actual and hypothetical in the form of scenarios. An example of this would be to ask questions if assessing 
for example ‘rogue trading’; What is the expected exposure and what is the worst case possible exposure? 
What systems are in place to set limits? What are the known and potentially unknown flaws in such 
systems? How are these being managed? How does the scale of operations in this bank compare to other 
known incidents in the financial sector that the bank is operating? What management frameworks are in 
place?  

If an LDA approach is utilised then this information is considered by all participants in the workshops and 
questions directed at extracting information around the severity and frequency of such events are presented. 
What is the typical exposure? What is the expected exposure? What is the worst possible loss? What is the 
1 in 10 or 1 in 20 year loss? How often does the loss occur per year ? etc... 

These answers are then used to fit frequency and severity distributions. One way to do this is to use 
extracted measres of location and quantiles in dollar values to fit the severity distribution by solving the 
simultaneous equations relating the parameters to the quantiles or summary statistics elicited in the scenario 
analysis. The Frequency distribution can be fitted to rates of occurrence. Typically the fitted severity and 
frequency distributions and the simulated annual loss distributions would be played back to the business 
experts for each of the possible severity and frequency models considered. Then a feedback and refinement 
process is undertaken until there is comfort from the business and facilitators that the risk profile 
adequately captures the behaviour of the exposure for the assessed risk.  

Other approaches include eliciting a sequence of quantiles or relative probabilities for different loss 
intervals.  In general the following broad distributional summaries can be used as frameworks for 
developing scenarios and survey questions; Probabilities – extract individual probabilities of loss amounts 
based on actual industry losses, Quantiles – qth quantiles such as median, 1 in 10 loss or 0.9 quantile, 
Intervals – probability of losses above some threshold or in some dollar range, Location Measures -  typical 
or representative measures of dollar losses (median, mode, mean), Scale and Dispersion Measures – how 
far from the (mean, median, mode) the loss might be, Measures of Shape – describing the density as 
unimodal, bimodal or multimodal, skewed left or right and kurtosis in the form of questions relating to tail 
behaviours. 

The merits of each approach and an excellent discussion of such elicitation processes and the sources of 
inherent bias are presented in great detail in [O’Hagan  2006] . This text considers a very wide cross section 
of literature from Psychological expert elicitation and perception, practical elicitation and facilitation, 
statistical bias, survey development and modelling. 

As pointed out in [O’Hagan 2006] it is important to understand that “the subjective perceptions and 
sensations are, in principle, measurable – and with some precision – but such measurements can only be 
interpreted relatively not absolutely”. In this regard one needs to consider the possible impact of forcing the 
busines experts to conform to a certain summary of the severity and frequency distributions. Additionally, 
O’Hagan points out that when capturing expert opinion about some uncertain quantity in the form of a 
distribution it is important to recognise the two different forms of uncertainty, aleatory and epistemic. 
‘Aleatory uncertainty is induced by randomness such as when modelling uncertainty in one or more 
instances of a random process’. ‘Epistemic uncertainty is due to imperfect knowledge about something that 
is not itself random and is in principle knowable.’ Hence when developing models based on this survey and 
scenario analysis it is important to somehow consider separate variables or behaviour as a result of these 
two different uncertainties. 

The second framework involves a Bayesian paradigm [Bayes 1763]. This approach from the perspective of 
operational risk is captured in [Peters and Sisson 2006, Shevchenko et al 2006]. To understand the 
difference between the Bayesian approach and the scenario analysis approach it is important to realise that 
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typically scenario analysis makes the assumption that the parameters of the severity and frequency 
distributions are deterministic. It then aims to extract what is equivalent to point estimates of the parameters 
required for the LDA approach. The Bayesian approach treats the problem from a different paradigm. The 
parameters are treated from a mathematical perspective as random variables and the survey and elicitation 
process now involves extracting information on the prior distribution for these parameters. This prior 
coupled with the likelihood model for the severity or frequency distribution is combined under Bayes law 
to produce a posterior distribution on the parameters. Hence, from this perspective the elicitation of prior 
information should follow a different route to the typical scenario analysis. More information of prior 
elicitation procedures is found in [O’Hagan et al 2007 

9.3.5 Internal Loss Data and External Data 
Typically the process involved in internal and external loss data is to firstly study the properties of the data 
in each risk category. This involves histograms, box plots, time series plots, all of which are used to 
identify and question trends present in the data which may be artificial. This could include misclassification 
of loss events, censoring and truncation etc. 

Once the data is investigated, typically a maximum likelihood approach is used to fit the severity 
distributions. Other approaches could involve generalised moment matching or quantile matching. When 
mixtures of distributions are used then the popular approaches include Expectation Maximisation algorithm 
[Bee 2006]. This is particularly relevant when truncation is known to be present. For a review of each 
approach and the properties see [Panjer 2006].  

If a Bayesian approach is used, typically this loss data would enter into the modelling through the 
evaluation of the likelihood when simulating from the posterior distribution of the LDA severity and 
frequency parameters. The simulation procedure in these cases typically involves development of 
sophisticated procedures such as Markov chain Monte Carlo (MCMC), importance sampling (IS) and 
sequential Monte Carlo (SMC) algorithms [Doucet et al. 2006; Peters, 2005] 

Once the models for frequency and severity have been fitted, it is important to introduce some criteria to 
select the “best model”. Typically this involves Kolmogorov-Smirnov or Anderson Darling tests for 
goodness of fit. Alternatively if a Bayesian approach is adopted one would consider Bayesian Information 
Criterion BIC or Deviance Information Criterion DIC as statistics to choose between different fitted 
frequency and severity models which best represent the data in the most parsimonious manner. 

 In summary, there are a number of pertinent issues in fitting models to operational risk data: the 
combination of data sources from expert opinions and observed loss data; the elicitation of information 
from subject matter experts, which incorporates survey design considerations; sample biases in loss data 
collection, such as survival bias, censoring, incomplete data sets, truncation and, since rare events are 
especially important, small data sets.  

 
9.4 Managing Operational Risk 
With so much effort going into the complex task of quantifying a bank's operational risk, it is important to 
emphasise that this is just one component of the overall task of managing operational risk. To be specific, 
the `management' of operational risk means the "identification, assessment, monitoring and 
control/mitigation of risk" [Basel Committee on Banking Supervision, 2003, p3].  As set out in the previous 
section, in order to use a quantification approach more sophisticated than the basic approach, a bank must 
fulfil certain requirements, many of which pertain to its risk management systems. The second pillar of the 
Basel II agreement [`Supervisory Review Process'] sets out a framework under which supervisors (of 
individual banks, and of the industry as a whole) must implement this process.   

Many of the principles underpinning operational risk management have already been touched on. It is 
required that banks have a dedicated operational risk management unit, and much focus is on embedding a 
thorough awareness of operational risk in all levels of the bank's operations. Many of the aspects of risk 
management are a straightforward precursor to risk quantification: a risk can not be quantified until it is 
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identified; a risk cannot hope to be accurately quantified unless it is appropriately monitored and all 
incidences are reported. This is true within an individual bank and externally as well: banks are required to 
make "sufficient public disclosure" to allow other banks to compare and assess their operational risk [Basel 
Committee on Banking Supervision, 2003, p5], and supervisors are directed to compare the operational risk 
calculations of similar banks in their domain [Basel Committee on Banking Supervision, 2006, p217]. It is 
up to a bank to justify to the supervisory authority that its management systems, as well as its quantification 
processes, are sufficient, and industry-wide disclosure requirements can help a bank to ensure that it is of 
the required standard.  

Other aspects of risk management have a less straightforward relationship with risk quantification. In many 
cases, it is desirable to reduce exposure to an identified risk. (Other risks may be taken on intentionally, as 
part of a wider strategy to reap certain rewards.) A mitigation strategy such as insurance against a particular 
risk will reduce the risk itself, but in itself introduce further risk, which must be measured, quantified, 
reported and so on. Thus there is a constant interaction between risk measurement and management. A 
bank will be constantly refining its risk models due to these internal interactions, as well as due to 
judgements and directives from the supervisory authorities.  
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9.6 Appendix 1 
In the table below are listed a number of kinds of operational risk along with some examples where those 
risks have been realised, and some applicable methodologies. (table from Franklin, 2005) 
 

Type of risk Example Methodology 
Internal fraud and 
human error 

Barings rogue trader Model pooled anonymised data, 
fraud detection 

External fraud Credit card fraud Fraud detection analytics 
Acute physical 
hazards 

Tsunami,hail Reinsurers’ data + extreme value 
theory 

Long-term physical 
hazards 

Climate change Climate modelling + work on 
effects on banking system 

Biorisks SARS, animal plague Biomedical research + quarantine 
expertise 

Terrorism Bombing, Internet attack Intelligence analysis 
Financial markets 
risk 

1997 Asian crisis, depression Macroeconomic modelling, stock 
market analysis + extreme value 
theory 

Real estate market 
risk 

Home loan book loses value Real estate market modelling 

Collapse of 
individual major 
partner 

Enron Data mining on company data 

Regulatory risk “Basel III”, nationalisation, 
government forces banks to 
pay universities for graduates 

Political analysis 

Legal risk Compensation payouts for 
misinformed customers 

Compensation law and likely 
changes 

Managerial and 
strategic risk 

Payout unwanted CEO, 
dangerous management 
decision 

 

Robbery Electronic access by thieves Model pooled data, IT security 
expertise 

Reputational risk Run on bank, spam deceives 
customers 

Goodwill pricing theory + 
marketing expertise 

New technology risk Technology allows small 
players to take bank market 
share 

“Futurology” 

Reserve risk Reserved funds change value  
Interactions of all the 
above 

Depression devalues real 
estate and reserves 

Causal modelling of system 
interactions 

 
(A few of these, such as reputational risk, are not recognized under Basel II’s classification as 
“operational risk”, but are important for a bank to evaluate nonetheless.) 
 
 
 


