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Definitions, acronyms, and abbreviations 
 

Abbreviation / word Definition / Description 
BBWD Biofouling and Ballast Water Declaration 
CEBRA Centre of Excellence for Biosecurity Risk Analysis 
DWT Dead Weight Tonnage 
IMO International Maritime Organization 
LMIU Lloyds Maritime Intelligence Unit 
MHRSS Marine High Risk Site Surveillance 
MPI Ministry for Primary Industries 
Niche areas Submerged surfaces on a vessel that protrude from, or are recessed into the hull, or 

which are not adequately protected by the antifouling coatings (e.g., rudders, 
propellers, stern tubes, intakes, sea-chests, internal seawater piping, bilge keels, 
thrusters, stabilizers, struts, grates, sacrificial anodes, dry dock support strips, etc.) 

NIMS Non-indigenous marine species 
NIWA National Institute of Water & Atmospheric Research Ltd. 
TWSA Total wetted surface area of a vessel 
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1 Introduction 

Biosecurity New Zealand undertakes site-based surveillance of high-risk sites via the 

national Marine High-Risk Site Surveillance Programme (MHRSS) to detect and prevent non-

indigenous marine species (NIMS) from entering and spreading in New Zealand waters. 

Survey methods of MHRSS are constantly being updated and improved, and there is a need to 

consider changes to shipping patterns and to reprioritise surveillance sites based on the 

relative risk of invasion and NIMS establishment at each site. Therefore, Biosecurity New 

Zealand aims to improve the efficiency of MHRSS by developing a systematic statistical 

likelihood-based methodology to assign surveillance effort to sites relative to their exposure 

to NIMS originating from ballast water and biofouling pathways.  

As outlined in the NIWA Project Management Plan (Inglis, 2018), the objectives of 

this project are to: 

• identify New Zealand ports with the highest relative likelihood of entry by non-

indigenous marine species (NIMS) and to use this information to determine how 

survey effort for NIMS should be assigned among ports, 

• develop a systematic, statistical likelihood-based methodology that can be used to: 

- determine the relative likelihood of NIMS entry at sites (ports and marinas), 

- select sites prior to commencing a marine surveillance programme, and 

- periodically investigate whether the Marine High Risk Site Surveillance 

(MHRSS) or other marine surveillance programmes are optimised for the 

detection of NIMS, and 

• determine how any recommendations, if implemented, will affect the detection and 

interpretation of any long-term trends in the data set.  

This project will also provide a cost-effective framework by enhancing the marine 

surveillance activities at the early detection  level. The early detection of NIS will reduce the 

cost of intervention. For example, preventive measures are known to be the most cost-

effective and efficient ways of minimising the impact of NIMS (Shannon et al., 2020). The 

Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES) 

estimated the cost of prevention of invasive species to be around $0.8 million a year for 

compliance monitoring of BW discharge in comparison to the cost of eradication which is $5 

million – $20 million. Once invasive NIMS are established, the cost of loss of production, 

impacts on the environment, and any management costs will be $4 million - $1 billion per 

incursion (Arthur et al., 2015b). Data collecting programs at detection and prevention stage 
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can be costly and difficult because of complexity of port environments both above and below 

the water along with the physical, logistical, safety and legislative issues (McDonald et al., 

2020). It is advisable to obtain surveillance information from a wide range of sources to help 

reduce the significant cost of specific surveillance activities (Arthur et al., 2015a).  

Before developing the statistical likelihood-based models, exploration of all available 

data was required to check if they will be beneficial for the purposes of optimizing the current 

MHRSS. The main focus of this report is to compare the two available databases and to 

determine whether the project would need to purchase further data from Lloyd’s (at 

significant cost). Similarities and discrepancies of both databases were explored to see if the 

data sets were materially different.  

Information about vessel characteristics and vessel traffics were available from two 

databases, one provided by the Ministry for Primary Industries’ Intelligence and Targeting 

Team (ITT) and the other from Lloyd’s Maritime Intelligence Unit (LMIU). Vessel arrival 

data contained in the MPI database were compared with the Lloyd’s commercial vessel 

database that was recently acquired by MPI for accuracy and specificity of the data. If there 

were no substantial difference between the two data sets, then a combination of data provided 

by MPI, NIWA, and already purchased from Lloyd’s can be used for modelling to inform 

high risk sites for NIMS arrival and establishment through ballast water and biofouling 

pathways. The approach used to develop the statistical likelihood-based methodology 

assumes that the likelihood of successful establishment of NIMS within a site is related to the 

number of species (‘colonization pressure’) and the total number of individuals (‘propagule 

pressure’) that the site is exposed to (Lockwood et al., 2005; Lonsdale, 1999). The total 

biofouling mass and the volume of ballast water discharged per port are predicted assuming 

that the total mass of the risk commodity transported in these pathways are related to 

propagule pressure and colonization pressure. 

The comparison of MPI and Lloyd’s data sets are done using the overlapping data 

available for this study, but more recent data will be used to make predictions based on the 

likelihood-based model. Several years of data from 1998 to 2008 (named historical data) were 

available for model building to predict the ballast discharge volume as a function of voyage 

properties and vessel characteristics, e.g., arrival port, vessel type, ballast capacity or DWT, 

and the reported ‘intent to discharge’. The models will be used to predict average annual port-

level ballast water discharge per voyage using more recent 2015-2017 data (named 

contemporary data). Similarly, the historical data will be used to fit a statistical model to 

predict the total annual port-level biofouling mass on vessels arriving in New Zealand 

between 2015 and 2017. The vessel characteristics (e.g., age of antifouling, period of 
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inactivity, vessel type, size, and speed) and voyage features (e.g., first port of arrival) are 

important predictors in model building for biofouling mass. The first port of arrival and the 

other ports that the vessel visits during each journey are important in ballast water analysis 

because the vessel might discharge at several ports within a journey and only visit other ports. 

For instance, a vessel that visits Picton, Tauranga, Auckland, and Christchurch might only 

discharge ballast water at the third and fourth port. The first port of arrival is a key variable in 

biofouling analysis and most likely to receive propagules but not all the visiting ports because 

biofouling is assumed to be consistent or slightly different at the ports a vessel visits next. 

Thus, in this report, a vessel’s signalled intent (MPI) and the commercial (Lloyd’s) databases 

were compared using a method that considered the vessel movement. The analysis can also 

inform what, if any, further data could be collected by MPI in the future to continuously 

update and inform the models of high-risk sites that are to be developed in the next steps of 

this project. 

Another challenge faced by this study was to extract ballast water discharge 

information from PDF files provided in the New Zealand Biofouling and Ballast Water 

Declaration forms (Appendix A – section 6.1). These were PDF forms that were completed by 

vessel captains prior to arrival in NZ as to their intention to discharge ballast water in NZ 

territorial waters. Due to the format of these documents, it was difficult to extract the data, 

therefore another objective of this report was to investigate a process to automate the 

extraction of ballast water discharge data from PDF forms. 

 This report is structured as follows. Section 2 starts by describing the two data sets 

and the sources of data. It then explains the steps taken to transform the port names into 

strings for each individual journey. This is followed by a Levenshtein distance analysis to 

measure the dissimilarity between the strings, and a generalised linear mixed model (GLMM) 

to determine the variables responsible for these discrepancies. The rest of this section explains 

how the data were extracted from the PDF files. Sections 3 and 4 are assigned to the results, 

discussion, and recommendations for improvement of the data acquisition and curation. More 

information about the data sets, data cleaning, data preparation, more visual comparison of 

data sets, and other information are provided in section 5 (Appendix A). 
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2 Methods 

2.1 Sources of data  

The MPI data used in this report was provided by the Ministry for Primary Industries’ 

Intelligence and Targeting Team (ITT), and the Lloyd’s data was collected by the Lloyd’s 

Maritime Intelligence Unit (LMIU) and purchased by MPI. These data sets contained 

information about vessel characteristics and shipping traffic of the international vessels that 

arrived in New Zealand ports during years 2000–2005 and 2016 for Lloyd’s data and from 

2012 to 2017 for MPI data. The records related to the vessel characteristics and vessel traffic 

including vessel type, vessel movement and journeys in two data sets were matched using 

their unique International Maritime Organization (IMO) numbers. IMO number is a unique 

vessel identifier and remains invariant to changes to other vessel features, such as the name 

and flag of the vessel. The data description, cleaning and preparation steps were described in 

sections 6.1 and 6.2 of Appendix A in more details. The exploratory data analysis was done 

using the whole data sets, but the remainder of the analysis focuses only on year 2016 to 

remove any source of discrepancy between the data sets. The initial analysis assessed the 

similarities and differences in the MPI and Lloyd’s datasets. The data comparison and 

matching the records of year 2016 are presented in section 6.4 of Appendix A. After the data 

cleaning and merging, 920 vessels with unique IMO number remained in both data sets with 

6871 and 6226 port visits for common vessels for Lloyd’s and MPI data, respectively. All the 

selected variable used in this report were ‘IMO number’, ‘year’, ‘vessel type’, ‘generic type 

code’, ‘grouped vessel type’, ‘movement sequence’, ‘flag’, ‘last country’, ‘first port’, and the 

‘visited ports’. The description of these variables and their categories were presented in 

Appendix A. 

 

2.2 Data analysis  

2.2.1 Levenshtein distance (LD) 

Levenshtein distance (LD) measures the similarity between two strings by counting 

the number of insertions, deletions or substitutions required to transform one string into 

another (Levenshtein, 1966). As no transformation is required when two strings (named 

source and target strings) are identical, lower edit distance values imply less difference and 

greater values indicate more difference between two strings (Lazreg et al., 2020). This 

analysis was used to determine the port-to-port differences recorded for each individual vessel 

in the Lloyd’s data compared with MPI data.  
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Figure 1 demonstrates the steps taken to transform the port names into strings for each 

individual vessel journey in each of the datasets. By converting each port into a letter (stored 

as variable ‘port string’), a string was generated for each individual vessel journey in each of 

the datasets (Figure 1). After assigning a letter to each port (step 1), a code (variable 

‘movement ID’) was built for each journey using the unique IMO number and report number 

(step 2). A journey starts when a vessel arrives in NZ and ends when it travels to another 

international port, and vessels can have multiple journeys to NZ in a single year. For example, 

a vessel with IMO number of ‘8067880’ has travelled to New Zealand four times in 2016, 

with each journey identified by a different report number. This vessel has visited Wellington, 

Nelson, Auckland, and again Wellington in April, June, July, and October in the same year, 

with ‘movement number’ of 1, 2, 3, 4 and ‘movement ID’ of a, b, c, d for each journey. For 

each combination of unique IMO number and ‘movement ID’, all the visited ports (letters 

from step 1) at each journey are placed together to form a string for each data set (step 3). As 

it can be seen from Figure 1 – step3, the same vessel with IMO number of 8067880 only 

visited one port at each journey in MPI data but visited several ports in Lloyd’s data. For 

example, for the journey with ‘IMO-movement ID’ of ‘8067880 a’, the ‘MPI string was ‘m’ 

and the ‘Lloyd’s string’ was ‘aagaa’. This means that Wellington was the only recorded port 

in MPI data for that journey whereas Auckland, Auckland, Nelson, Auckland, and Auckland 

were recorded as visiting ports in Lloyd’s data. These generated port strings were used to 

compare the records for individual vessels between the datasets. LD analysis was done using 

function ‘stringdist()’ from the stringdist package in R (van der Loo, 2014). 
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Figure 1. The steps taken to generate a string from the visiting ports for each individual vessel journey 

in each of the datasets. 

2.2.2 Generalised Linear Mixed Modelling of Levenshtein distance 

Using the LD for each vessel calculated from the  individual journey string and 

ordered alphabetically, we conducted generalised linear mixed models to determine the most 

important predictor variables to explain the differences in the MPI and Lloyd’s data sets (that 

is factors that led to higher string distances). ‘IMO number’, ‘flag’, ‘first port’, ‘last country’, 

‘grouped vessel type’ and ‘visited ports’ were the variables used in the GLMM analysis. 

2.2.3 Extracting data from PDF files 

Almost 500 Biofouling and Ballast Water Declaration forms were available in PDF 

format, which were submitted by international vessels arriving to NZ as part of their 

biosecurity obligations. The forms provided details on the number of ballast tanks and tank 

capacity of the vessel, whether the vessel intends to discharge any ballast water in NZ and if 

so, the ballast water management method to be undertaken, volumes to be exchanged, and 

original source of the ballast water. These forms were a signal of intent. These were the only 

ballast data available for international vessels arriving in NZ which could be used for 

modelling to inform high risk sites for NIMS arrival and establishment. Due to the large 

numbers of PDF forms, we investigated automating the extraction of the relevant data. The 
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data required from each form were the vessel name, IMO number, the first port of arrival, 

ballast water sources and volumes of approved tanks. 

Converting PDF to text 

Converting PDF files into a character vector in R was straightforward using the 

‘pdftools’ package (Ooms, 2017). The ‘readPDF’ function could also be used in the ‘tm’ 

package in R as an alternative which allows writing customised functions. Using the ‘strsplit’ 

tool, it was possible to split the elements of the character vector into substrings based on ‘\r’, 

which indicates a new line and is added when converting from PDF to character vector. 

Another option was to batch convert all the PDF files into Comma Separated Values (CSV) 

files which could then be read into R. This was done using the Action Wizard in Adobe. The 

steps were 1) Create new action; 2) select Save and Export; 3) select Save (which opens a 

table); 4) then click on “specify settings”; 5) export files to alternate format and select excel 

workbook. The batch of files were then saved as CSV files and imported into R using 

‘read.csv’ function. 

Extracting text 

The package ‘stringr’ (Wickham, 2019) can be used for character manipulation, 

removing white space, and pattern matching with regex. Using the function ‘str_extract’ and 

regex code,  the PDF content,  e.g., Vessel Name, IMO number, Arrival Port, and Arrival 

Date, Number of tanks in ballast, and Volume could be extracted. These steps were encoded  

to automate data extraction from each form and put the data into a data frame. Question 6 in 

Part 1 was a checkbox that asked: “are any ballast tanks intended for discharge, or possible 

discharge, in NZ ports or territorial waters”– if this was marked ‘Yes,’ then vessel owners 

were required to complete Part 3 of the table. We were unable to determine how to extract 

data from PDF check boxes in R. To get around this, we assumed that if there were data 

provided in Part 3, then the response to question 6 would be ‘Yes’ and if there were no data, 

then the response would be ‘No’.   

3 Results 

The visual inspection of the vessel traffic for Lloyd’s (years 2000–2005 and 2016) and 

MPI (2012–2016) data sets showed a general rise in the number of vessels arriving in New 

Zealand in the last decade, especially at ports such as Tauranga, Wellington, and Whangarei 

(Figure 1 in Appendix A). Ports Tauranga, Auckland, and Lyttleton had the highest number of 

visits in both data sets. Tauranga had the largest number of vessel arrivals followed closely by 

Auckland in both data, except that Auckland had the greatest number of arrivals for the 
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Lloyd’s 2016 data. The visual comparison of the data showed a rapid elevation in vessel 

traffic in 2016 for the two databases, MPI and Lloyd’s, accompanied by a rise in the number 

of bulk/oil vessels and a fall in the number of cargo carriers. In both data sets, containers had 

the largest arrivals in New Zealand. For most of the years, cargo vessels had the second 

highest number of visits in Lloyd’s, whereas bulk/oil vessels were the second most frequent 

vessel types in MPI data. The changes in vessel traffic of different vessel types arriving in 

New Zealand’s ports were compared in more details in Appendix A – section 6.3.  

As explained in data preparation sections, the main analysis of LD and GLMM was 

conducted using 2016 data. The relationship between the port strings of two data sets, 

prepared for LD analysis was explored by plotting the total string lengths in a scatterplot 

(Figure 2a). This figure provides an indication of string differences for the total number of 

port visits for individual vessels during 2016 in MPI and Lloyd’s databases. More than 90% 

of the strings in both datasets were shorter than 20 characters. Almost 9% of MPI strings were 

longer than Lloyd’s strings whereas 29% of Lloyd’s strings were longer than MPI strings. For 

example, as Figure 2a shows, for the string length of 1 in MPI data, there were multiple 

strings with lengths greater than 1 in Lloyd’s data. This is more obvious in Figure 2b that 

presents total string lengths in MPI and Lloyd’s data sets on a log10-transformed scale. 

 



 

Biosecurity New Zealand  Optimising New Zealand’s marine biosecurity surveillance programme • 11 
 

 

  
Figure 2a. Scatterplot of total string lengths calculated based on the number of port visits for each 
vessel in MPI and Lloyd’s data sets in 2016. A regression line in blue colour and a 1:1 line in red 
colour were overlaid the points in the graph. 

 
Figure 2b. Scatterplot of total string lengths calculated based on the number of port visits for each 
vessel in MPI and Lloyd’s data sets in 2016 (on a log10-transformed scale). A regression line in blue 
colour and a 1:1 line in red colour were overlaid the points in the graph. 
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The Levenshtein distance was calculated for four different scenarios; single string for 

all journeys of each vessel, reordered single string alphabetically (Figure 3), string for the 

individual journey of each vessel, and reordered journey string alphabetically (Figure 4). The 

statistics, e.g., median, mean and maximum calculated for these four cases are presented in 

Table 1. Figure 3 illustrates the values of Levenshtein distance when a single string for each 

vessel was used to compare both data sets. That is, the total port visits by a vessel in 2016 

were compared irrespective of whether they were considered different journeys. In this graph, 

the LD related to the port visits recorded in the order visited by each vessel (group A in red 

colour), were overlayed by the port visit strings reordered alphabetically (group B in blue 

colour). When the port visit strings were reordered alphabetically, to assess whether the 

identity of visited ports was the same (regardless of order), the median of LD decreased from 

1 to 0 and the mean decreased from 2.26 to 1.19. The number of vessels with an LD greater 

than 10 was 113 in the former which decreased to 31 in the latter (Table 1). The 920 vessels 

made 2433 journeys in each dataset, but theses journeys were not exact matches. There were 

92 discrepancies between Lloyd’s and MPI journeys, i.e., Lloyd’s had 46 journeys not in MPI 

and MPI had 46 journeys not in Lloyd’s. These journeys were removed while building the 

graphs. When the individual journeys of each vessel were considered in the LD analysis 

(Figure 4 – group A), the LD median remained as 0 but the mean decreased to 1.1 and the 

maximum LD value decrease from 114 to 78. In the individual journey case, there were only 

9 vessels with an LD greater than 10 in comparison with 35 vessels in port strings with all 

journeys combined (in single string scenario). (Figure 4, Table 1). When the port visit strings 

were reordered alphabetically for each vessel (Figure 4 – group B) the results were much 

more similar, and the plots in this figure almost overlapped. The LD mean in ordered strings 

was 1.01 for each vessel which was slightly lower than the strings without order with the 

mean of 1.1 (Table 1). The results of pairwise comparison of LD values using t-test for these 

four different scenarios showed that the differences were significant (Table 2).  
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Figure 3. Levenshtein distance of MPI and Lloyd’s data for all port visits for each vessel, i.e., 
calculated using a single string for each vessel (n = 920). In group A illustrated in red colour, the port 
visits were recorded in the order visited by each vessel whereas in group B represented in blue colour, 
the port visit strings were reordered alphabetically. 

 

 
Figure 4. Levenshtein distance of MPI and Lloyd’s data for all vessel journeys, i.e., calculated using a 
string for each journey per vessel (n =  2433, NA = 92). In group A illustrated in red colour, the port 
visits were recorded in the order visited by each vessel whereas in group B represented in blue colour, 
the port visit strings were reordered alphabetically.  
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Table 1. The statistics calculated for a single string for all journeys of each vessel, reordered single 
string alphabetically, a string for the individual journey of each vessel, and reordered journey string 
alphabetically. 
Levenshtein 
distance 
statistics 

 String for all journeys 
 per vessel 

 String for an individual journey 
per vessel 

 Not ordered  Ordered  Not ordered  Ordered 
Median   1 0    0 0 
Mean   2.26  1.19    1.1 1.01 
Maximium  114 114  78 78 
LD > 5   113 31  43 37 
LD > 10   35 13  9 9 
LD > 20  4 4  4 4 

 
 
 
Table 2. The results of t-test comparing Levenshtein distance values calculated under four scenarios of 
single string for all journeys of each vessel (LD1), reordered single string alphabetically (LD2), string 
for the individual journey of each vessel (LD3), and reordered journey string alphabetically (LD4). t-
value, df, mean of the differences (confidence interval) for each pairwise comparison are given. 

Variables t-value df Mean (CI) P-value 

LD1, LD2 3.43 2356 0.12 (0.05, 0.18) 0.001 

LD1, LD3 -41.11 2356 -3.4 (-3.56, -0.32) < 0.001  

LD2, LD4 -6.77 2356 -0.4 (-0.5, -0.29) < 0.001 

LD3, LD4 42.31 2356 3.11(2.97, 3.25) < 0.001 

 

To determine whether there were any ports with visit discrepancies between the MPI 

and Lloyd’s data, we calculated the number of port visits by all vessels with a LD score 

greater than zero. These data are provided in Table 3.  Tauranga had the greatest number of 

differences, and by a substantial margin, followed by  Whangarei and Auckland.   Tauranga 

and Auckland followed by Lyttelton and Napier had the highest proportion of visit 

discrepancies among sites. The proportion of visit discrepancies per port followed the same 

trend in both data sets. For example, almost 20-23% of visits in Tauranga, 17-18% of visits in 

Auckland, and 10% of visits in Lyttelton had LD score greater than zero in both MPI and 

Lloyd’s datasets. 
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Table 3. The number of visits per port for all vessels with a Levenshtein distance greater than 0. The 
total number of visits at each port are given in the parenthesis. The proportion of visits per port in each 
data set and absolute differences of number of port visits between two data sets are also provided. 
Ports Number of visits for LD>0  Proportion of visits (%) Differences 

between data 
sets relative to 
MPI visits (%) 

Lloyd’s  MPI  Lloyd’s MPI 

Auckland 972 (1291) 885 (1204)  17.62 18.57  10 
Bluff 178 (230) 163 (215)  3.23 3.42  9 
Dunedin 326 (392) 320 (386)  5.91 6.71  2 
Gisborne 105 (133) 101 (129)  1.90 2.12 4 
Lyttelton 540 (691) 475 (626)  9.79 9.96  14 
Napier 493 (616) 458 (581)  8.94 9.61  8 
Nelson 284 (318) 258 (292)  5.15 5.41  10 
New Plymouth 255 (304) 189 (238)  4.62 3.96  35 
Picton 58 (76) 53 (72)  1.05 1.11  9 
Taharoa 7 (21) 8 (22)  0.13 0.17  13 
Tauranga 1279 (1567) 998 (1286)  23.18 20.94  28 
Timaru 255 (282) 224 (251)  4.62 4.70  14 
Wellington 455 (535) 427 (509)  8.25 8.96  6 
Whangarei 310 (415) 208 (313)  5.62 4.36  33 

 
 

The generalised linear mixed model, as written in Equation 1, indicated that vessel 

‘flag’, the last country, and the ‘grouped vessel type’ were indicators of having a high LD 

score. IMO number was included in the model as a random effect to consider. The model 

containing these variables was significantly different (χ2 (111) = 347.5, p < 0.001) from the 

null model including only intercept (ΔAIC = 135).  

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(µ𝑖𝑖𝑖𝑖,𝜎𝜎2) 

µ𝑖𝑖 = 𝛼𝛼1 + 𝛽𝛽1 × 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 + 𝛽𝛽2 × 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 + 𝛽𝛽3 × 𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 + 𝜍𝜍𝑖𝑖    

Equation 1 

 
In Equation 1, 𝜍𝜍𝑖𝑖 is a random intercept with mean 0 and variance 𝜎𝜎2.  Results of 

ANOVA test showed that ‘flag’ (Wald χ2(45) = 292.34, p < 0.001) and ‘grouped vessel type’ 

(Wald χ2(8) = 107.49, p < 0.001) were significant, but ‘last country’ (Wald χ2(58) = 46.30, p = 

0.86) was left in the model because the model had a smaller AIC while including this variable 

in the model. The estimated parameters from the GLMM model and the model comparison 

using AIC are given in Appendix A – section 6.5. 

 

4 Discussion and recommendations 
 

Inconsistencies between the MPI and Lloyd’s data sets were explored prior to 

development of statistical likelihood-based modelling technique to reprioritize surveillance 
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sites aligned with likelihood of NIS entrance at each port. Based on the exploratory data 

analysis, the number of vessel traffic in both data sets indicated an increase in the number of 

vessels arriving in New Zealand in the last decade. In both datasets, Tauranga, Auckland, and 

Lyttelton were the busiest ports and experienced a higher number of visits in 2016, except for 

Lyttelton that received less visits in Lloyd’s data in the same year. According to Lloyd’s, 

between 2005–2016, there was an increase in vessel arrivals of more than 30% in New 

Zealand, equating to almost 2,500 additional port visits. This increase was accompanied by a 

change in vessel categorisation, e.g., the number of container and bulk/oil vessels increased 

while cargo vessels decreased in 2016. In general, both data sets showed similarities in the 

number of visits by vessel types, there were differences in the port visits by each vessel type. 

For example, similar to as seen the Lloyd’s data, containers had the highest number of visits 

in MPI data and mostly arrived in large ports. These vessels mostly visited Auckland, 

Tauranga, Wellington, Nelson, Lyttelton, and Napier in Lloyd’s data whereas Auckland, 

Tauranga, Lyttelton, Napier, Dunedin, and Wellington were the visiting ports by this vessel 

type in MPI data.  

Despite a rather similar trend in changes in the number of visiting ports in both 

datasets, there were slight differences in the number of port visits for each vessel. Generally, 

there was an agreement between both datasets in terms of the length of strings generated from 

port names, indicating a rather similar number of port visits by each vessel. However, there 

were vessels in each dataset with a higher number of visiting ports than the other dataset, 

especially this was the case for Lloyd’s data with longer stings. Most of these long strings 

comprised several journeys per vessel, but not all of them. The measured edit distance scores 

had zero mean and low median implying high similarity between port visits for each 

individual vessel in the Lloyd’s compared with MPI data. These scores were reduced 

significantly when the total port visits by a vessel were compared considering different 

journeys. After taking different journeys per each vessel into account, there were still 

individual journeys with different visiting ports in Lloyd’s compared with MPI data. For 

example, an individual journey for a vessel might be a single visit to Auckland in MPI data, 

but multiple visits to other ports in Lloyd’s data. The order of the visiting ports by each vessel 

was also a source of discrepancy between the two data sets. The dissimilarity edit distance 

was considerably lower when the port visit strings were reordered alphabetically for each 

vessel, i.e., if the order of visiting ports in each journey did not matter.  

All the ports showed visit discrepancies between the MPI and Lloyd’s data as they had 

visits with a LD score greater than zero and these differences varied systemically between 

ports. These discrepancies were proportional to the number of visits they received. The 
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highest proportion of visit discrepancies belonged to Tauranga, Auckland, and Lyttelton with 

the highest number of port visits in both data sets. According to GLMM results, ‘flag’, ‘the 

last country’, and the ‘grouped vessel type’ were most important predictor variables that 

explained the differences in the MPI and Lloyd’s data sets measured by Levenshtein distance. 

Vessel type was related to the discrepancy probably because each the datasets had a different 

categorisation system for vessel types. That is, the data sets were not consistent in assigning 

vessels in the same category. For example, there were 12 vessel types in Lloyd’s date versus 

10 vessel types in MPI data, with research and dredge vessel type missing from the latter. 

Although the broader category of ‘grouped vessel type’ with eight categories shared in both 

datasets was used, the source of discrepancy persisted: especially because the categories used 

in the analysis were from MPI data merged into the dataframe containing LD scores for MPI 

and Lloyd’s data. Another reason was inconsistency between the datasets in recording the 

visiting ports for each vessel type. For instance, vessel type tug had the highest recorded 

number of visits in New Plymouth in Lloyd’s data whereas vessel types of container and 

bulk/oil were most frequent in this port in MPI data in 2016. Other variables related to LD 

scores were ‘flag’ and ‘the last country’, so there seem to be differences between the datasets 

in terms of the flag and the last country recorded for some of the vessels. In another work 

conducted by Institute Superiore Mario Boella in Italy to improve automatic recognition of 

port names transmitted by vessels, misspelling the port name, port code, and country name 

was a source of discrepancy between database and incoming data. They used Levenshtein 

Distance to determine destination and source ports while matching the strings of transmitted 

port names or codes with the ports details in database (Morisio et al., 2018). The data used in 

this report were gathered in written formats, e.g., filling offline electronic PDF forms and 

sending them back via email, and the extraction of information from these files are prone to 

errors. Current process of data acquisition which relies on offline forms has limited 

mechanism for data validation. This increases the likelihood of errors in the supplied data in 

both stages of entry by the vessel Master and when the information is recoded to a secondary 

data management system. 

In this study, a process was investigated to automate the extraction of ballast water 

discharge data from PDF forms. To do so, using several packages in R, the PDF files were 

transformed to text and the information was extracted from the texts, subsequently. There 

were issues facing this process handling check boxes or extraction off all the required 

information from the text regarding the volume of discharge. Due to difficulties in data 

extraction involving check boxes, the assumption had to be made based on the information in 

other parts, especially for the yes/no answers to the question related to the intention of ballast 
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water discharge. The reliability of the answers to this question were checked by cross 

referencing these answers with the volume of ballast water reported to be discharged by each 

vessel. As there was not good agreement between the answers to the intention of discharge 

and the reported discharge, this predictor was not used in the main analysis. 

Based on the findings of this study, the MPI 2016 data were not sufficiently different 

to justify the expense of purchasing the Lloyd’s data (at a substantial cost). If the results had 

indicated a considerable difference, then a value of information analysis (VoI) could be useful 

to decide about the cost incurred to MPI in return for the benefit from more data, but we 

consider this beyond the scope of the current report. VoI analysis is useful to weigh the costs 

and benefits of different monitoring and research options for removal of uncertainty (Bolam 

et al., 2019; Heath et al., 2016). For example, if Lloyd’s data was proved to contain more 

information than MPI data about vessels that bring higher risk to New Zealand ports, it would 

be worth considering the cost of purchasing that data for the benefit of reducing the 

uncertainty related to that. This would be possible by comparing the expected performance of 

the surveillance designs that have been generated using models developed by the two 

different sets of data. An overview of the utility of the MPI and Lloyd’s databases for 

quantifying port-to-port traffic in this report did not justify purchasing more data. 

Lloyd’s recorded many New Zealand domestic journeys of vessels such as the Cook 

Strait ferries which needed to be removed for analysis. The MPI database contains data on 

vessels less than 100 tonnes, including various types of international yachts. These data would 

be valuable for risk modelling for high-risk sites in New Zealand. The Lloyd’s data also 

lacked the port sensitivity that MPI data had, for example, Lloyd’s in some cases combined 

Opua into Auckland, and Akaroa into Christchurch. When cross referencing some of the 

cruise liners that berth in Opua from MPI data, they were recorded in Lloyd’s as arriving in 

Auckland. Opua and Akaroa are both currently considered high-risk sites and data on the 

vessels arriving in each of these ports would be valuable for risk modelling. Lloyd’s 2000 – 

2005 had data for 27 NZ ports, including Opua, but only 9 visits across the 6 years of the data. 

It would be worth enquiring whether Opua (as an example) had on occasion been combined 

into Auckland in these data as it hah for 2016, and whether Lloyd’s had aggregated some of 

the ports between their earlier and later data. There were journeys that were recorded in MPI 

data but not in Lloyd’s data and vice versa. MPI data were provided by vessel captains on 

arrival into NZ of their intended domestic travel. This intended travel may not have occurred, 

which may explain some of the discrepancies between the Lloyd’s and MPI port visits. MPI 

data had the advantage of only recording international arrivals and their intended destinations 

within NZ, thereby automatically excluding these types of trips from the database. The major 
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downfall of this, however, was that a vessel may not follow through with its signal of 

intention, leading to false reporting in the database. This comparison work was partially 

useful to quantifying these discrepancies. The finding of this study can be beneficial in 

updating current guidelines on data acquisition and curation while gathering data by MPI for 

continuously updating and informing the models of high-risk sites, developed in the next steps 

of this project.  A dataset comprised of MPI data (and data already purchased from Lloyd’s by 

MPI) will support model building for biofouling mass and BW discharge. The vessel 

characteristics and voyage features such as vessel type, arrival port, and dead weight tonnage 

from historical data (1998 - 2008) will be used to predict discharge port, discharge volume, 

and biofouling mass for contemporary data (2015 - 2017). Then, entry likelihood scores for 

each port will be calculated from ballast water discharge and biofouling exposure which will 

subsequently be utilised to allocate surveillance effort among sites. 

4.1 Recommendations for data acquisition 

As a significant proportion of the resource available to this study was consumed in 

data acquisition and curation in preparation of the main analysis, a few recommendations are 

made here so that marine biosecurity risk profiling information can be used in future strategic 

purposes. Data collection using offline forms has limited mechanism to validate data and is 

susceptible to errors during entry or re-coding into management systems. Shifting to online 

forms accompanied by a vessel check system, similar to what USA and Australia have 

recently adopted, will improve the efficiency of data collection and validation.  

The amount of free text in the spreadsheet currently used by ITT Target Evaluators 

(the ‘MPI Craft Work Schedule’) could be restricted and replaced by standardised answers for 

specific columns (i.e., drop-down lists) that apply to all vessel types. It is also suggested to set 

up forms which allow for the straightforward extraction of data, and we recommended that 

this is investigated and deployed. In its current form, these data would require substantial 

resources to extract into a usable format for analysis. The forms formatting is suggested to be 

improved so that tables, dates, and other information within each form are more consistent. 

Finally, the proposed volume of ballast water discharge is not required to be reported 

in the BBWD in its current form. This was required in New Zealand until 2017 and the 

reporting form in BW management guidelines had assigned a section for this purpose (Marine 

Environmental Protection Committee, 2018). In Australia and USA, such information on 

ballast water discharge is considered a requirement on the ballast water reporting forms. 

Gathering data on BW volume is recommended because it will help ballast water 

management and compliance auditing to be evaluated in a strategic and more efficient way. 
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5 Appendix A 

5.1 Data overview 

Several data sets were provided by MPI, NIWA, and Lloyd’s for this study and are 

summarised in Table 1 derived from Inglis (2018). The first three rows of this table contain 

the data used to build models to optimise the New Zealand’s marine biosecurity surveillance 

programme (Hatami et al., 2021). The marine surveillance data (3rd row in Table 1) provided 

by MPI contained 36235 records of vessel arrivals by New Zealand ports during 2012 – 2017 

and is called MPI data in this study. The data provided by Lloyd’s / NIWA from domestic 

vessel movements study contained 43592 records of vessel arrivals by New Zealand ports 

during 2000 – 2005 (5th row in Table 1). The data provided by Lloyd’s contained 9616 

records of vessel arrivals by New Zealand ports in 2016 (6th row in Table 1). These two last 

data sets form the Lloyd’s data in this study. The data that used for Levenshtein analysis were 

extracted from the datasets highlighted in grey in the table. More information about these 

datasets and details of data preparation are documented in part 2 and part 3 of Appendix A – 

sections 6.1 and 6.2. 
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Table 1. Summary of data available for developing a risk model for entry of NIMS to New Zealand shipping ports, taken from NIWA Project Management 
Plan (Inglis, 2018). 
ID Description Source  Period  No. 

records 
Potential use additional information 

1 New Zealand Biofouling 
and Ballast water 
Declarations (Historic) 

MPI  1998 - 
2008 

15745 Use to parameterize a predictive 
model of ballast discharge. 

This data set contains complete data from 
biofouling and Ballast Water Declarations but 
requires grooming to allow analysis. 

2 Vessel Biofouling 
Characterization study 
(Historic) 

MPI 
/NIWA 

2004 - 
2007 

508 Use to parameterize a predictive 
model of biofouling on arriving 
vessels. 
  

This dataset contains measures of biofouling on 
international vessels arriving in New Zealand 
ports and information about maintenance and 
voyage history of arriving vessels. 

3 Information report: Marine 
Surveillance data 

MPI 2012 - 
2017 

36235 Predicting biofouling and ballast 
water risk. 

This dataset contains vessel arrivals by New 
Zealand ports during 2012 – 2017, but the 
joined summary fields cover only the period 
2015 – 2017. 
 

4 New Zealand Biofouling 
and Ballast Water 
Declarations 

MPI  2016 998 Potentially use this subset of 
records to determine the 
biofouling and ballast water risk 
for each individual vessel 

- Keyed in data for all questions in the 
Biofouling and Ballast Water Declaration 
- Only 473 of 998 declarations have been keyed 
into an electronic format. 
 

5 Domestic Vessel 
Movements Study 
(Historic) 

Lloyd’s / 
NIWA 

2000 - 
2005 

43592 Compare historic risk profile of 
NZ ports with current risk profile. 

- Vessel arrivals by New Zealand port (2000–
2005) 

6 Vessel arrivals to NZ Ports Lloyd’s  2016 9616 Use vessels tables to calculate 
TWSA and the area of niches for 
each arriving vessel. 

- Vessel arrivals by New Zealand ports in 2016 
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5.2 Data preparation 

5.2.1 Lloyd’s data set 

Data purchased by MPI from the Lloyd’s were supplied to this study as several 

separate files for years 2000 – 2005 and 2016 that required cleaning and preparation before 

the analysis. Data for years 2000 – 2005 were built by combining several excel files 

containing information about the vessel characteristics (‘Ld_vessels_2000-2005.csv’), vessel 

movements (‘Client_place_moves2000-2005.csv’), the places the vessels visited 

(‘Ld_places_2000-2005.csv’), and vessel types (‘Ld_vessel_types.csv’). In the file related to 

the vessel types, there were 14 levels of generic type codes including B, C, D, F, G, L, M, O, 

P, R, T, U, X, and Y that represented bulk, bulk/oil, dredge, fishing, cargo, LNG/LPG 

(Liquefied Petroleum Gas Carrier), VPL (vehicle/livestock carrier), other, pass/roro 

(passenger), research, tanker, container, tug, and drill, respectively. The files containing 

information about the vessel characteristics and vessel types were merged based the unique 

generic type codes. Files related to vessel characteristics and vessel movements were merged 

by shared LMIU number, and files related to vessel movements and the visited places were 

merged by shared place ID number. Both files resulted from this merging were combined to 

build a master file with 43822 records with 2499 unique LMIU number. To simplify the 

comparisons between the data sets, some of the places were removed or renamed; for 

example, Mount Maunganui was renamed to Tauranga, and Port Chalmers was renamed to 

Dunedin. The visits to Chatham Islands, Doubtful Sound, Greymouth, Milford Sound, New 

Zealand, Opua, Stewart Island, Tarakohe, Westport, and Whakaaropai Terminal were 

removed from the data. The final Lloyd’s master file for years 2000 – 2005 consisted of 

43147 records with 2472 unique LMIU number and 48 variables related to vessel and journey 

features. The Lloyd’s data for year 2016 was prepared using the same steps above by 

combining several separate files purchased from Lloyd’s that carried information about vessel 

characteristics, vessel movements, vessel types, and the places the vessels visited. Tasman 

Bay was renamed to Nelson, string fragments “Terminal”, “Anch.”, and “(NZL)”, and visits 

to Maari Field, Maari SPM, Umuroa, Taharoa, and Westport were removed. The Lloyd’s 

2016 data had 9591 records with 1006 unique LMIU and 34 variables. Two Lloyd’s 2000-

2005 and 2016 data sets were combined and saved as a single file. Selected variables in the 

final file were "imo.number", "year", "gen.type", "gen.def", "place.name”, and "dwt” which 

represented IMO number, year, generic type code, vessel type, dead weight tonnage, and the 

places visited by vessels.  
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5.2.2 MPI data set 

The MPI data were provided as a single file “MPI_Vessel_data.csv” with 35235 

records and 28 variables. The Lloyd’s data only contains vessel movements for vessels over 

100 tonnes and therefore did not include most recreational vessels such as international 

yachts. The MPI data included all internationally arriving vessels irrespective of size. 

Therefore, it included the vessel types "Yacht”, “Yacht Catamaran”, “Yacht Trimaran", 

"Launch", and "Superyacht 30 Metre Plus". To be consistent with Lloyd’s data, these vessels 

were removed from MPI data. Data for MPI was available from 1 January 2012 until 30 April 

2017, so 2017 was removed from these data. The visiting places Christchurch, Marsden Point, 

and Invercargill were renamed to Lyttelton, Whangarei, and Bluff, respectively. Records 

related to ports Otago and Port Chalmers were combined to Dunedin, and visits to Chatham 

Islands, Waitangi, Westport, and Whenuapai were removed. The Lloyd’s and MPI data sets 

prepared here were visually compared in Appendix A – section 6.3. 

After assessing the similarities and discrepancies between the two datasets, it was 

decided to only use year 2016 data that were shared in both. To compare the datasets and for 

model fitting purposes, a consistent set of port names was needed that had to be contained in 

both datasets. While not ideal, as it potentially might cut out high risk sites, this was required 

to conduct further analysis using Levenshtein distance. To do so, year 2016 data for Lloyd’s 

and MPI data sets were matched by their common IMO numbers, which automatically 

excluded all non-valid IMO numbers that have been incorrectly recorded in the MPI data. It 

was investigated whether the vessels which could not be matched by IMO could be matched 

by another means. An additional six could be matched using vessel name, and there was one 

entry in MPI’s craft registration number column that matched with the call sign column in 

Lloyd’s. Ports Akaroa and Opua (previously merged with Bay of Islands) were in Lloyd’s but 

not in MPI data, so they were excluded. More details about comparing and matching the 

records of Lloyd’s and MPI datasets can be found in Appendix A – section 6.4. 

 

5.3 Visually comparing two data sets 

MPI and Lloyd’s datasets were visually compared to explore any similarity in the 

traffic that the New Zealand ports received each year. 
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Figure 1. Total annual number of vessel visits by port (top) and vessel type (bottom). L represents 
Lloyd’s 2000–2005 and 2016 data and M represents MPI 2012–2016 data. 
 

Figure 1 provide direct comparisons of the number of vessel visits for each port (top) 

and vessel type (bottom) between Lloyd’s (years 2000–2005 and 2016) and MPI (2012–2016) 

datasets. According to this figure, there was a substantial increase in the number of vessels 

arriving to New Zealand ports in the past decade, specially at Tauranga, Wellington and 

Whangarei. This increase was more obvious between years 2005 and 2016 in Lloyd’s data 

mainly due to an elevation in the vessel visits at the arrival ports of Tauranga, Picton, 

Auckland, Whangarei, and Wellington. The number of vessel visits at Lyttelton decreased in 

this period (Figure 1, top left). The sudden increase in the vessel visits from 2006 to 2016 in 

Lloyd’s data was accompanied by an increase in bulk and container vessels, although a 

substantial decrease in cargo vessels (Figure 1, bottom left). Tauranga has the largest number 

of vessel arrivals followed closely by Auckland in the MPI data (Figure 1, top right). This 
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corresponds with the Lloyd’s 2016 data, but not the 2000–2005 data, in which Auckland had 

the greatest number of arrivals. The MPI database shows similar trends to the Lloyd’s data, 

with container ships the largest arrival of all vessel types across all years, and bulk carriers 

second (Figure 1, bottom right). 

These data are further disaggregated into port arrivals by vessel type for Lloyd’s and 

MPI data in Figure 2 and Figure 3, respectively. The highest number of visits in Lloyd’s data 

were by container, cargo, bulk/oil, VPL, and tanker vessels, whereas container, bulk/oil, 

pass/roro, tanker, and cargo had highest visits in MPI data. According to Figure 2, Auckland, 

followed by Tauranga, Wellington, Nelson, Lyttelton, and Napier were more visited by 

containers. The number of visits by containers increased in Tauranga, Picton, and Napier, but 

decreased in Nelson. Auckland experienced an increase in containers in 2016, following a 

decrease from 2000 – 2005. Auckland, Tauranga, Napier, and Lyttelton were the ports most 

visited by cargo carriers. Bulk/oil vessels recorded the highest number of visits after container 

and cargo vessels and were dominate at Tauranga, Whangarei, Auckland, Napier, and 

Lyttelton. As illustrated in Figure 3, similar to Lloyd’s, containers had the highest number of 

visits and mostly arrived in large ports, namely Auckland, Tauranga, Lyttelton, Napier, 

Dunedin, and Wellington in MPI data. In MPI data, similar to Lloyd’s, bulk/oil vessels were 

highest in Tauranga and Whangarei, but less frequent in Auckland than in Napier and 

Lyttelton. Pass/roro and tanker vessels mainly visited Auckland and New Plymouth, 

respectively. Cargo vessels mostly visited Tauranga, Auckland, Whangarei, Napier, and 

Wellington in MPI data (Figure 3).  
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Figure 2. Comparison of the number of visits by vessel type for each port (Lloyd’s 2000-2005 and 
2016 data) 

 
Figure 3. Comparison of the number of visits by vessel type for each port (MPI 2012–2016 data) 

 
5.4 Comparing and matching the records 

The initial analysis assessed the similarities and differences in the MPI and Lloyd’s 

datasets. Table 2 summarises the total annual number of vessels with unique IMO number and 

the total annual number of port visits for both data sets. Only data for 2016 are available for 
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both datasets to use for comparison and the remainder of the analysis focuses on these data. 

After data cleaning described in Appendix A – section 6.2, and according to this table, 

Lloyd’s 2016 data contained 1006 unique vessels making 9,591 port visits whereas there were 

1,001 unique vessels in MPI data making 6,490 port visits.  

 

Table 2. A comparison of the total number of vessels with unique IMO number and total number of 
port visits in Lloyd’s data and MPI data for each year 

 
 
Year 

Total number of Vessels 

 with unique IMO 

 Total number of port visits 

Lloyd’s MPI  Lloyd’s MPI 
2000 876 -  7355 - 
2001 827 -  6443 - 
2002 875 -  6944 - 
2003 890 -  7706 - 
2004 846 -  7537 - 
2005 813 -  7163 - 
      
2012 - 925  - 5685 
2013 - 979  - 6000 
2014 - 957  - 6253 
2015 - 939  - 6152 
2016 1006 1001  9591 6490 

  

There were 922 vessels that are contained in both the MPI and Lloyd’s databases for 

2016 after port merging. These were matched with their individual International Maritime 

Organization (IMO) identifier. These vessels make 7,337 port visits in Lloyd’s and 6,226 port 

visits in MPI data. From the 922 vessels that are contained in both databases, there are 353 

vessels with a different number of port visits recorded between MPI and Lloyd’s data (Figure 

3). Two Cook Strait ferries with 463 and 1196 port visits caused inconsistency between two 

data sets. These ferries with frequent movement between Picton and Wellington were 

removed from the Lloyd’s data. Therefore, 920 vessels remained in both data sets with 6871 

port visits of common vessels for the Lloyd’s data.  
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Table 3. The difference in port visits recorded in MPI and Lloyd’s 2016 data for individual vessels 
Difference in the 
 number of port visits  

Number of vessels Vessel type 

0 569  
1 202  
2 70  
3 30  
4 17  
5 4  
6 7  
7 2  
8 3  
9 2  
10 1  
11 2  
12 2  
15 2  
16 1  
17 1  
20 1  
36 1  
46 1 Dredger 
66 1 NZ Flagged Product tanker 
114 1 NZ Flagged Product tanker 
463 1 A Cook Strait Ferry 
1196 1 A Cook Strait Ferry 
Grand Total 922  

 

Table 4 illustrates the number of unique and common visits for different vessel types 

in year 2016. Container, bulk/oil, and tankers are the vessel type with the highest number of 

visits in both data sets. Table 5 summarises the total number of visits by common vessels 

arriving in the ports merged from both data sets in 2016. Lloyd’s database contains 14 New 

Zealand ports for the 2016 arrival data and MPI has 16 ports. To have a consistent set of port 

names in both data sets, ports Akaroa and Opua (previously renamed as Bay of Islands in 

section 6.2) were removed from the analysis. 
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Table 4. The total number of vessel types with unique IMO number and the total number of port visits 
per vessel type in Lloyd’s data and MPI data for year 2016 

 
 
Vessel type 

Total number of Vessel types 

 with unique IMO 

 Total number of port visits 

per vessel type 

Lloyd’s MPI  Lloyd’s MPI 
Bulk/oil 374 370  2136 1600 
Cargo 83 52  496 273 
Container 145 165  3490 2892 
Dredge 6 -  202 - 
Ferry - 2  - 4 
Fishing 43 37  528 58 
LNG/LPG 8 -  139 - 
Other 18 62  75 110 
Pass / roro - 138  - 880 
Research 11 -  53 - 
Tanker 158 164  935 658 
Tug 20 7  757 10 
VPL 140 4  780 5 

 
Table 5. The total number of visits for common vessels arriving in the ports shared in both Lloyd’s 
and MPI data in 2016 
 
 
Port 

 Number of vessel visits for 
common vessels  

Number of vessel visits for 
vessels with unique IMO 

 Lloyd’s MPI  Lloyd’s MPI 
Akaroa  - 58  - 22 
Bay of Islands  - 44  - 25 
Auckland  1291 1204  384 360 
Bluff  230 215  151 144 
Dunedin  392 386  149 145 
Gisborne  133 129  112 108 
Lyttelton  691 626  278 258 
Napier  616 581  242 225 
Nelson  318 292  125 115 
New Plymouth  304 238  148 140 
Picton  76 72  54 52 
Taharoa  21 22  3 4 
Tauranga  1567 1286  496 470 
Timaru  282 251  132 130 
Wellington  535 509  228 230 
Whangarei  415 313  243 224 

 
 

5.5 GLMM model parameters and model comparison  

Parameter estimates and statistics of Generalized Linear Mixed model including flag, 

last country, and vessel type group as fixed effect (presented in this Table 6) and IMO number 

as random effect (presented in Table 7) are presented here. Table 8 summarises the results of 

model comparison using AIC and ∆AIC. 
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Table 6. Parameter estimates and statistics of Generalized Linear Mixed model including flag, last 
country, and vessel type group as fixed effect. Coefficient estimates, standard error, confidence 
interval, t value, and p-value are presented for each predictor. 
Predictors Estimates std. Error CI t value p-value 
(Intercept) 0.75 0.7 -0.62 – 2.13 1.07 0.283 
Flag AG -0.02 0.35 -0.70 – 0.66 -0.05 0.962 
Flag AN -0.05 0.6 -1.22 – 1.13 -0.08 0.937 
Flag AU 0.37 0.5 -0.62 – 1.35 0.73 0.467 
Flag BB -0.79 0.84 -2.43 – 0.86 -0.93 0.35 
Flag BM -0.21 0.41 -1.02 – 0.60 -0.51 0.613 
Flag BS -0.01 0.32 -0.64 – 0.61 -0.05 0.964 
Flag CK -0.4 0.68 -1.73 – 0.93 -0.58 0.559 
Flag CN 0.09 0.33 -0.55 – 0.73 0.27 0.787 
Flag CW 0.84 0.68 -0.49 – 2.18 1.24 0.216 
Flag CY 0 0.37 -0.72 – 0.73 0.01 0.993 
Flag DE 1.15 0.62 -0.06 – 2.37 1.86 0.063 
Flag DK 0.28 0.33 -0.38 – 0.93 0.82 0.411 
Flag DM -0.03 0.72 -1.45 – 1.39 -0.05 0.963 
Flag EQ 2.63 1.06 0.55 – 4.71 2.48 0.013 
Flag ES 0.7 0.82 -0.91 – 2.30 0.85 0.393 
Flag FJ -0.54 0.85 -2.21 – 1.13 -0.63 0.527 
Flag FO 2.94 0.85 1.27 – 4.61 3.45 0.001 
Flag GB 0.26 0.33 -0.39 – 0.91 0.8 0.425 
Flag GI 0.24 0.63 -1.00 – 1.48 0.37 0.708 
Flag GR -0.08 0.43 -0.92 – 0.76 -0.19 0.852 
Flag HK 0.15 0.31 -0.46 – 0.77 0.49 0.621 
Flag HR 0.1 0.84 -1.54 – 1.74 0.12 0.906 
Flag IM 0.09 1.14 -2.15 – 2.33 0.08 0.935 
Flag IN -0.4 0.58 -1.55 – 0.74 -0.69 0.489 
Flag IT -0.35 0.6 -1.53 – 0.83 -0.58 0.561 
Flag JP -0.3 0.47 -1.22 – 0.61 -0.65 0.518 
Flag KR 0.82 0.52 -0.19 – 1.83 1.59 0.111 
Flag KY -0.21 0.37 -0.93 – 0.52 -0.56 0.576 
Flag LR 0.01 0.32 -0.61 – 0.63 0.03 0.977 
Flag MH -0.04 0.31 -0.66 – 0.58 -0.13 0.9 
Flag MT -0.06 0.33 -0.71 – 0.59 -0.19 0.847 
Flag NL 0.52 0.37 -0.20 – 1.24 1.41 0.157 
Flag NO -0.16 0.34 -0.83 – 0.52 -0.45 0.651 
Flag NZ 2.78 0.45 1.89 – 3.66 6.12 <0.001 
Flag PA 0.09 0.31 -0.51 – 0.70 0.3 0.762 
Flag PH -0.5 0.85 -2.16 – 1.16 -0.59 0.553 
Flag PK -0.45 0.58 -1.60 – 0.69 -0.78 0.435 
Flag PT -0.14 0.41 -0.95 – 0.66 -0.35 0.73 
Flag RU 0.59 0.54 -0.48 – 1.65 1.08 0.28 

Table 6 (continued) 
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Predictors Estimates  std. Error  CI t value p-value 
Flag SA -0.48 0.47 -1.40 – 0.44 -1.02 0.305 
Flag SE -0.19 0.46 -1.08 – 0.71 -0.41 0.682 
Flag SG 0.15 0.31 -0.46 – 0.77 0.49 0.621 
Flag TO -1.4 1.08 -3.52 – 0.71 -1.3 0.194 
Flag US 0.52 0.61 -0.68 – 1.72 0.85 0.393 
Flag VU 0.23 0.57 -0.89 – 1.34 0.4 0.692 
Last country Argentina -0.29 0.66 -1.58 – 1.01 -0.43 0.666 
Last country Australia -0.06 0.63 -1.30 – 1.18 -0.09 0.93 
Last country Bahamas -0.09 1.01 -2.08 – 1.89 -0.09 0.927 
Last country Brazil -0.49 0.68 -1.83 – 0.84 -0.72 0.469 
Last country Brunei Darussalam -0.69 0.71 -2.08 – 0.71 -0.96 0.335 
Last country Canada 0.11 0.69 -1.24 – 1.45 0.16 0.875 
Last country Chile -0.5 0.66 -1.80 – 0.81 -0.75 0.454 
Last country China -0.22 0.63 -1.46 – 1.03 -0.34 0.733 
Last country Christmas Island 0.26 0.79 -1.29 – 1.82 0.33 0.738 
Last country Cook Islands -0.03 0.71 -1.43 – 1.37 -0.04 0.97 
Last country Costa Rica 0.15 1 -1.82 – 2.12 0.15 0.879 
Last country Ecuador -0.25 1.01 -2.23 – 1.72 -0.25 0.801 
Last country Falkland Islands -1.61 1.01 -3.58 – 0.36 -1.6 0.109 
Last country Fiji -0.02 0.64 -1.27 – 1.23 -0.03 0.975 
Last country France -0.77 1.03 -2.78 – 1.25 -0.75 0.456 
Last country French Polynesia 0.22 0.65 -1.05 – 1.49 0.34 0.736 
Last country Hong Kong  -0.03 0.64 -1.29 – 1.23 -0.05 0.964 
Last country India -0.95 0.93 -2.77 – 0.87 -1.02 0.307 
Last country Indonesia -0.03 0.64 -1.28 – 1.21 -0.05 0.958 
Last country Ireland -0.51 1.01 -2.49 – 1.48 -0.5 0.615 
Last country Japan -0.05 0.64 -1.30 – 1.20 -0.08 0.935 
Last country Kiribati -0.68 0.87 -2.39 – 1.03 -0.78 0.437 
Last country Korea -0.05 0.64 -1.30 – 1.20 -0.08 0.935 
Last country Malaysia 0.05 0.65 -1.21 – 1.32 0.08 0.936 
Last country Mauritius -0.83 1.01 -2.82 – 1.15 -0.82 0.41 
Last country Micronesia -0.29 0.87 -2.00 – 1.43 -0.33 0.744 
Last country Morocco -0.85 1 -2.82 – 1.12 -0.84 0.399 
Last country Nauru -0.71 1.01 -2.69 – 1.26 -0.71 0.479 
Last country New Caledonia -0.06 0.64 -1.32 – 1.20 -0.1 0.923 
Last country New Zealand -0.07 0.73 -1.50 – 1.36 -0.1 0.924 
Last country Niue -0.36 0.88 -2.09 – 1.37 -0.4 0.686 
Last country Norfolk Island 1.65 1.06 -0.42 – 3.72 1.56 0.119 
Last country Northern Mariana Islands 0.25 0.74 -1.20 – 1.71 0.34 0.733 
Last country Oman -0.81 0.74 -2.26 – 0.65 -1.09 0.277 
Last country Panama 0.03 0.64 -1.21 – 1.28 0.05 0.959 
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Table 6 (continued) 

Predictors Estimates std. Error CI t value p-value 
Last country Papua New Guinea -0.28 0.72 -1.69 – 1.13 -0.39 0.694 
Last country Peru -0.19 0.93 -2.01 – 1.63 -0.2 0.838 
Last country Philippines -0.06 0.64 -1.32 – 1.20 -0.09 0.927 
Last country Portugal -0.57 1.01 -2.54 – 1.41 -0.56 0.573 
Last country Qatar -0.49 0.9 -2.24 – 1.27 -0.55 0.586 
Last country Russia -0.35 0.84 -2.00 – 1.30 -0.42 0.674 
Last country Samoa -0.61 0.74 -2.05 – 0.83 -0.83 0.409 
Last country Samoa, American -0.29 0.67 -1.61 – 1.03 -0.44 0.663 
Last country Saudi Arabia -0.4 0.69 -1.75 – 0.95 -0.58 0.561 
Last country Singapore 0.15 0.64 -1.10 – 1.40 0.23 0.817 
Last country Solomon Islands 0.1 0.69 -1.25 – 1.45 0.14 0.885 
Last country South Africa 0.31 0.79 -1.23 – 1.85 0.39 0.694 
Last country Spain -0.23 0.75 -1.71 – 1.25 -0.31 0.758 
Last country Sri Lanka 0.77 1.01 -1.20 – 2.74 0.76 0.445 
Last country Taiwan -0.21 0.75 -1.67 – 1.26 -0.27 0.784 
Last country Thailand 0.35 0.82 -1.25 – 1.95 0.43 0.669 
Last country Tokelau 2.15 1.12 -0.05 – 4.35 1.91 0.056 
Last country Tonga -0.02 0.65 -1.30 – 1.25 -0.04 0.971 
Last country United Arab Emirates -0.46 0.66 -1.75 – 0.83 -0.7 0.482 
Last country United States of America -0.03 0.64 -1.28 – 1.22 -0.05 0.959 
Last country Unknown -0.4 0.75 -1.86 – 1.07 -0.53 0.597 
Last country Vanuatu 0.09 0.69 -1.27 – 1.45 0.13 0.894 
Last country Vietnam -0.39 0.67 -1.71 – 0.93 -0.58 0.562 
Craft Type Grouped Container -0.36 0.08 -0.52 – -0.20 -4.38 <0.001 
Craft Type Grouped Cruise Liner 0.02 0.16 -0.29 – 0.32 0.1 0.92 
Craft Type Grouped Fishing -0.41 0.33 -1.06 – 0.25 -1.22 0.223 
Craft Type Grouped General Cargo -0.51 0.12 -0.75 – -0.27 -4.11 <0.001 
Craft Type Grouped Naval -2.08 0.53 -3.12 – -1.04 -3.92 <0.001 
Craft Type Grouped Other -0.19 0.14 -0.47 – 0.08 -1.4 0.161 
Craft Type Grouped Roll On/Roll Off -0.65 0.1 -0.84 – -0.45 -6.56 <0.001 
Craft Type Grouped Tanker -0.02 0.08 -0.18 – 0.13 -0.28 0.776 

 
 
Table 7. The GLMM estimates for random effect IMO with 2313 observations and 908 IMO numbers, 
σ2 = 0.31, τ00 (random-intercept-variance, or between-subject-variance) = 0.3, ICC (Intraclass 
Correlation Coefficient) = 0.49, Marginal R2 = 0.16, and Conditional R2 = 0.57 

Groups Name Variance Std.Dev. 
IMO (Intercept)   0.3 0.54 
Residual  0.31 0.56 
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Table  8. Model comparison using AIC and ∆AIC. Null and selected models are highlighted in red.  
Model   Covariates  

AIC ∆AIC Flag Last country Vessel type First port 
1 9398.91 0.00 X X X  
2 9402.02 3.11 X X X X 
3 9428.46 29.55 X  X  
4 9519.10 120.18 X    
5 9714.71 315.80  X   
6 9733.06 334.15   X  
7 9769.55 370.64    X 
Null 9750.22 351.31     
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