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1 Abstract

Stochastic modelling of incursion risk is typically an iterative process. A model is developed
which calculates likelihood of an adverse event based on parameter values. The parameter
values are elicited from experts and Monte Carlo methods used to calculate the likelihood based
on the model. In practice this is often an iterative process. The experts consider the likelihood
generated by the model and their inputs and assess how consistent it is with their views. If it is
inconsistent they can change their beliefs about parameter values, change their views about the
incursion risk or even change the model.

We propose a new methodology to help support this process. In the new methodology we also
formally elicit beliefs about the overall likelihood. We then provide a principled analysis of the
consistency between the inputs and outputs. This will provide structure to the current ad hoc
approaches, and will aid in the development and critiquing of models.

The approach simulates from bivariate conditional distributions formed from the input and out-
put parameters given the model, which can converge to the required joint distribution and over-
comes the issues noted in previous applications that lead to the Borel paradox. The approach
also examines the uncertainties resulting from the model and has the potential to highlight de-
pendencies (or lack thereof) associated with the output and each of the inputs. We illustrate the
approach using a simple example and simulation and apply the approach to a case study exam-
ining the importation of mangoes in Australia and the risk associated with the establishment of
the mango seed weevil in Australian orchards.

Keywords: Expert Opinion; Inconsistency; Markov chain Monte Carlo; Prior probability
distributions; Uncertainty



2 INTRODUCTION

Risk analysis involves the quantification of the likelihood and consequence of identified events
that may occur at some time in the future. A complex but important issue in this process is
quantifying the uncertainty associated with the likelihood and consequence estimates. This can
be difficult because little may be known about the processes that may lead to the event. Expert
opinion can offer a means for quantifying this information. However, due to the subjectivity and
often biased nature of the information, it can be problematic to incorporate it in risk modelling
in a transparent manner.

An often used identity in import risk assessments is the incursion equation, I = 1 — (1 — p)V,

which defines the overall probability of an incursion, 7, via a geometric distribution that takes
into account the time or amount of material arriving from an overseas destination, /N and the
overall probability that the event occurs per unit of material, p, given the sequence of events
that led to the invasion. Typically there is little or no data on each of the inputs p and N as well
as the output, /. As a result, expert opinion is often used to elicit prior probability distributions
for each of these parameters with the evaluation of / being done using the equation and Monte
Carlo methods. The opinions elicited about each parameter can be biased, the opinions can vary
depending on the choice of experts and the elicitation of p itself, can be poorly conditioned.
Furthermore, the evaluation of the left hand side of this equation may be quite different to the
result obtained for / using elicitation techniques.

Three techniques that can be used to analyse data arising from import risk assessments are sce-
nario trees (Shen & Zhang 2008, Sherali et al. 2008, Meloy 2004), pathway analysis (McCarthy
et al. 2007, Cave et al. 1997) and Bayesian belief networks (BBNs) (Small 2008, Bonafede
& Giudici 2006). These types of approaches are similar in terms of how they are structured,
1.e. identifying a pathway of events that lead to an invasion or risk, but differ in terms of how
they are evaluated and how they incorporate uncertainty on the inputs and propagate this to
the output of interest. While some use Monte Carlo methods to approximate the propagation of
probabilities through a pathway (Vose 1996), others use Bayes theorem to evaluate the posterior
probabilities for each node in the model (Lauritzen & Spiegelhalter 1988). More recently, Bates
et al. (2003) adopted the Bayesian melding approach of Poole & Raftery (2000) that accounts for
uncertainty in the model inputs of a deterministic model for risk and propagates this uncertainty
to the outputs. In this application however Bates et al. (2003) made use of experimental data
collected on the inputs and outputs of a multi-compartment model and expert opinion elicited
about the inputs only. No expert opinion was elicited about the output parameter of interest.

Popular approaches to risk assessment in biosecurity applications typically only consider the
forward propagation of uncertainty in the model. In terms of the incursion equation, the param-
eters p and N may be elicited with the model providing the logical link to infer the consistent
beliefs about /. Experience of modelling exercises suggest an iterative approach is common.
Experts give their view about parameter values. These are used to estimate the overall incur-
sion risk via the model. The experts consider this risk and assess how consistent it is with their
views. If it is inconsistent they can change their belief about parameter values, change their
views about the incursion risk or even change the model.

We propose a new methodology to help support this process. In the new methodology we also
formally elicit beliefs about /. We then provide a principled analysis of the consistency between
the inputs and outputs. This will provide structure to the current ad hoc approaches, and will
aid in the development and critiquing of models.
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Using the Bayesian synthesis methodology proposed by Raftery et al. (1995), we outline a
model that makes use of only expert opinion on the inputs and outputs for risk scenarios. We
propose an alternative method for estimation where we simulate from the joint posterior distri-
bution which overcomes issues of inconsistency related to the Borel paradox (Wolpert 1995).
The primary advantage of this approach from a risk perspective is its ability to incorporate un-
certainty in the inputs and outputs such that, if the expert inputs and outputs are inconsistent,
this will be conveyed by the posterior distributions and their dependence amongst one another.
This represents an advance in import risk assessments because existing methods ignore infor-
mation on [ and therefore ignore the potential dependence (or lack thereof) associated with the
responses to the inputs and outputs. This method also has the ability to identify issues with
the elicitation approach used to evaluate risk and has the potential to highlight conditioning
problems that occur through the evaluation of p.

Section 3 outlines the Bayesian synthesis methodology in the context of import risk assessments
in greater detail and presents a working example and simulation under the assumption of a
simple linear constraint in Section 4, where we explore the concept of dependence and how this
relates to the input and output parameters of the model. Section 5 then applies the methodology
to evaluate the risk of importing mangoes infested with the mango seed weevil into Australia.
A discussion of the results and their application to import risk problems more generally is
presented in Section 6.

3 METHODS

We propose a Bayesian synthesis approach for risk assessments where the probability of incur-
sion is defined through a deterministic model, M, which takes a suite of inputs, , and maps
them to an output, ¢ such that

M:6— ¢and ¢ = M(6) (3.1)

Using the notation set out by Raftery et al. (1995), we can write down the posterior distribution
as

7(0) o< 1 (0) L1 (0) La(M ())q2( M (6)) (32)

which is in terms of the prior distribution of the inputs, ¢;(6) and output, ¢;(¢) = g2(M(6)),
and likelihoods prescribed for the inputs, L;(6) and output, Ly(¢p) = Lo(M(0)). In situations
where no data exists for 6 or ¢, the posterior distribution shown in Equation 2 reduces to prior
distributions on # and ¢.

3.1 Implementation and simulation

Raftery et al. (1995) and Poole & Raftery (2000) promote the Sampling Importance Resam-
pling (SIR) algorithm of Rubin (1988) for the estimation of parameters from this model. This
approach draws a large sample of input values, ¢ from the respective priors and then evaluates
¢ through the deterministic equation, M/ and the relationship shown in Equation 1. As high-
lighted by Poole & Raftery (2000), if a prior is placed on the output parameter then there is the
potential for inconsistencies between the prior distribution on the output, ¢>(¢) and the induced
distribution, ¢;(¢) = M (0) and in fact, any parameterisation of it. This is known as the Borel



paradox (Wolpert 1995). To overcome this problem and ensure that the conditional probability
densities are invariant with respect to reparameterisations of the model, Poole & Raftery (2000)
proposed pooling the prior probability distributions placed on the inputs and output using geo-
metric pooling approaches.

We propose an alternative approach to simulation which avoids the sometimes complicated
task of pooling priors. The approach considers using Markov Chain Monte Carlo (MCMC)
to draw samples from bivariate conditional distributions, which are then used to approximate
the required distribution. For example, consider three random input parameters, r1, x5 and
x3, which are constrained by the linear equation, 1 + z» + x3 = x4 where x4 represents the
output variable of interest. Assuming that we have formed prior distributions f(z1), ..., f(x4)
through an elicitation exercise with relevant experts, we can use this information to make tighter
inference about the true underlying values and refine our estimates of uncertainty by forming
the joint prior beliefs as,

(21, 2, 23, 24) o< f(1) f(22) f(23) f(24)

Using MCMC, we can simulate from this distribution using the following conditional distribu-
tions, where [ | represents a distribution of interest,

[CC1|96‘27 xs, $4] [962|I1, xs, 904] [I3’$17 Z2, I4] [$4|9617 T2, $3]

with each variable updated in turn. Mathematically, it can be shown that the set {x1, zo, 23, 24}
will converge in distribution to the joint distribution of the four variables,[z1, o, x3, 24]. In
particular, empirical function means based on the sequence converge with probability one under
mild regularity conditions, i.e.

Zf(xhx?;x?nxll) - /f(xhl'g,wg,.T4)[IL'1,.T2,l’g,l’4]d$1dl‘2dl’3dl’4
)

In our case, assume we learn that the constraint, x1 + x5 + 3 = x4, applies to our variables. We
could attempt to use simple univariate conditional distributions but these are degenerate. For
example [z1, |72, 3, x4) takes the value xy — xo — x5 with probability one. We therefore need
to consider bivariate conditionals

(21, Ta|x3, Ta][T2, 3|21, T4][203, T4 |71, 2] (3.3)

which can be shown to converge to the required joint distribution subject to the constraint. For
example, [r1, 5|23, 4] has the constraint x; = x4 — 23 — x5 and the probability distribution
for the draw would need to occur along this line.

As a simple example let x1, 9, x3 and x4 be assigned standard Gaussian distributions. In this
example, the constraint 1 + z9 + 3 = x4 is inconsistent with this specification of the priors
as the summation (x; + x5 + x3) will have variance 3 while the variance of z, is one. If we
structure this problem in terms of bivariate conditional distributions as shown in Equation 3.3
we have the following conditional distribution for x; and x,

1 1,

[x1, Ta|x3, 4] X exp —§x% eXp — 5 (3.4)

with constraint 1 = x4 — x3 — 2. Letting by = x4 — x3, 1 becomes k; — x5 and substituting



this into Equation 3.4 results in the expression,

(3.5)

where v = 2 and represents the precision. We can then simulate x5 directly from this condi-
tional distribution given k; and solve for z; and repeat this process for the remaining bivariate
conditional distributions. See Appendix A for the derivation of all of the bivariate conditional
distributions for the general case. The algorithm for the simulation approach is shown in Algo-
rithm 1.

Algorithm 1 Simulating the joint distribution

- Set initial values for x5 and 4.
for : = 1to N iter do
- Simulate x5 from [xs|z3, 4]
- Evaluate x; using the expression 1 = x4 — x5 — T2
- Simulate x3 from [x3|z1, 4]
- Evaluate x5 using the expression xy = x4 — x1 — 3
- Simulate x4 from [x4]z1, x2]
- Evaluate x5 using the expression x5 = x4 — 11 — T2
end for
- Evaluate convergence for z1, ..., x4.

The results of this sampler for a run length 10,000 are shown in Figure 6.1, where a pairwise plot
of the simulated parameters is displayed. Convergence was assessed using the diagnostics out-
lined in Cowles & Carlin (1996). The variance-covariance matrix for the posterior distribution
of parameters is represented as

x1 x2 x3 x4
x1  0.7629666 -0.2197641 -0.2834934 0.2597090
x2 -0.2197641 0.7316212 -0.2672342 0.2446229
x3 -0.2834934 -0.2672342 0.7894797 0.2387520
x4 0.2597090 0.2446229 0.2387520 0.7430839

In this matrix, we see that the correlation is induced from the dependency relationships between
the parameters and the variance is reduced to satisfy the logical requirements of the constraint.
Most importantly, the variance of the sum of x;, x5 and x5 is equal to 0.7430839, which is
consistent with the variance of x4 in the posterior sample.

4 SIMULATION STUDY

We constructed six prior scenarios to investigate the behaviour of the posterior distribution
of the parameters x,, x2, 3 and x, in the example above. The scenarios are summarised in
Table 6.1 and differ according to the mean and standard deviation assigned to each prior. Our
aim in these scenarios was to investigate how changes to the prior placed on one input variable,
(z1), impacted the posterior distribution of the remaining input variables as well as the output.
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The first scenario in our investigation mimics the example presented in Section 3 and assumes
that all priors have a mean of 0 and a standard deviation of 1. Scenarios 2-4 investigate altering
the prior for x;. In each of these scenarios the mean is set to 5, while the standard deviation
varies from non-informative (¢ = 100), moderately informative (¢ = 1) to very informative
(0 = 0.1). A non-informative scenario is investigated in Scenario 5, while an informative prior
scenario, where the prior mean for z; is equal to 5, is set for Scenario 6. The results from
running each of these scenarios is displayed in Figures 6.2 and 6.3. Note the different scales
used for the axes of each plot.

Scenario 1 shows little difference between the prior and posterior distributions of the parameters
in the model (Figure 6.2(a)). This has resulted from making all of the priors equal in the model,
therefore resulting in posterior distributions which are mildly dependent on each other (Fig-
ure 6.2(b)) such that the constraint is satisfied. A similar result occurred for Scenario 5, where
the priors for all of the parameters in the model were non-informative with the same mean and
standard deviation. See Figures 6.3(c) and 6.3(d). The strong prior information investigated
through Scenario 6 leads to posterior distributions that are slightly different to the initial prior
set (Figure 6.3(e)). The differences between the prior and posterior for each parameter are the
result of the constraint set up in the model. This results in the strong dependent nature of the
parameters as shown in Figure 6.3(f).

Overall, we see that as the prior for ; becomes more informative, the dependency between
the parameters x5 through to x4 becomes stronger, indicating higher correlations between these
parameters. We also observe that the dependency between x; and the remaining parameters is
close to zero as illustrated by the spherical nature of the plots shown in Figure 6.2(f). When
the prior for z; is non-informative, as shown in Figure 6.3(a), we see the opposite relationships
occurring. The correlation between x; and the remaining parameters appears high while low
correlations are apparent for the remaining parameters, as indicated by the spherical shape of
these pairwise plots. When the prior is moderately informative, as in the case of Scenario 2, we
see mild correlation between all parameters in the model. These results are intuitive because
when the prior for a particular variable is informative, its resulting posterior distribution will
have little or no dependence on the remaining parameters in the model. However, the posterior
distributions of the remaining parameters themselves will be dependent because they will need
to satisfy not only the constraint set by the problem but the informative prior set for that one
parameter, which for this example is x;. If the situation is reversed and one of the variables is
non-informative while the remaining variables are moderately informative, we find the opposite
effect. Now, the posterior distribution for the non-informative variable is dependent on the other
parameters in the model as well as the constraint.

If we focus our attention on making dramatic changes to two or more parameters in the model,
say 71, T2 and 3 we find some interesting results. Figure 6.4(a) and 6.4(b) summarise the
results from fitting an informative prior to z; and xs (~ N(5,0.1)) and standard Gaussian
priors to z3 and x4 (Scenario 7 - Table 6.1). The pairwise plots show little correlation between
x1 and x5 with the remaining parameters in the model and this is also emphasised by the plot
in Figure 6.4(a), where both the prior and posterior distributions for x; and x5 are virtually the
same. However, there is strong correlation demonstrated between x3 and x4, which is expected,
since conditional on the priors for z; and x5, x5 and x4 are required to satisfy the constraint
and since the respective priors for these parameters are the same, the correlation is strong. We
found that the more non-informative we make these priors, the stronger the correlation.



The results from investigating Scenario 8 is presented in Figures 6.4(c) and 6.4(d). This sce-
nario explores informative priors (~ N(5,0.1)) for 21, x5 and x3 and a standard Gaussian prior
for x4. As expected, the results indicate some dependency between x, and the remaining pa-
rameters in the model which becomes stronger the more non-informative the prior for x4 is. Due
to the informative nature of the priors for x1, o and x3, there is little or no correlation between
these variables. When we compare the prior and posterior distributions for this scenario, the
posterior distributions differ markedly. This is the result of the informative nature of three of
the prior distributions and the constraint imposed on the modelling problem.

From an elicitation perspective, these plots are useful diagnostic measures as they help the elic-
itor and expert understand the resulting output and they can guide the expert into revising their
opinion about a particular parameter if the posterior output is inconsistent with their original
opinion.

5 CASE STUDY IN IMPORT RISK ASSESSMENT

We now consider a simple risk-based model consisting of the probability or likelihood of an
event. A well established result in import risk assessments is Equation 5.1, which defines the
overall probability of an incursion /, via a geometric distribution that takes into account the
time or amount of material arriving from an overseas destination, /V and the overall probability
that the event occurs, p given the sequence of events that led to the invasion.

If we assume that the input parameters p and /N are known with some uncertainty we can
define prior distributions for these parameters, f(p) and f (V). Furthermore, if we can elicit the
expert’s a priori belief about the outcome parameter, I, we can estimate the joint prior beliefs,
[N, p, I] as the product of f(N), f(p) and f(I) with a constraint defined through Equation 5.1.
For this example the constraint represents a curved surface in the 3-dimensional space spanned
by the three parameters. We propose finding the conditional or posterior distribution of the input
parameters that satisfies this constraint.

5.1 Construction of Bivariate Conditional Distributions
We consider taking a transformation of the parameters in the model shown in Equation 6 to
assist with convergence and assign normal distributions to each such that,

[N" =log(N)] ~ N(un, o)

[p" = logit(p)] ~ N(p, o) (5.2)
[I" = logit(I)] ~ N(ur, or)

Considering bivariate conditional distributions for the parameters in the model we have
[N/,p/|1,] [p/’ I/|N/]



where

1
N/ / ]’/ o N/ _ , 2 _ I , 2
[N', p|I'] o< exp{ 20%( fin)” ) exp{ 202 (0 — pp)”}

(5.3)

¥ — )} exp{— 5 (I' — )%}

/ II N/ _
[, I'| N'] oc exp{ 27

1
2012),
Given the constraint specified in Equation 5.1 and the bivariate conditional distributions defined
above we can now form posterior distributions for p, I and /N and simulate using Metropolis
algorithms. Simulations were conducted using the Winbugs package with a 100000 burn-in
following by a further 100000 iterations which were used to make inference. Hyper-parameters
chosen for the prior distributions were based on an elicitation conducted with experts, the
method of which has been described elsewhere (Speirs-Bridge et al. 2009). This resulted in
the following prior distributions and indicates immediately some inconsistencies in the speci-
fication of parameters for the right hand side of the model in Equation 6 and the response, I.

[N'] ~ N(unr = 6.477, o5 = 0.788)
'] ~ N(py = —18.811, 0,y = 1.705) (5.4)
[I’} N(,up == —46487 oy = 2525)

i

The results from this simulation are displayed in Figure 6.5(a) and show the prior (solid line)
and posterior (dotted line) distributional summaries (mean and 95% credible intervals) for each
parameter in the model on the transformed scale. The results show a substantial shift in the pos-
terior estimate for / compared to its prior specification, indicating inconsistencies between what
was elicited from the experts about I and the evaluation of the right hand side of Equation 5.1.
The posterior estimate for p showed a minimal change in the mean but tightening of the 95%
credible intervals around that estimate. Minimal changes were observed for N. Figure 6.5(b)
shows a pairwise plot of the transformed parameters and shows strong correlation between p
and [ and little correlation between N and p, and N and [ indicating that the probability of
incursion is heavily reliant on what the expert knows about p.

To investigate the impact of the expert prior in this model we structured four scenarios. The
first two investigate increasing and reducing the variability around p (Scenarios 1 and 2 re-
spectively), while the remaining two examine the variability around the expert opinion for /.
Scenario 3 investigates greater variability while Scenario 4 examines less variability in the prior
specification for /. Results are displayed in Figure 6.6 and 6.7 for the four scenarios. Figure 6.6
shows the prior and posterior distributions for each parameter in the model after implementing
the four scenarios. Figure 6.7 shows corresponding pairwise plots of the posterior estimates.
We summarise the main results from this scenario investigation below.

e If an expert is more uncertain about his/her estimate of p, then introducing this variability
around the prior for p makes the posterior estimate for / more consistent with its prior
(Figure 6.6(a)). As a result, the posterior mean estimate for p is shifted towards / with
tighter credible intervals to satisfy the constraint. The dependent nature of / and p is
illustrated in Figure 6.7(a). This has little impact for NV as indicated by the pairwise plots
showing a lack of dependence between N and the other parameters in the model.

e If an expert was more confident in their prior estimate for p, we found that the posterior
estimate for / depended somewhat on p but more so on N as shown in Figure 6.7(b). This
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resulted in a very tight credible interval for the posterior estimate of p not too different
from the prior, a posterior mean estimate for I shifted towards p and a slight shift in the
posterior mean estimate for NV to satisfy the constraint (Figure 6.6(b)).

e Scenario 3 showed similar dependency structures to Scenario 1 (Figure 6.7(c)). Intro-
ducing more variability around / (from an expert that is uncertain about the parameter)
results in a posterior estimate for / that is largely dependent on p and has little or no
bearing on the posterior distribution for NV (Figure 6.6(c)).

e Altering the prior for / so it is less variable and therefore much tighter (reflecting an
expert’s confidence) results in slight dependencies between [ and p and [ and N (Fig-
ure 6.7(d)). This is reflected by the shift in distribution for p and N as shown in Fig-
ure 6.6(d)

Based on the prior information provided for all three parameters, there appears to be some
obvious inconsistencies between the specified priors for I and p and posterior distributions as
identified by the mango weevil problem. The model appears to be largely driven by the priors
for I and p as seen through the scenario investigation, with estimates for /N that are dictated by
these prior specifications and the constraint set up in the model. Table 6.2 displays the results
for each parameter in the model on the transformed and raw scale and highlight an incursion
probability of 1.032 x 1074, CI:[8.593 x 1075, 4.376 x 10~*] (nearly a 1 in 10000 chance) of
observing an incursion from the mango seed weevil given that the probability of an infestation
occurring is small (6.5 x 1078, CI=[4.15 x 107%,2.86 x 10_7]) and the amount of mango boxes
arriving is approximately 1194, CI:[219, 3839].

6 DISCUSSION

We have presented a Bayesian approach for synthesising expert information conditional on
some underlying model of interest. The approach is based on the Bayesian synthesis approach
of Raftery et al. (1995) but implements an alternative method for simulation that overcomes the
issues noted by Poole & Raftery (2000) due to the Borel paradox. Instead of simulating from
conditional distributions in the usual way, we simulate from bivariate conditional distributions
formed from the parameters of interest subject to a constraint defined via the model. This en-
sures consistency between the input priors and output priors defining the model and induces
a correlation between parameters that can be useful in determining relationships between pa-
rameters and, in particular, the impact each prior has on other parameters in the model. We
illustrated this using a simple example where standard normal priors were chosen for four pa-
rameters subject to a linear constraint. We examined 7 scenarios and showed that when a prior
for a particular parameter is informative, the resulting posterior distribution will have little or
no dependence on the remaining parameters in the model. However, the remaining parameters
will exhibit dependence.

The results from applying this methodology to a real problem in import risk assessment show
inconsistencies between / and p in the model as the priors and posterior distributions change
considerably. Furthermore, the posterior estimates from the model show strong dependence
such that, if a change occurs in the prior specification of one parameter, it has a strong effect
on the remaining parameters in the model. We illustrated this through four examples, where
we altered the prior specification for p to reflect higher or lower variability (Figures 6.6(a) and
6.6(b)). The results indicated that as the variability of the prior surrounding p increased, the
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less influence this prior had on I or N (Figure 6.6(a)). This is also true for /. If the prior
specification for / was more uncertain, the posterior distribution for / became influenced by the
prior for p (Figure 6.6(c)). When we structured a more informative prior for p or / we found that
these priors influenced the remaining parameters in the model in order to satisfy the constraint
(Figures 6.6(b) and 6.6(d)).

This application of Bayesian synthesis is an advancement on existing approaches to risk as-
sessment as it highlights inconsistencies in the expert prior specifications and allows the expert
to evaluate their opinion in light of the model’s posterior estimates. In addition it produces
a consistent analysis that is closest, in terms of prior densities, to the elicited values. Given
the potentially biased nature of expert opinion and the lack of empirical data to validate expert
responses, particularly about risk, it is important to have a transparent way of incorporating
expert opinion into a risk assessment and be able to challenge its credibility. In the case of the
mango seed weevil, we would encourage experts to have a discussion around the responses that
they provided in the assessment to determine whether they agree with the posterior estimates
produced from the model, or whether their initial prior assessments were credible in the first
place.

The subjective nature of expert opinion warrants further scrutiny of elicitation practices and the
priors that are produced and incorporated into risk assessments. Too often, expert information
is used without much thought or rigor simply because empirical data is lacking and expert status
is regarded as a good substitute. As highlighted by Kuhnert et al. (2010), experts can provide
an inaccurate assessment without any intention. Validation of elicited quantities is therefore
imperative in any type of risk assessment. We believe the approach presented here provides
a mechanism for challenging these opinions in risk assessments where there is no data and
identify where inconsistencies arise and whether further investigations of input parameters in a
model need to be conducted.
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Tables

Table 6.1: Summary of scenarios investigated for the linear constraint example.

Scenario Distribution for Type
X1 I T3 Ty
1 N(0,1) N(0,1) N(0,1) N(0,1)  All priors equal
2 N(5,1) N(0,1) N(0,1) N(0,1)  Prior: x; large u
3 N(5,0.1)  N(0,1) N(0,1) N(0,1)  Prior: z; large p, small o
4 N(5,100)  N(0,1) N(0,1) N(0,1)  Prior for z; large y, large o
5 N(0,100) N(0,100) N(0,100) N(0,100) All priors non-informative
6 N(5,0.1) N(0,0.1) N(0,0.1) N(0,0.1) All priors informative, = large f.
7 N(5,0.1) N(5,0.1) N(0,1) N(0,1)  x; and x5 informative.
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Table 6.2: Summary of results from fitting BLASTER to the mango weevil data. Estimates
shown are the posterior mean, standard deviation (SD) and 95% credible intervals (CI) for the
transformed and raw variables.

Parameter Estimate SD 95% CI
Lower Upper
I -9.663 0.998 -11.66 -7.734
P’ -17.119 1.091 -19.3 -15.07
N’ 6.816 0.731 5.391 8.253

I 1.032x107*  1.278x107*  8.593x107° 4.376x10*
p 6.497x107% 8.951 x107% 4.149 x10~? 2.857 x107"
N 1194 1023 219 3839
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A Conditional Distributions for Linear Case

A1 Simulating [IL‘l, £62|ZL'3, 564]
Consider the conditional distribution of the form
1 1
(21, Ta|T3, 24] X eXP{_g(QJl 1) }exp{— ( Ty — f12)*} (A.1)
i

with constraint ;1 = x4 — x3 — xo. If we let ky = x4 — x3, the above constraint becomes
a function of a constant, k£ and x5 only, x1 = k; — x5. Substituting this into Equation A.1
produces

1 1
(ol key, s pia, 07, 03] o eXP{_F(lﬁ — 22— )%} exp{—5— (72 — p2)"}
o7 205

1.1 1
— exp{— b g (U = ) = 20k — ) + )+ 503 — 2para + 1))
oh] 5
151 1 ky—py o po (k1 )T
—eXP{—§[I2(—%+—%)—2$2( P +U—§)+ P +0_—§]}
1
Lety = — then
1 03

Y 2wy ki — g | pay 1 (ke —m)? |
[walks, s o, 07, 03] = exp{—g[o = (= + 5) + —(——— + )}

Y 01 ) Y 01 )
1k — M2\ 2
o< exp{ =3 (ra — (FH 4 Ey7)
Loky —pn o o 1
~ N(=[— =l —=)
Y 01 oy
k1
= N( 21 \/_) when 1y = 1y = 0and 07 = 02 = 1
(A.2)
A.2 Simulating [332, $3|$1, 564]
Consider the conditional distribution of the form
1 1
[w2, w3]w1, 24] o eXP{—r'g(mz i2)? }eXP{— (903 — p3)*} (A.3)

2

with constraint x9 = x4 — 1 — x3. If we let ky = x4 — x1, the above constraint becomes
a function of a constant, ko and x3 only, xo = ks — x3. Substituting this into Equation A.3
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produces

1 1
[23]ka, 2, p13, 05, 03] o< exp{—5— (ko — @3 — M2)2}8XP{—272($3 — )’}
3

203
1.1 1
= eXP{—é[;((lﬁ — p2)? = 2(ky — po) w3 + x%) + ?(953 — 2u3xs + L@]}
2 3
1 45,1 1 ko —po  pa. (ke — ) p3
— 22 (= + =) =2 Dy 7o) 4 B8
exp{ 2[ 3(05 + 0_?2)) w3( U% + Ug) + 0% + Ug]}

2 03
2wy ko —po pa, 1, (ke —pe)® 43
k 2 ;2] = R M3y 227 M) M3
[.ZU3| 27:“27:“3)0-270-3] exp{ 2[1’3 ~ ( O'% + O_g) + 7( 0_% + 032,)]}
L ke —po  ps
o exp{—5[(zs — —(——= =)}
03 03

= N(E’E) when py = p3 = 0and 05 = 03 = 1
(A.4)
A.3 Simulating [$3, $4|$1, IQ]
Consider the conditional distribution of the form
1 1
[23, 74|21, T2 X GXP{—F(JJ?) — 13)*} exp{—5— (x4 — 14)*} (A.5)
03 20%
with constraint z3 = — (21 — z2) + x4. If we let k3 = x; — x4, the above constraint becomes

a function of a constant, k3 and x4 only, x3 = x4 — k3. Substituting this into Equation A.5
produces

1 1
[l ks, 3, pia, 03, 0] o eXP{—F(M — ks — M3)2}6XP{——2(I4 — pa)*}
03 207

11 1
= exp{—5[=5 (2] = 2(ks + pa)wa + (ks + 113)*) + — (2] = 2paws + )]}

3 4
1o, 1 1 ks + s pay | (ka4 ps)® | g
= E— — ) =2 i ~ 2 T T2
exp{ 2[1:4(0% + O_i) 134( 0_?2) + O_z) + U% + 0_2]}

1 1
Lety = — + —; then
03 0i

g

2wy k3 +pz pa
e 2 21 _ R R 74
[5U4| 3’,“37#4,03704] eXP{ 2[% ~ ( a§ +UZ)+7 Jg +UZ
(g — Lt Hay
scexp{ (s — (25 +

R A
ks 1

PNV

1 1
NGt by 1

) when gty = i3 =0and 05 = 05 = 1

= N(

25



26

(A.6)






Contact Us

Phone: 1300 363 400
+61 3 9545 2176

Email: enquiries@csiro.au

Web: www.csiro.au

Your CSIRO

Australia is founding its future on science and
innovation. Its national science agency, CSIRO,
is a powerhouse of ideas, technologies and
skills for building prosperity, growth, health and
sustainability. It serves governments, industries,

business and communities across the nation.



	1 Abstract
	2 INTRODUCTION
	3 METHODS
	3.1 Implementation and simulation

	4 SIMULATION STUDY
	5 CASE STUDY IN IMPORT RISK ASSESSMENT
	5.1 Construction of Bivariate Conditional Distributions

	6 DISCUSSION
	A Conditional Distributions for Linear Case
	A.1 Simulating [x1,x2|x3,x4]
	A.2 Simulating [x2,x3|x1,x4]
	A.3 Simulating [x3,x4|x1,x2]


