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Executive Summary  
 

Bayes nets are used increasingly to characterize environmental systems and formalize 
probabilistic reasoning to support decision-making. These networks treat probabilities as 
exact quantities. Sensitivity analysis can be used to evaluate the importance of assumptions 
and parameter estimates. Here, we outline an application of info-gap theory to Bayes nets 
that evaluates the sensitivity of decisions to possibly large errors in the underlying probability 
estimates and utilities. We apply it to an example of management and eradication of Red 
Imported Fire Ants in southern Queensland, Australia and show how changes in 
management decisions can be justified when uncertainty is considered. 

Introduction  
Decision tables and trees are simple frameworks for formal decision-making that involve 
acts, states, and outcomes (Resnik 1987). Bayes nets are directed acyclic graphs (decision 
trees) of probabilistic relationships among variables, in which links imply causal relationships 
(Cartwright 2003). Bayes nets are used mostly to assist decision-makers synthesize data 
and other information with the beliefs of experts and stakeholders. The graphic format of 
Bayes nets is useful for communication, providing a platform for integrating opinions 
(Sagrado and Moral 2003).  

A variety of algorithms exist to infer probabilistic, causal relations from independent 
(marginal) distributions and update expectations with new data (Pearl 2000, Korb and 
Nicholson 2003). They have been applied widely in engineering and artificial intelligence 
research (e.g., Sigurdsson et al. 2001, Korb and Nicholson 2003, Sagrado and Moral 2003) 
and their use is growing in ecology and natural resource management (Reckhow 1999, 
Borsuk et al. 2001, 2003, Hart et al. 2006). In ecological applications, some data may be 
available from the system under study, from other, similar systems or extrapolated from 
theoretical expectations. However, in many circumstances, parameters and causal structures 
are based on subjective estimates. Whether based on data, prior studies or subjective belief, 
parameters and relationships in Bayes nets are uncertain. Thus, it is important to evaluate 
the sensitivity of decisions to these uncertainties.  

Information-gap (henceforth termed ‘info-gap’) theory was invented to assist decision-making 
when there are substantial knowledge gaps and when probabilistic models of uncertainty are 
unreliable (Ben-Haim 2006). In general terms, info-gap theory seeks decisions that are most 
likely to achieve a minimally acceptable (satisfactory) outcome in the face of uncertainty, 
termed robust satisficing. It provides a platform for comprehensive sensitivity analysis 
relevant to a decision. In ecology, info-gap analysis has been used to evaluate threatened 
species management actions with uncertainty in utilities and probabilities (Regan et al. 
2005), to design reserves that account for uncertainty in the spatial distribution of wildlife 
habitat (Moilanen and Wintle 2006, Moilanen et al. 2006a, b), to determine the power of a 
sampling strategy for a hypothesis test when the moments of the distribution are uncertain 
(Fox et al. 2007), and to decide between forest management options when there are 
substantial uncertainties related to occurrence of fire (McCarthy and Lindenmayer 2007). 
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Info-gap methodology requires three main elements: a process model, a performance 
measure, and a model for uncertainty. The process model is a mathematical representation 
of the components of a system, their interactions and influence on the variables of interest, 
for which management aspirations (performance criteria) are set. In a Bayes net, this model 
is the usual causal network and associated probabilities. A performance measure is an 
outcome, a measure of utility, for which different stakeholders may hold different aspirations. 
The model for uncertainty is a mathematical representation of the way in which the value of a 
parameter, the form of a function or the structure of a model varies from a nominal value 
(best estimate) under increasing levels of uncertainty (Ben-Haim 2006).  

The purpose of this paper is to implement info-gap theory to account for uncertainty in the 
probabilities underlying a Bayes nets. We demonstrate how info-gap theory can be used to 
analyse trade-offs in attempts to eradicate the Red Imported Fire Ant (RIFA, Solenopsis 
invicta Buren) in eastern Australia. While the Fire Ant Control Program has been successful 
in eradicating the species from most of the area infested initially, patches of infestation 
remain. Managers have several strategies at their disposal, including developing improved 
methods for detecting the species, investing in better spatial predictions, and enhancing the 
skills of field staff (DPIF 2006). In this study, we explore the sensitivity of management 
decisions to uncertainty about probabilities and social preferences (utilities).  

Methodology  
Red Imported Fire Ant habitat and eradication 

Moloney and Vanderwoude (2002) gave a detailed account of the history and ecology of Red 
Imported Fire Ants in Australia. They noted the species was detected in Brisbane, Australia 
early in 2001, although it was probably present for several years prior to its detection. The 
species is an important pest in North America, where it damages agricultural crops, animal 
production, farm infrastructure, and human health and environment. Evidence from the USA 
suggests that the species will occupy any land with mean annual rainfall exceeding about 
500 mm, excepting areas that experience extreme cold. It has the potential to occupy 
millions of square kilometers of the Australian environment (Scanlan and Vanderwoude 
2006) where, as well as damaging urban and agricultural systems, it is likely to severely 
affect many species of ants and other arthropod communities, snails, amphibians, reptiles, 
birds and mammals.  
 
RIFA are currently restricted mainly to urban and suburban areas around Brisbane, 
Queensland. There, they occur primarily in association with open and disturbed ecosystems 
including cleared or partially cleared areas, farm paddocks, parks, industrial sites, residential 
areas, open forests and sites adjacent to waterways (DPIF 2006). They are less likely to 
occur in undisturbed habitat. Eradication efforts use predictive maps of the species’ 
distribution to guide eradication efforts. Several eradication techniques are available, 
including aerial spraying, and laying baits or injecting nests with poison, using teams 
operating on foot in the field. The success of ground-based treatment depends on training 
and on the ease with which people can move through the terrain and its vegetation.  
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A workshop was held in Canberra on February 19, 2007. Participants involved in the 
eradication of RIFA, or who were experts in the ecology of the species, developed models for 
eradication of the species and discussed available data. The workshop outlined a Bayes net 
that reflects the logic underlying attempts to find and eliminate nests.  

 
Info-gap methods 

When Bayes nets are used for decisions, they may include a model for expected utility, 

 

∑
=
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where E[Vj] is expected utility of the jth act, p1 to pn are the probabilities of the n possible 
states and vij are the utilities associated with the act-state pairs. Performance is assessed, in 
this case, by the expected utility of the decision.  

An info-gap model for expected utility is represented by the sets Up(�, ) and Up~ v(�, v~ ), 
where the subscripts p and v indicate the info-gap models for uncertain probability and utility, 
respectively, α is the uncertainty parameter, and and p~ v~ are vectors of the best estimates of 
the probabilities and utilities for all the possible system states. The sets Up(α, ) and 
U

p~

v(α, v~ ) become more inclusive, expressing greater uncertainty, as α  rises. Hence α is 
referred to as the horizon of uncertainty. The utilities are the values associated with alterative 
outcomes, including the ecological, human health and social benefits (here, termed 
environmental values) of eradication success and the dollar costs of searching potentially 
infested areas. Utility is maximized when environmental benefits are high and search costs 
are low. It is minimized when there is little chance of success and search costs are high.  

We identify p~ i as the nominal estimate of the probability that the system is in state i, pi as the 
actual probability, v~ ij as the nominal estimate of the true utility (vij) of the outcome associated 
with act j if the system is in state i.  

In this application, we assume that uncertainty in the probabilities and utilities is represented 
by intervals about whose size we are uncertain (c.f., Ben- Haim 2006). An interval info-gap 
model of uncertainty is expressed as a set of values vij (for utilities) or pi (for probabilities) 
whose fractional deviation from the respective nominal values v~ ij and p~ i is no greater than 
α however, the value of α is unknown. The info-gap model for uncertainty about the state 
probability (pi) is the family of nested intervals (and noting, because they are probabilities, pi 
and ip~  are constrained to lie in the interval [0,1]):  
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This implies that, at the horizon of uncertainty α, pi is in the interval  

iii ppp ~)1(~)1( αα +≤≤− .        (3) 

In this model of uncertainty, pi varies from its nominal value, p~ i, by no more than a fraction 
α. The horizon of uncertainty, α, is unknown. As α  increases, the set U(α, ) becomes more 
inclusive. Hence info-gap models are summarized as a family of nested sets, rather than a 
single set, of possible values of the uncertain entity (Ben-Haim 2006).   

p~

The info-gap model for the set of probabilities is the following family of nested sets of 
probabilities: 
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It is instructive to note that a standard Bayesian treatment of uncertainty for this set of 
probabilities could take the form of a Dirichlet distribution. The info-gap model Up describes 
possible sets of pi that add to 1, and has a nominal set of values (analogous to the mean or 
median) but unlike the Dirichlet distribution, the info-gap model does not specify a fixed 
measure of variance, nor is it a distribution.  The set of admissible probabilities at scale α is 
simply a set of admissible values.    

The analogous details for the characterization of info-gap uncertainty in utilities are (see 
Regan et al. 2005),  

{ } .0   ...1,...1],~)1(,100min[]~)1(,0max[:)~,( ≥==+≤≤−= αααα mjnivvvvvU ijijijv   (5) 

This function restricts utilities to the interval [0,100] for the purpose of this example. 

Info-gap analysis addresses the basic question of robustness: how far from the nominal 
values can the models and data be, without jeopardizing the quality of the outcome? A policy 
that is highly immune to errors in the models and data is preferred over a policy that is 
vulnerable to error.  In effect, info-gap decision analysis maximizes robustness of a given 
model for a specified performance threshold, rather than maximizing expected performance. 

The process model, performance requirement, and uncertainty models ((4) and (5)) provide a 
system of equations that may be solved for estimates of robustness. We seek the strategy 
that maximises robustness for achieving an outcome that is good enough (above some 
minimally satisfactory critical performance threshold, EVC). The robustness function for action 
aj is (Regan et al. 2005): 
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which states that the robustness of action aj is the maximum level of uncertainty � that 
guarantees an expected utility EV no less than EVC. Regan et al. (2005) discuss the process 
for analyzing probabilities as the horizon of uncertainty expands. In our models, we employ 
discrete distributions.  

Results  
The analysis begins with a tree that represents causal links in a program to detect and 
eradicate the pest. States of the systems at each node in the tree are estimated from data or 
expert judgement. The probability of successful eradication is calculated as a function of 
these values. Then, the info-gap analysis is applied, wherein the fractional errors are applied 
to the probabilities and utilities, and utilities are evaluated at the boundary of the envelope 
defined by the increasing horizon of uncertainty, α.  

Figure 1 shows a Bayes net representing a site in Brisbane at which it is suspected there has 
been a new infestation by RIFA. The net shows the likelihood of eradication as a function of 
the treatment used and whether or not the infestation is found (‘located’). Successful location 
of the new nest requires that the field crew searches the right area, and that it finds the pest, 
when it is in fact present. The quality of the map is represented by the likelihood that the 
team will be guided to the correct location (nominally 80%; Figure 1, ‘Map_Locations’ node). 
That is, the model assumes the habitat map is of sufficient quality that there is an 80% 
chance that the infested site will be visited by a surveillance team (for ‘Map_Locations’, 

=[0.80,0.20]).The probability of detection is a function of search effort, itself a function of 
cost. The costs may be incurred in the time spent in the field, the labour cost of recruiting and 
retaining experienced and effective personnel, or by developing technical tools and 
quantitative support to guide detection effort.  

p~

The nominal values represent best guesses regarding the species biology and the 
effectiveness of interventions. In this model, they assume that the species prefers disturbed 
landscapes, some of the landscapes will be relatively difficult to search, and others will not 
allow broadcast spraying from a helicopter. Thus, the node for the ‘Treatment’ assumes 70% 
of sites will be amenable to helicopter spraying (the most effective eradication method) 
whereas 20% of the landscape is readily accessible by foot, and 10% is difficult terrain in 
which the chances of successful eradication are reduced (for ‘Treatment’ , 

=[0.70,0.20,0.10]).  p~
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Eradication
Successful
Part success
Unsuccessful

43.1
15.4
41.6

Map_Locations
Correct
Incorrect

90.0
10.0

Infestation
Located
Not Located

45.6
54.4

Utility

Search_Effort
Intensive
Moderate
Low

0.67356
0.77632
0.86100

Treatment
Helicopter
Easy Terrain
Difficult Terrain

70.0
20.0
10.0

 

 

Figure 1. Bayes net for the eradication of Red Imported Fire Ants near Brisbane. The 
numbers in the nodes for Map_Locations, Treatment, Infestation and Eradication are 
estimated probabilities, ip~  (expressed as %). The Search_Effort node shows the solution 
using a traditional analysis; the values 69.2, 60.2 and 51.3 represent the expected 
environmental values that result from decisions to search with varying intensities. In this 
example, the utilities consider only the environmental benefits of success; they ignore the 
costs of searching (see text). Values in the Infestation and Eradication nodes are calculated 
from tables of conditional probabilities (see Tables below). 

 

All of the marginal and conditional probabilities and utilities in this network involve expert 
judgments and are highly uncertain. The parent nodes (‘Treatment’, ‘Map_Locations’, 
‘Search_Effort’) in Figure 1 are vectors of marginal probabilities. The probabilities are shown 
in Figure 1.  

The nodes for Infestation and Eradication are not entirely transparent in Figure 1. They 
involve conditional probabilities (Table 1). If the habitat map leads the eradication to the 
correct general location and they undertake an intensive search, there is an estimated 80% 
chance the nest will be found. Even if the map leads to the wrong location, an intensive 
search may still locate the nest, by chance, with a probability of 10% (Table 1a). If the 
eradication team uses helicopter application of a spray at the correct location, the chance of 
successful eradication is estimated to be 90% and the chance of partial success (eliminating 
most of the individuals at the site) is 10% (Table 1b).  
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Table 1. Conditional probability tables for locating an infestation (a function of map location 
and search effort) and eradication (a function of correctly locating the infestation and the 
treatment applied) 

 

1a. Infestation          

Map 
Location 

Search 
Effort 

Located Not 

Located 

Correct Intensive 80 20 

Correct Moderate 50 50 

Correct Low 20 80 

Incorrect Intensive 10 90 

Incorrect Moderate 5 95 

Incorrect Low 2 98 

 

1b. Eradication 

Infestation  Treatment Success Partial 
success 

Unsuccessful 

Located Helicopter 90 10 0 

Located Easy Terrain 80 20 0 

Located Difficult Terrain 60 30 10 

Not located Helicopter 10 20 70 

Not located Easy Terrain  5 10 85 

Not located Difficult Terrain  0 5 95 

 

This analysis evaluates two utility functions (Table 2).  Social and ecological (environmental) 
values accrue from partially and completely successful operations. In the current context, 
these values result from people in this urban landscape having access to open space for 
recreation and social interaction, and from avoiding human health costs and substantial 
ecological damage. It is difficult to quantify these values in dollar terms, although multicriteria 
decision analysis may be used for approximation (Chee 2004). Irrespective of the valuation, 
greater survey effort is attractive because it improves the chances of eradication. Managers, 
however, are forced to consider costs. ‘Intensive’ survey effort is roughly 3.3 times more 
expensive than ‘Low’ survey effort.  
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Table 2. Environmental utilities resulting from different levels of success of eradication efforts 
and the relative costs of different levels of survey.  

Eradication Utility  

(environmental value) 

Survey cost $ 

Success 100 Intensive 100 

Partial success 20 Moderate 60 

Unsuccessful 1 Low 30 

 

Expected utility at zero robustness represents the expectations under standard Bayes net 
analysis. Robustness analyses were implemented on the Bayes net for expected utility and 
for the ratio of utility to cost. We used the envelope-bound info-gap models, eqs. (4) and (5). 
Three different management strategies are studied: high, moderate, and low search intensity. 
The results are shown in Figs. 2a and 2b.  

The first thing to note is the negative slopes of all the robustness curves. This expresses the 
irrevocable trade-off between robustness-to-uncertainty and quality of the outcome (expected 
utility or utility-to-cost ratio). Aspiring to better (higher) outcome entails worse (lower) 
robustness to uncertainty. 

The second point to note is that the robustness becomes zero at the value of the outcome 
which is predicted by the best-estimated values of the uncertain parameters. For instance, 
the expected utilities of high, moderate, and low search intensity are predicted, based on the 
best-estimates of the parameters, to be 61, 41 and 21, respectively. However, the 
robustness to uncertainty of these outcomes is zero: infinitesimal errors can lead to short-fall. 
Based on the best-estimate predictions of expected utility, high search intensity is preferred 
over moderate, which in turn is preferred over low intensity.  

These preferences agree with preferences based on robustness. Since more robustness is 
better than less, the robust-satisficing decision rule indicates that high intensity is again 
preferred over moderate, which is preferred over low intensity. 

In short, when considering expected utility, the best-estimate (zero-robustness) preferences 
agree with the robust-satisficing estimates. 

The situation is different when considering the utility-to-cost ratio (UCR, Fig. 2b). The best-
estimates of the UCR are 0.72, 0.70 and 0.61 for low, moderate and high search intensity 
respectively. In other words, the best-estimate preferences based on the UCR are precisely 
the reverse of those based on expected utility. 

The robust-satisficing preferences based on the UCR are more complicated because the 
robustness curves cross. The low- and moderate-intensity robustness curves cross at about 
3% robustness. Thus low intensity is preferred over moderate intensity below 3% robustness, 
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while moderate is preferred over low at greater robustness. Since even moderate errors in 
the estimated parameters will exceed 3%, the analyst may safely reject the low-intensity 
option in favor of moderate intensity.  

We see that the moderate and high intensity robustness curves are quite close together over 
the entire range, at least above about 5% robustness. This indicates that, in terms of the 
UCR, the analyst is indifferent between these two options.  

We now revert to the expected utility preferences to choose between high and moderate 
intensity, and our final selection would be for high intensity search. 

Let us note that a value judgment has been made once in this analysis: judging the potential 
for error to exceed 3 to 5%, and thereby rejecting low-intensity search in the UCR case, and 
judging the moderate and high options to be equivalent for UCR. In the present example this 
judgment is probably not controversial: while one is unable to identify a largest-possible error 
in the estimated probabilities and utilities, it is not difficult to believe that only 5% error is 
wishful thinking. 

In general, however, it may be necessary to make more difficult value judgments in choosing 
between strategies based on the robustness criterion. If the robustness curves of alternative 
options cross at mid-range values of either robustness or performance, the analyst may need 
to choose which side of the crossing values are more plausible (for robustness) or more 
essential (for performance). We have seen, in the present example, that this can sometimes 
be avoided. 
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Figure 2. Robustness curves for Expected Utility versus robustness (the horizon of 
uncertainty, α) (a) guaranteed utility based on the Bayes net  and the envelope bound model 
for uncertainties in probabilities and utilities, (b) the ratio of utility to survey cost for each of 
three survey intensities. Low search intensity has lowest expected environmental utility over 
the full range of parameter uncertainty (a) but it has the highest of utility to cost ratio (i) in (b) 
when alpha =0. At levels of alpha of about 0.08 in (b), the robustness curves for low and 
moderate search effort cross (ii). At levels of alpha of about 0.22, the robustness curves for 
moderate and high search effort cross (iii). Moderate and high intensity searches are 
essentially equivalent for robustness above about 20%. 

Discussion  
The info-gap analysis provides a means to evaluate quantify (immunity from error, avoiding 
unacceptably bad outcomes) by evaluating the sensitivity of critical decisions to uncertainty 
in a specified model. The best strategy is the one that provides an outcome that is both 
‘‘good enough’’ and that is as immune to uncertainty as possible. That is, the analysis 
identifies a strategy that maximizes the reliability of an adequate outcome.  

Sensitivity analysis of the Bayes net allows managers to evaluate the importance of 
assumptions underlying alternative management strategies. One question that arises is, what 
is the importance of good quality maps of potential habitat for efficient search strategies. The 
Bayes net suggests that if map accuracy (expressed as the likelihood that the area of a new 
infestation is visited) is 50%, rather than 90%, then the chance of successful eradication 
given intensive searching efforts falls from 65% to 52%. Furthermore, the sensitivity of 
eradication success to this parameter will increase as the species becomes rarer in the 
landscape. That is, as the eradication program improves its success, remaining nests will 
become harder to locate and the importance of the quality of the predictive map will increase.  

The robustness curves in Figure 2 illustrate an important feature of info-gap analysis. 
Managers may trade robustness for quality of outcome (either expected utility or utility-to-
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cost ratio), as expressed by the negative slopes of the curves. One may take a position of 
supporting a strategy that has lower expected utility, but greater robustness to uncertainty in 
delivering a specified benefit. Environmental managers often are most concerned with 
avoiding catastrophic outcomes, preferring options with acceptable outcomes that are robust 
to uncertainty. Info-gap analysis provides an explicit means of quantifying the robustness of 
alternatives, providing an additional dimension for negotiation.  

We have shown that, in the present example, the analyst is able to select a strategy 
essentially without making value judgments regarding critical performance requirements or 
plausible levels of uncertainty. In general, however, this is not the case, and the analyst will 
have to deal with the issue of ‘sufficient’ utility. What is the “required performance threshold”?  
What value is important to achieve?  Then, which strategy can achieve that critical expected 
utility with the greatest robustness? These are social judgements, not scientific ones. They 
involve trade-offs between competing social values. The info-gap analysis makes the trade-
off explicit and provides an added dimension for discussions about social preferences. For 
instance, one may forgo some aspirations for utility (i.e., negotiate towards a strategy with 
lower expected value) in return for greater surety of returning at least a given amount. Bayes 
nets that ignore these uncertainties run the risk of leading decision-makers to conclusions 
that are blind to the uncertainties in the model and their consequences for expected 
outcomes.  

This treatment skirts the issue of how to implement methods for finding info-gap solutions for 
the general case of large Bayes-net problems. Here, one of us (AM) implemented an 
exhaustive search of all possible combinations of probability and utility to find the bound that 
defines the minimum robustness for a given parameter combination. Larger problems would 
quickly become intractable, and methods for approximating the robustness curve would need 
to be used, though such methods are not easily implemented without specialist skills.   

When considering invasive species, there may be legal or social obligations to reduce a 
species distribution below a specified level. In these circumstances, the objective function 
would be simpler. Management would be constrained to options that result in an acceptable 
level of success.   

The values in the utility table reflect social preferences and may have been specified to 
reflect other objectives. For instance, alternatives may be to keep the budget within specified 
bounds, and then to maximize the chance of eradication, or to maintain a minimum 
(acceptable) level of RIFA infestation in the landscape, and then to optimize surveillance 
effort. These represent different performance measures and could lead to different info-gap 
solutions.  

In most natural resource applications, as in the example above, one can identify both positive 
and negative outcomes in the objective function. In this instance, there is a desire to 
eliminate the species, while keeping the budget within some bounds.  The focus is on ‘value’, 
and the value of greater chances of eradication success needs to be expressed on an 
equivalent scale to that representing the costs of management. We achieved this in this 
example though the utility-to-cost ratio. In applications, subjective values weigh economic 
costs against environmental and social aspects of a decision. Different stakeholders will have 
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different opinions. Other tools such as multicriteria decision analysis may be used to explore 
differences of opinion and achieve consensus (Chee 2004). Info-gap theory may then be 
used to explore the robustness of options to uncertainty in these social preferences.  
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