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1. Executive summary

Commonly, trade restrictions and border inspection rates for goods susceptible to high
threat pests or diseases are made based on the current distribution of a pest or dis-
ease. Specifically, if a country is known to have the threat, it will typically experience
greater border inspection rates and/or be required to meet additional obligations (e.g.
treatments or other restrictions) before the susceptible goods are accepted by a recipi-
ent country. While this approach is useful for allocating border surveillance for pests
or diseases that have static or slow moving distributions, it is highly problematic for
emerging threats that are fast spreading and may not be immediately detected by ex-
porting countries.

Here, we propose a novel and pragmatic method that integrates border intercep-
tions, trade data, pest occurrence records and climate suitability models to estimate the
exposure risk of potential and current trading partners obtaining an established pop-
ulation of a new high threat pest or disease. The purpose of the model is to estimate
country-level establishment exposure of such pests/diseases as a function of known
risk commodities imported from infected countries. The output of this model is in-
tended to be used with other risk analyses conducted by the Australian government to
inform risk-based allocation of border screening resources. The model focuses solely
on risk associated with trade, it does not account for other high risk pathways such
as hitchhikers on passenger luggage, mail, air-cans, illegal trade, or natural dispersal
across country borders. We illustrate this method using brown marmorated stink bug
(BMSB; Halyomorpha halys) and Australian interception data as a case study.

We found that, irrespective of whether the model was parameterised using BMSB-
specific interception or general contamination (i.e. presence of any organism) data,
the United Kingdom, the Netherlands, Poland, Mexico and Sweden were amongst the
countries most exposed to incursion and subsequent establishment of BMSB. Further-
more, our model identified the BMSB vulnerable tariff codes that are likely to introduce
the greatest number of hitchhikers into Australia. For BMSB specifically, the highest
risk tariffs were HS codes 9401 (seats), 8609 (containers) and 8701 (tractors), while for
general contaminations (i.e. the presence of any foreign organism) codes 0810 (fresh
fruit), 7318 (screws and bolts) and 8708 (motor vehicles) pose the greatest risk.

We believe this model is a substantial improvement over others that are currently
available to biosecurity practitioners. First and foremost, our model was designed
with the end-users (biosecurity practitioners) in mind. As a consequence, the analyti-
cal workflow aims to maximise the use of internally collected border surveillance data
(e.g. interception records) and integrate these data with other publicly available data
(e.g. trade data and climate data). Second, the workflow is applicable to any plant
pest or disease that is predominately spread via international trade of commodities.
Third, relative to standard pathway models that focus on identifying risk pathways
of entry into an individual country, our model is both inwards and outwards focused,
such that it estimates exposure risk within Australia as well as among countries. Fi-
nally, and perhaps most importantly, our method explicitly integrates pathway anal-
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ysis with climate suitability modelling. This effectively means our model attempts to
account for two fundamental geographic barriers to establishment of a pest or disease:
1) the ability of the pest/disease to reach a location; and 2) the suitability of the cli-
mate at the destination. This enhances standard pathway analyses, which generally
ignore climatic suitability, and is also contrary to standard invasive species distribu-
tion modelling (sometimes termed risk maps in the invasive literature), which tend to
focus on modelling climate suitability without accounting for pathways of entry and
subsequent post-border movement of propagules.



2. Introduction

Changing climate and increasing globalisation of human movement and trade has dra-
matically increased the exposure of countries to new pests and diseases that can have
devastating economic, environmental and social impacts. We need only look at the re-
cent COVID-19 pandemic to see how quickly an emerging threat can spread and cause
large-scale impacts to both social values and global economies. The difficulty faced by
governments, industry and environmental practitioners is how to develop a strong and
efficient border biosecurity system that can mitigate the risk of new pests and diseases
entering, establishing and spreading while also allowing for increased global trade and
human movement.

As inspection and surveillance resources are finite, governments and other biose-
curity practitioners have used a variety of risk-based tools to help inform decisions of
how and where to allocate resources. Most notable among these have been: 1) pest and
disease prioritisation tools such as the "Weed Risk Assessment" (e.g. Pheloung et al.,
1999); 2) pathway analyses for identifying high risk modes of transport and points of
entry (Douma et al., 2016; Tingley et al., 2018); and 3) risk maps, commonly in the form
of suitability maps (Venette et al., 2010; Elith, 2017; Venette, 2017), but sometimes also
other components (Camac et al., 2019, 2020), for informing post-border surveillance.
While these tools have been critical for providing risk-based measures for allocating
resources among species and pathways, and across space, a need remains for a prag-
matic method that can estimate the establishment exposure to a new emerging pest or
disease due to interactions with existing and potential trading partners.

Commonly, trade restrictions and border inspection rates for goods susceptible to
high threat pests or diseases are based on the current distribution of the relevant pest
or disease. Specifically, if a country is known to have the threat, it will typically experi-
ence greater border inspection rates and/or be required to meet additional obligations
(e.g. treatments or other restrictions) before the susceptible goods are accepted by a
recipient country. While this approach is useful for imposing trade restrictions and al-
locating pathway risk mitigations for pests or diseases that have static or slow moving
distributions, it is highly problematic for emerging threats that are fast spreading and
may not be immediately detected by exporting countries, thereby posing a secondary
risk to to other countries.

Brown marmorated stink bug (BMSB; Halyomorpha halys) is one such pest. It is a
highly polyphagous (>100 hosts) plant pest, that is not only a significant household
nuisance pest (Rice et al., 2014; Fraser et al., 2017, Horwood et al., 2019), but also poses
a substantial threat to horticulture worldwide (Rice ef al., 2014). Over the last two
decades, it has rapidly spread from its native range in East Asia (China, Japan, the
Korean Peninsula and Taiwan) into Europe, North America and Canada, and in doing
s0, has caused significant agricultural losses (Rice ef al., 2014; Valentin et al., 2017).

Currently, Australia is free of BMSB despite large regions estimated to be climatically
suitable (Zhu et al., 2012; Fraser et al., 2017; Kriticos et al., 2017). However, maintain-
ing this pest-free status is becoming increasingly difficult as Australians import larger
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quantities of potentially contaminated goods from an expanding list of countries; ulti-
mately increasing the risk posed to Australia’s billion dollar horticultural industry.

Interception data coupled with expert opinion indicate that for both Australia and
New Zealand the number of BMSB arrivals and the likelihood of establishment will be
greatest when the pest overwinters in the Northern Hemisphere. This is because when
BMSB overwinters, it aggregates in large numbers in both residential and industrial
buildings. As a consequence, BMSB is a common stowaway in passenger luggage and
imported bulk freight, cargo and vehicles (DAWR, 2017; Ormsby, 2018). Moreover,
these stowaways can be found in large numbers, thereby rendering it more likely to
establish on arrival as it can more easily overcome possible founder effects that inhibit
the successful establishment of many other pests (DAWR, 2017).

Australia and New Zealand have both attempted to minimise their exposure to
BMSB introductions by imposing higher inspection rates and additional phytosanitary
restrictions for countries with known established populations (DAWR, 2017; Ormsby,
2018). However, the effectiveness of this additional risk mitigation strategy at reducing
the exposure of Australia and New Zealand to BMSB incursions, or other fast spread-
ing pests/diseases, will ultimately depend on the accuracy and speed with which risk
countries are identified.

A major difficulty in identifying countries that that may contain an established pop-
ulation of a high threat pest, is that monitoring and reporting is not uniform among
countries. This uneven effort could be due to a variety of reasons such as lack of
taxonomic expertise and/or surveillance infrastructure, countries actively withhold-
ing information to maintain market access or misidentification of a threat as a similar
endemic species. The consequence is that a pest or disease may go unreported until
populations become large and impacts high, by which time other countries may have
become unwittingly exposed to the new threat. For example, in many countries, BMSB
populations have not been detected and reported until they formed large overwin-
tering aggregations (DAWR, 2017), by which time Australia and New Zealand would
have begun receiving imports from those countries that could potentially contain large
numbers of BMSB (DAWR, 2017; Ormsby, 2018). As such, in order to enhance bor-
der screening activities of imported goods to detect fast spreading, high threat pests, a
risk-based tool is required to estimate the country-level exposure to establishment as a
function of international trade between known infected and uninfected countries.

Here, we propose a pragmatic method that integrates border interceptions, trade
data, pest occurrence records and climate suitability models to estimate the exposure
risk of potential and current trading partners obtaining a new high threat pest or dis-
ease. The purpose of the model is to estimate country-level establishment exposure of
such pests/diseases as a function of known risk commodities imported from infected
countries. The output of this model is intended to be used with other risk analyses
conducted by the Australian government to inform risk-based allocation of border
screening resources. The model focuses solely on risk associated with trade, it does
not account for other high risk pathways such as hitchhikers on passenger luggage,
mail, air-cans, illegal trade, or natural dispersal across country borders. We illustrate
this method using brown marmorated stink bug (BMSB; Halyomorpha halys) and Aus-
tralian interception data as a case study.



3. Methods

Our objective was to develop a method that can readily used by biosecurity agencies
for estimating the exposure of current and potential trading partners to emerging high
threat pests and diseases. In order to achieve this, we created a work flow that inte-
grates pest interception data commonly collected by government biosecurity agencies
and integrate these data with publicly available data on trade flows, pest occurrence
records, human population and long-term climatic data (Fig. 3.1).
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Figure 3.1.: Workflow for estimating trading partner exposure risk for high threat pests
or diseases

At its foundations, the work flow is based on the principle that for a pest to success-
tully establish it must first overcome at two geographic barriers (Catford et al., 2009),
namely:

1. can it reach the location of interest (i.e. contamination rates)?
2. are the abiotic conditions suitable (e.g. climate suitability)?

In the ideal case, there should also be a third barrier — the suitability of the biotic
environment (e.g. presence of host/food). However, measures of biotic suitability will
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vary considerably among species and are typically difficult to source at the appropriate
resolution and extent required for this analysis. As such, our work flow focuses on
the first two barriers and implicitly assumes that biotic suitability is uniform across
geographic space, while acknowledging that this is unlikely to be the case in most
circumstances.

In the following sections we outline the data sources and statistical models used to
estimate both arrivals and climatic suitability. We then explain how these pieces of
information can be integrated to derive a measure of exposure risk for each potential
trading partner currently believed to be uninfected by BMSB.

3.1. Estimating climate suitability

For most pests, climate is likely to be the major abiotic barrier to establishment upon
arrival, especially at large spatial scales (Thuiller et al., 2005; Aratjo & Rozenfeld, 2014;
Higgins & Richardson, 2014). The geographic distribution of suitable climate can be
estimated using a wide variety of approaches including climate matching algorithms
(e.g. CLIMATCH, CLIMEX’s climate matching algorithm; Crombie et al., 2008; Kriticos
et al., 2015), environmental convex hulls and Range Bagging (e.g. Drake, 2015), correla-
tive species distribution models (e.g. Maxent Phillips ef al., 2006), physiological models
(e.g. NicheMapper; Kearney & Porter, 2017), semi-mechanistic models (e.g. CLIMEX;
Kriticos et al., 2015), or when data are poor, expert-derived suitability maps (e.g. Mar-
tin et al., 2015). Many tools exist, and there are diverse opinions on how to use them,
but there remains no strong evidence of a single best approach for predicting an inva-
sive species’ potential distribution (Barry et al., 2015; Elith, 2017). As a consequence,
our work flow is agnostic as to how abiotic suitability is estimated. The only condi-
tion required is that the output of your climate suitability model must be assumed to
be proportional to the probability of establishment given a viable pest population is
present at that location. We strongly recommend users consult Camac et al. (2020) to
obtain practical guidance on how to robustly estimate a species” climatic suitability.

The potential distribution of brown marmorated stink bug (Halyomorpha halys) has
been approximated using a variety of methods such as CLIMEX (Kriticos et al., 2017),
Maxent (Zhu et al., 2012; Fraser et al., 2017), Random Forests (Fraser et al., 2017), Sup-
port Vector Machines (Fraser et al., 2017) and ensembles of multiple of these methods
(Fraser et al., 2017). While some models exhibit some similarities (e.g. Eastern USA is
almost always classified as suitable) substantial differences also exist between models
(e.g. Appendix Fig A.1). This is particularly obvious when examining the distribu-
tion of suitable climate in Australia predicted by the different models. In the CLIMEX
model, much of the central and north-east coast of Australia is estimated to be highly
suitable. By contrast, the Maxent models compiled by Zhu et al. (2012), and to a lesser
degree those reported by Fraser et al. (2017), suggest that the south-east and south-
west of Australia are most optimal. Again, there are numerous reasons for such dis-
crepancies, including differences in the choice of covariates or constraining factors,
differences in the data sources used for parameterisation and validation, and varying
assumptions underlying the models.

As there was little consistency in covariates used among published models, we es-
timated the geographic distribution of climate suitability for this species using a re-
cently proposed method known as range bagging (Drake, 2015). Range bagging is an
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algorithm that uses presence-only data to estimate the environmental limits of species’
habitat by subsetting the multidimensional environments (to user-defined levels of di-
mensionality), and then using convex hulls to estimate boundaries in each subset of
environmental dimensions. Range bagging repeatedly fits models to a random assort-
ment of occurrence samples (and covariate choices) and averages the outcome by using
votes (how often a given environment occurs inside niche boundaries) on the ranges
of convex hulls obtained from bootstrap samples across all the environmental dimen-
sions. Effectively, its output is the proportion of models that consider a given location
has suitable climate. For example, a suitability score of 0.1 would indicate only 10%
of the estimated convex hulls ensembled deemed that location suitable. By contrast,
a score of 0.9 would indicate that 90% of estimated convex hulls deemed that location
climatically suitable.

The approach has seen recent applications to invasion biology, and appears promis-
ing in the context of biosecurity. Part of the appeal for this approach is that no ab-
sences or background data are required — presence data are sufficient (Camac et al.,
2020). This in turn removes a number of subjective decisions required in the modelling
process and instead focuses solely on the data that we do have — presence locations.
The method may also reduce inaccuracies that can arise from projecting to novel envi-
ronmental conditions. This is because, unlike some other methods (e.g. Maxent), the
method does not attempt to estimate response curves, but rather defines convex hull
boundaries in environmental space based on known occurrences, whereby everything
within the hull is considered suitable and everything outside it is deemed unsuitable.
Another major advantage of range bagging is that it can readily be used to deal with
uncertainty in covariate selection. This is done by specifying low dimensionality (e.g.
2-dimensions) and allowing the algorithm to randomly select from among a suite of
possible covariates — effectively resulting in an ensemble of hundreds of competing
models.

Here, we used the range bagging algorithm with dimensionality set to 2 (meaning
only two covariates are fitted at a time), the number of bootstrapped models set to 100
and the proportion of occurrence records used per model set at 0.5. We allowed the
algorithm to sample from all 19 WorldClim 2 (Fick & Hijmans, 2017) bioclimatic pa-
rameters (i.e. BIO01 to BIO19) derived from the published 2.5 minute (approximately
5 km resolution) raster layers. We used ensembles of "simple" two-dimensional mod-
els in order to minimise biases associated with model over-fitting and collinearity, and
thus, maximise the model’s transferability into novel environments (Camac et al., 2020).
Work by Breiner et al. (2017) has found that using ensembles of small models, each with
only two variables, often outperforms standard SDM methods.

We used occurrence records of Halyomorpha halys collated by Kriticos et al. (2017).
Prior to running the range bagging algorithms we first cleaned these occurrence records
by using cleaning routines in the recently published CoordinateCleaner R package
(Zizka et al., 2019). Specifically, we removed records that:

1. had equal latitude and longitudes or within 0.5-degrees radius of coordinates 0,0;

2. were within a 5 km radius of a capital city;'

1In databases such as GBIF, if a record does not have accurate coordinates, sometimes coordinates
are entered as centroids of either the country of detection or nearest capital city. While such coordinates
are useful for providing information on the country or province of the record, they will be too coarse
when estimating the climatic suitability of a species.
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3. were within a 10 km radius of the centroid of a country or province;

4. were within 1-degree radius around the GBIF headquarters in Copenhagen, Den-
mark;

5. were within 100 m radius around known biodiversity institutions;
6. were located in the ocean;

We also removed duplicate records and thinned occurrence records to one point per
2.5 arc-minutes (the spatial resolution of the WorldClim 2 climate data). Following
this, we removed all occurrence records that were outside known countries of estab-
lishment as verified by the Australian Government (Table 3.1). This ensured that the
remaining occurrences were most likely from established populations, and thus suit-
able for inclusion in the range bagging analysis”.

Subsequently, models were fitted and then projected globally at 2.5 minute resolu-
tion. The outcome of this approach (Fig 3.2) was a suitability map that appeared to be
in between the CLIMEX model and the Maxent model produced by Kriticos et al. (2017)
and Zhu et al. (2012), respectively (See Appendix Fig A.1), with highest suitability in
Europe, western Russia, eastern and central USA, South Africa, northern Argentina
and eastern and south-western Australia.

Climate suitability

0.00.10.20.30.4050.60.70.80.91.0

-100

150 100 50 0 50 100 150

Figure 3.2.: Estimated climate suitability for brown marmorated stink bug. Suitability is
the proportion of ensembled convex hulls that identify a location as climati-
cally suitable across bootstrapped combinations of environmental variables.

2Note that, if such an internal list of infected countries is not available, one can use country statuses
defined in CABI.
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3.2. Estimating the nhumber of pest arrival events for
each trading partner

3.2.1. BMSB interceptions & general contamination data

To estimate the number of BMSB arrival events for current and potential trading part-
ners we integrated three datasets collated and supplied by the Australian Department
of Agriculture, Water and Environment (DAWE). The first of these was an internally
reviewed and verified list of all countries known to contain established BMSB popula-
tions (Table 3.1). This list was used to identify 30 potential BMSB source countries. The
second dataset contained 560 BMSB border interceptions that occurred between 2004
and 2018. Here, each record identified the consignment type as defined by HS code
(i.e. Harmonized Commodity Description and Coding System; see Table A.1) and the
likely country of origin. Some information was also available on the number and status
(alive/dead) of bugs detected, however, this these details were not always recorded
and varied significantly in how they were reported (i.e. counts estimated quantita-
tively or qualitatively). As such, for the purposes of this analysis, a BMSB interception
included the detection of any bugs (alive and dead) on imported consignments. Invari-
ably this meant that our model does not differentiate between interceptions containing
few individuals relative to those containing hundreds, with the latter more likely to
result in a viable established population.

Apart from providing us with BMSB interceptions, the dataset was also used to iden-
tify 95 BMSB susceptible tariffs (i.e. any HS codes with at least one BMSB interception).
The third dataset was derived from the Integrated Cargo System (ICS) for the period
between 2013 to 2018. This dataset contained annual counts of the total number of con-
signments imported into Australia, the number of border inspections and the number
of detected contaminations for all 4-digit HS tariff codes (i.e. Harmonized Commodity
Description and Coding System) and most BMSB source countries. These data were
used to estimate the proportion of consignments inspected at the border. However, for
some countries we were unable to source ICS data (Table 3.1), and where this occurred
the proportion of consignments inspected was approximated using the median inspec-
tion rate across BMSB source countries for the relevant HS code/year °. In addition to
this, for countries where we had ICS data, we also extracted the general contamination
counts. Here, contamination refers to the presence of any organism in a consignment
and not just those associated with BMSB. We included contamination counts because
they provide a secondary measure from which to model pest arrivals. This can be par-
ticularly useful where there are few or no species-specific interceptions (e.g. new pest
or disease), or in situations where species-specific interceptions are considered unreli-
able or not representative (e.g. biased inspection effort).

The final integrated dataset contained BMSB interceptions and general contamina-
tions as well as the proportion of consignments inspected for each HS code by source
country. Preliminary examination of the data between 2013 and 2018 revealed that
BMSB had been intercepted 159 times on goods coming from 9 countries with known
infestations. Italy, the USA and China had the highest numbers of recorded BMSB in-
terceptions, followed by Japan and Romania, and lastly Canada, Russia, France and

3We deemed the median appropriate because for many cases, the variability in inspection rates for a
high-risk tariff in a given year across infected countries was small. Moreover, sample sizes within tariff
by year combinations were too small <4 to use reliably use imputation methods.
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Germany, who each had 1 interception. Similarly, Italy and the USA also had the
highest general contamination counts and were among the countries that traded the
greatest numbers of BMSB-susceptible tariffs (Table 3.1).

Table 3.1.: Potential source countries with total counts of BMSB interceptions and con-
taminations (i.e. the presence of any organism in a consignment) observed
between 2013 and 2018. N tariffs refers to the number of BMSB-susceptible
HS codes exported to Australia. Contamination refers to the number of con-
signments that contained a presence of any organism. Missing refers to coun-
tries for which we were unable to source appropriate ICS data. Dem. People’s
Rep of Korea (i.e. North Korea) is included as a source country but does not
officially export goods.

Country Range N tariffs Interceptions Contaminations
Italy Invaded 93 78 1533
USA Invaded 95 44 2849
China Native 95 25 Missing
Japan Native 88 6 1575
Romania Invaded 71 2 12
Canada Invaded 91 1 Missing
Russian Federation Invaded 73 1 9
France Invaded 93 1 297
Germany Invaded 93 1 1461
Rep. of Korea Native 92 0 Missing
Belgium Invaded 91 0 Missing
Czechia Invaded 84 0 Missing
Chile Invaded 69 0 Missing
Bulgaria Invaded 61 0 Missing
Malta Invaded 47 0 Missing
Kazakhstan Invaded 45 0 Missing
Bosnia Herzegovina Invaded 32 0 Missing
Rep. of Moldova Invaded 5 0 Missing
Austria Invaded 87 0 9
Greece Invaded 74 0 9
Slovenia Invaded 73 0 9
Turkey Invaded 85 0 56
Spain Invaded 92 0 499
Serbia Invaded 58 0 4
Hungary Invaded 70 0 34
Croatia Invaded 60 0 3
Switzerland Invaded 88 0 22
Slovakia Invaded 66 0 122
Georgia Invaded 13 0 0
Dem. People’s Rep. of Korea Native 0 NA NA

10
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3.2.2. Trade data

To get a global and standardised measure of trade flow of BMSB-susceptible material
between source countries and all other countries we extracted export statistics from the
United Nations Comtrade database (UN Comtrade; https://comtrade.un.org).
This database is the largest publicly accessible repository of international trade data,
with over 3 billion records of import and export trade statistics collated since 1962.
Specifically, we extracted the annual value (in USD) of exports of each of the 95 HS
tariff codes from all BMSB source countries to each of their importing partners.

Trade value statistics relevant to Australia between 2013 and 2018 were then merged
with the general contamination dataset such that each susceptible tariff code imported
from a BMSB source country now had an estimated annual trade value. However, as
imported consignments varied in inspection rates and because we did not have data
on values of inspected consignments, we multiplied the trade value by the propor-
tion of consignments inspected. This effectively gave us an estimate of the trade value
inspected by Australian border authorities. While this is the best we had available,
it invariably introduces a strong assumption that all consignments from a particular
tariff-country-year combination are of equal value/size. After removing country by
tariff combinations with zero border inspections — for which we cannot infer exposure
risk — our final dataset contained 4306 rows of BMSB interception and general contam-
ination count data.

3.2.3. Count model

Next we built Bayesian Generalised Additive Mixed Models (GAMMs) that modelled
annual counts of BMSB interceptions and general contaminations, y;;, for each combi-
nation of country of origin, i, by tariff, j, by year, ¢, as a function of the logged trade
value (USD) with random intercept effects for country of origin, ¢;, tariff code, ¢;, and
year, €;:

Yijt = o+ USDyje +6; + €5 + &4 (3.1)

We included random effects for four critical reasons: 1) they provide a convenient
method for appropriately accounting for the non-independent structure of observa-
tions within years, country of origin and tariff codes; 2) they allow us to estimate
group-level effects without substantially increasing the degrees of freedom; 3) they
allow estimation of group-levels with few observations through a method referred to
as "partial pooling" (Gelman & Hill, 2007) whereby low observation groups are esti-
mated closer to the mean across groups, but are also more uncertain relative to groups
with many observations; and most importantly 4) they provide a means for making
predictions to new group-levels not included in model fitting (e.g. infected country or
high risk tariffs not imported into Australia) (Gelman & Hill, 2007).

Models were fit using the R package rstanarm (Goodrich et al., 2020) and the func-
tion stan_gamm4 with a weakly informative prior specified on the intercept (N (0, 10)).
We ran the models using 4 chains, sampling 2000 iterations for each. Chain conver-
gence was assessed using the Brooks-Gelman-Rubin convergence diagnostic (Brooks
& Gelman, 1998). As BMSB interceptions and general contaminations are relatively
rare events, there was a considerable proportion of zeros in both sets of data (0.98,
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0.72, respectively). As such, to assess for possible over-dispersion in the count data,
models were sampled using both Poisson and negative binomial distributions. A com-
bination of posterior predictive checks on the proportion of predicted zeros and 10-
fold cross validation was used to determine the most appropriate distribution to use.
For the BMSB interception model, no discernible difference in predictive capacity was
found between the Poisson and negative binomial models (Fig A.2). Furthermore, pos-
terior predictive checks highlighted that the Poisson model accurately predicted the
observed proportion of zeros (Fig A.3); as such, for this response we used the Poisson
distribution. By contrast, for the general contamination response, both cross-validation
(Fig A.4) and posterior predictive checks (Fig A.5) revealed that the negative binomial
model was substantially better at prediction. We also considered the inclusion of other
predictors associated with BMSB source countries such as whether the country was
within the endemic range, and using the climatic suitability layer, the mean climatic
suitability, the summed climatic suitability and the sum of climate suitability scaled
by human population. However, in all cases, 10-fold cross-validation revealed that the
inclusion of these additional predictors did not improve predictive capacity and they
were therefore omitted (Fig A.6). While the models did a good job at predicting zeros
and low BMSB/ general contamination counts, they each tended to underestimate the
rare events where high counts of BMSB interceptions or general contaminations were
recorded from particular country by tariff combinations (Fig A.7).

Once the final set of models was trained on the integrated dataset, we took 1000
draws from the posterior and used these to make posterior predictions of expected
counts of both BMSB interceptions and general contaminations arriving at all coun-
tries as a function of imports of the 95 susceptible tariffs originating from the 30 identi-
tied BMSB countries. Predictions were made using 2018 (the latest year with complete
data) trade value data extracted from the UN Comtrade database. For country-tariff
combinations not present in the training dataset, posterior predictions were made by
marginalising over the relevant predictor variables. In order to account for the uncer-
tainty on the count model, we extracted three prediction quantities: the median and
the lower and upper bounds of 95% credible intervals (roughly interpretable as the ex-
pected, best case, and worse case scenarios). As predictions were for each importing
country, k, by susceptible tariff, j, and country of origin, i, we summed the expected
counts to derive a median, lower and upper estimate of the total arrivals for each im-
porting country:

=Y Gijn- (32)
1,7

3.3. Estimating country-level establishment exposure

As imported goods are assumed to be dispersed, and subsequently opened within
a country as a function of population counts, we obtained a 2.5 arc-minute (approx-
imately 5 km) resolution raster of expected human population counts for 2020 de-
veloped by Columbia University’s Center for International Earth Science Information
Network (CIESIN; 2018; Fig. 3.3). We deemed this an appropriate spatial resolution
because: 1) it was a resolution that has been released and validated for both climate
data and human population counts, and thus, meant we were using the original val-
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idated datasets as supplied with minimal GIS post-processing; and 2) it was a spatial
scale that was not too fine that it would lead to computational issues (e.g. RAM ex-
haustion), or too coarse such that climate suitability in small countries, or those with
complex terrain would be over or under-represented.

Using the human count raster, we distributed the expected (median), best (2.5% cred-
ible interval) and worst (97.5% credible interval) scenario estimates of expected BMSB
interceptions and general contamination counts within each country, &, as a function
of human population present in each cell I:

population count,,

Nkl = X :&k (33)

Zl: population count,,

We then weighted these expected arrivals in each grid cell, [, by the estimated cli-
matic suitability of that location:

Nuweighted,, = N x Climate suitability,, (3.4)

where climate suitability is bounded between zero and 1 (i.e. the raw output from
range bagging).

Finally we estimated the median, lower and upper country-level exposure to pest
establishment, Exposure,, by summing the climate weighted counts for each country:

Exposure, = Z Nyeighted, - (3.5)
1

log1o(human count)

01234567

-100

T y T T v T T
-150 -100 -50 0 50 100 150

Figure 3.3.: log;, Human population counts. Raster derived from Columbia University’s
Center for International Earth Science Information Network (CIESIN 2018)
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3.3.1. Exposure rankings

Biosecurity practitioners may require countries to be ranked relative to their exposure
score for allocating finite border surveillance resources. In order to provide them with
such ranks, we ranked countries in descending order of exposure risk. However, as
we had three separate estimates of exposure (expected, best and worst case), we pro-
vided four ranked sets. The first three are simply the rank order associated with each
of the three scenarios. By contrast, the fourth ranking, which we refer as the overall
rank, attempts to account for rank order changes among the three scenarios. Here, we
encapsulate those changes by summing the rank positions across the three scenarios,
and then ranking the summed output in ascending order — whereby countries with
lower sums have higher exposure risk. This was done using both BMSB interception
data and general contamination data.

14



4. Results

Our analysis revealed that exposure to BMSB establishment as a function of intercep-
tion data was greatest for Australia, the United Kingdom, the Netherlands, Poland,
Hong Kong, Mexico, South Africa, Sweden and Denmark (Fig 4.1A, Table 4.1). Broadly,
similar patterns were also found when using exposure scores estimated from general
contamination data (Fig 4.1B, Table 4.2 — the most notable being that both models esti-
mated that the United Kingdom and the Netherlands were within the top three most
exposed out of 222 countries/territories. However, discrepancies in country ranks
were evident, with Hong Kong', for example, being ranked 5th based on BMSB in-
terception data and 13th based on general contamination data (See Tables A.2 and A.3
for full lists of ranks, or A.4 and A.5 for full lists of exposure scores). Australia ranked
highly because by the nature of how the model was built, it had high coverage of sus-
ceptible tariffs being imported from infected countries, and contained suitable climate
in regions where these goods would most likely be dispersed (i.e. eastern coast).

11t should be noted that Hong Kong, and others such as Singapore, are major distribution centres
of international trade. As such, it is possible they are being inappropriately assigned as the importing
country in the Comtrade database when in fact they may act as an intermediary between two trading
countries



Camacet al. 2021

A 80°N
60°N- -4
40°N -

20°N 4

20°8 4

40°S

120°W 60°W 0° 60°E 120°E

B 8o°N-
60°N- -4
40°N -

20°N -

20°8- - °

40°5 |

120°W 60°W 0° 60°E 120°E
log(Median contamination exposure) "
0 2 4 6 8

Figure 4.1.: Country-level exposure based on: A) BMSB interceptions; and B) General
contamination records. Red = countries with known established BMSB pop-
ulations. Note: While French Guiana and Alaska have no known BMSB pop-
ulations, they are territories of France and the USA and as such have been
masked red.
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Table 4.1.: Exposure ranks of top 15 non-infected countries based on BMSB interception

and trade data

Country Overall rank Median rank 2.5% rank 97.5% rank
Australia 1 1 1 4
United Kingdom 2 2 2 2
Netherlands 3 3 3 1
Poland 4 4 5 3
China, Hong Kong SAR 5 5 4 5
Mexico 6 6 6 6
South Africa 7 7 8 8
Sweden 8 8 10 7
Denmark 9 11 9
Viet Nam 10 9 9 12
Brazil 11 10 11 11
Argentina 12 12 13 14
India 13 13 12 15
Ukraine 14 14 17 10
Portugal 15 16 15 13

Table 4.2.: Top 15 non-infected countries with highest exposure ranks based on general
contamination and trade data

Country Overall rank Median rank 2.5% rank 97.5% rank
United Kingdom 1 1 1 1
Netherlands 2 2 2 2
Poland 3 3 3 3
Mexico 4 4 4 5
Australia 5 5 5 4
Sweden 6 6 6 6
Portugal 7 7 8 7
South Africa 8 8 9 8
Brazil 9 9 7 9
Denmark 10 10 11 10
Argentina 11 11 10 11
Finland 12 12 13 13
China, Hong Kong SAR 13 13 14 14
India 14 16 12 16
Norway 15 15 15 15
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While not a core objective, our model also estimated the establishment exposure for
all BMSB-infected countries based on susceptible goods they import from other coun-
tries with BMSB populations. In examining these predictions (see Tables A.2 to A.5)
we found that the USA, Germany and France were all ranked within the top four most
exposed countries, irrespective of whether we used interception or general contamina-
tion data to parameterise our model.

The distribution of country exposure scores showed that in general, countries within
the invaded or native range of BMSB had higher exposure scores relative to those
with no known BMSB populations (Fig 4.2). This is mostly due to these countries
both containing substantial areas of suitable climate and importing large quantities
of goods from other BMSB-infected countries. The clear exception being North Ko-
rea, the outlier within BMSB’s native range, which predominately only imports goods
from China (Fig 4.2B). We also found that, at least according to the BMSB interception
model (Fig 4.2A), the USA was a clear outlier — being the country most exposed to
further BMSB incursions.

A Interception model B Contamination model
25001 . 6000
()]
S 2000
(@]
(7]
o 4000 1
S 15001 s
4 °
o
& 1000 4 o o
4 [
g 0 2000
3 s00{ o
AL
0 1 0 - °
Absent Invaded Native Absent  Invaded Native
Range Range

Figure 4.2.: Exposure scores by range status. Distribution of predicted median exposure
scores based on the: A) BMSB interception model and B) general contamina-
tion model. The widths of box plots are proportional to the square-root of
the number of observations in each range group.
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Closer examination of the models revealed a strong non-linear relationship between
the logged value (in USD millions) of imported susceptible goods from BMSB-infected
countries. Specifically, we found that as the annual value of imported goods increased
so did the risk of BMSB contamination, irrespective of whether BMSB interception or
general contamination data were used. However, this relationship tended to be more
uncertain for low-value imports — particularly for the interception model.

A g B,
3 2.5
3]
=
9
g
g 07 0.0 -
£
90
=3 2.5
15 -0 -5 0 5 -15 10 -5 0 5
log(Import value: USD millions) log(Import value: USD millions)

Figure 4.3.: Import value effects. Mean (+ 95% credible intervals) effect of annual import
value (in USD millions) on BMSB contamination using: A) BMSB intercep-
tion data; B) General contamination data.

Examination of the additive source country effects revealed differential risk posed
by BMSB-infected countries. According to the BMSB interception model, goods im-
ported from China, Italy, Puerto Rico and Romania posed the most risk — each con-
tributing significant positive effects to BMSB counts (Fig 4.4A). Italy and Puerto Rico
were found to have the highest risk based on the general contamination model (4.4B).
However, where country effects were estimated in both models, some differences ex-
isted. Goods imported from Spain, for example, were expected to be of higher risk
in the general contamination model (i.e. positive effect) but considered much lower
risk in the interception model. This difference is mostly due to the underlying gen-
eral contamination data not being BMSB-specific but rather a general catch-all for any
pest/disease interception or import document errors.

19



1
Camacet al. 2021 Cekf
| B
A China { | ——— Italy 1 : ———
! 1
Italy I ——— Puerto Rico 1 ! ———
! 1
Puerto Rico 1 : ——— Japan :
. I 1
Romania 1 X Germany : ——————
1 —————————— 1
Japan 1 France 1 |————
. 1 1
Georgia .: Spain I
Serbia 1 . 1
1 Slovakia 1 —————
Croatia 1 L 1
- ! Serbia 1 —_—
1S : ! !
5 Russia 1 T 1
8 ! Turkey 1 ——r—
> 1
- France 1 ——————l—
2 ! Georgia 1 L
= , gia |
f_.g Greece 1 . !
£ ! Russia 1 —————
Slovenia 1 j
. : Croatia 1 ——o—:—
Slovakia 1 i !
1 R iad ————————
Austria 1 omania |
! 1
4 ———————
Hungary 1 : Greece :
4 ———————
Germany ——o——: Hungary :
! . 1
Liechtenstein 1 Slovenia 1 —_————
! 1
Turkey 1 : Liechtenstein 4 ———
! 1
Spain T Austria {1 ———=—tm— |
} I
-6 -3 0 3 -2 -1 0 1

Effect Effect

Figure 4.4.: Source country effects. Mean (+ 95% & 50% credible intervals) source coun-
try effects using: A) BMSB interception data; B) general contamination data.
Effects are interpreted as additive effects relative to the average intercept. Es-
timates above the red zero line are positive effects (i.e. increases counts) and
those below it are negative effects (i.e. decreases counts). Note that coun-
tries such as China, South Korea and others (see Table 3.1) are missing from
the general contamination dataset, and thus, the model is unable to estimate
their observed effects.

Differential risk was also observed among the 95 BMSB-susceptible tariffs (Fig 4.5).
In the BMSB interception model (Fig 4.5A) we found that HS codes 9401 (i.e. seats),
8609 (i.e. containers) and 8701 (i.e. tractors) posed the greatest risk (i.e. most positive
effects). By contrast, the general contamination model indicated that 0810 (i.e. fresh
fruit), 7318 (i.e. screws and bolts) and 8708 (i.e. motor vehicles) posed the most risk.
As with the differences among country effects these discrepancies between models are
mostly due to the underlying general contamination data not being BMSB-specific but
rather a general catch-all for any pest/disease interception or import document errors.
As such, BMSB-specific interventions are ignored in the general contamination dataset,
which invariably manifests in differences in tariff risk profiles.
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Figure 4.5.: Tariff effects. Mean (+ 95% & 50% credible intervals) BMSB susceptible HS
code effects using: A) BMSB interception data; B) general contamination
data. Effects are interpreted as additive effects relative to the average in-
tercept. Estimates above the red zero line are positive effects (i.e. increases
counts) and those below it are negative effects (i.e. decreases coun'ts).
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Lastly, we found differential effects among years (Fig 4.6). In the BMSB interception
model (Fig 4.6A), 2018 had more BMSB interceptions than other years, while 2016 had
fewer than average. By contrast, the general contamination model (Fig 4.6B) indicated
that both 2013 and 2018 had the fewest contaminations, while other years had average
or slightly above average contaminations.
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Figure 4.6.: Year effects. Mean (& 95% & 50% credible intervals) year effect using: A)
BMSB interception data; B) general contamination data. Effects are inter-
preted as additive effects relative to the average intercept. Estimates above
the red zero line are positive effects (i.e. increases counts) and those below it
are negative effects (i.e. decreases counts).

22



5. Discussion

We developed a novel method that integrates border interceptions, trade data, pest
occurrence records and climate suitability models to estimate the exposure risk of po-
tential and current trading partners obtaining a new high threat pest or disease. We
illustrate its implementation using Australian BMSB interception and general contam-
ination data to model the exposure risk of brown marmorated stink bug (BMSB), a
highly polyphagous plant pest that has rapidly spread across much of the Northern
Hemisphere, and in doing so, caused significant agricultural losses (Rice ef al., 2014;
Valentin et al., 2017). We found that, irrespective of parameterising the model using
BMSB-specific interception or general contamination data, the United Kingdom, the
Netherlands, Poland, Mexico and Sweden were amongst the most exposed countries
to BMSB incursions and subsequent establishment. This suggests that these countries,
relative to others, not only import significant quantities of potential BMSB hitchhiker
commodities from BMSB-infected countries, but are expected to have suitable climate
in regions where these imported goods are likely destined (i.e. regions of high human
population).

Comparing exposure scores between non-infected and infected countries also pro-
vided some measure of confidence in the model predictions (Tables A.2 —-A.5. Germany,
the USA, France and Italy — countries within BMSB’s invaded range — were found to
have some of the highest exposure scores. Assuming patterns in imported goods have
not substantially changed over the last two decades, it is perhaps unsurprising that
these countries were among the first to gain established populations of BMSB (CABI,
2020), and in some cases (e.g. USA and Italy), thought to have contributed to infesta-
tions elsewhere (Valentin et al., 2017).

Lastly, in estimating country-level exposure to BMSB, our model also identified the
BMSB-vulnerable tariff codes that are likely to introduce the greatest number of hitch-
hikers into Australia. For BMSB specifically, the highest risk tariffs were HS codes 9401
(i.e. seats), 8609 (i.e. containers) and 8701 (i.e. tractors), while for general contamina-
tions (i.e. the presence of any foreign organism) codes 0810 (i.e. fresh fruit), 7318 (i.e.
screws and bolts) and 8708 (i.e. motor vehicles) posed the greatest risk.

We believe this model is a substantial improvement over others that are currently
available to biosecurity practitioners. First and foremost, our model was designed
with the end-users in mind (biosecurity practitioners). As a consequence, the analyti-
cal workflow aims to maximise the use of internally collected border surveillance data
(e.g. interception records) and integrate these data with other publicly available data
(e.g. trade data and climate data). Second, the workflow is applicable to any plant
pest or disease. For example, if one wished to apply the model to a pest thought to
be highly tolerant of a wide range of climatic conditions, or that is a pest of stored
food where ambient conditions matter little (e.g. Khapra beetle), then exposure would
be estimated as the unweighted expected number of arrivals each country receives
(Fig. A.8). Thirdly, relative to standard pathway models that focus on identifying risk
pathways of entry into an individual country, our model is both inwards and out-



Camacet al. 2021 ce bfﬁ:‘;:.‘i’rc:‘:x

wards focused, such that it estimates exposure risk across all countries. Finally, and
perhaps most importantly, our method explicitly integrates pathway analysis with cli-
mate suitability modelling. This effectively means our model attempts to account for
two fundamental geographic barriers to pest establishment: 1) its ability to reach a lo-
cation; and 2) the suitability of the climate at the destination (Catford et al., 2009). This
is contrary to standard pathway analyses, which generally ignore climatic suitability,
or do not explicitly combine it with pathway information (Tingley et al., 2018) — and is
also contrary to standard invasive species distribution modelling (sometimes termed
risk maps), which tend to focus on modelling climate suitability without accounting
for pathways of entry and subsequent post-border movement of propagules (Venette
et al., 2010; Elith, 2017; Venette, 2017).

5.1. Model assumptions and decisions

While this method provides a pragmatic and transparent approach to quantifying trad-
ing partner exposure to new and emerging pests, the model relies on several assump-
tions that warrant careful consideration before using its findings to inform allocation
of border surveillance resources.

5.1.1. Fundamental assumptions

Our model makes two fundamental assumptions based on pragmatic constraints as-
sociated with the available data. The first of these is that the interception or general
contamination rates that Australia (i.e. our case study focal country) observes from
each infected country by tariff combination is representative of 1) the propagule pres-
sure and; 2) are consistent with trade going to other countries. This assumption is
likely to be violated in some circumstances. However, without a global database in
which each country is mandated to upload interceptions and the amount of surveil-
lance effort they undertook, we believe this is likely the best data available to inform
practical biosecurity decisions, and thus, an assumption we were willing to make.

The second major assumption is that the trade data used in this model are complete
and accurately reflect the volume, country of origin and final destination of traded
goods. Despite great effort in standardising and cleaning trade statistics held in the
UN Comtrade database (United Nations Department of Economic and Social Affairs,
2017), inaccuracies, including in the documented country of origin and final destina-
tion, are likely still present. For example, countries such as Hong Kong and Singapore,
which contain major shipping distribution centres, may be inaccurately documented
as either the origin or final destination of goods, when in fact these countries may act
as intermediaries where imported goods exchange hands, but are quickly exported
elsewhere without containers being opened or moved outside the port.

The last assumption made was that detection rates were assumed to be perfect.
Again this assumption is almost certainly untrue (Garrard et al., 2008; Wintle et al.,
2012). However, given detection rates are expected to vary substantially among species
(Garrard et al., 2012; Martin, 2017) as well as other factors such as tariff types, points
of entry, and the size and arrangement of consignments (which were not recorded),
coupled with the lack of leakage survey data, estimating such rates is currently not
practical without making additional strong assumptions.
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In terms of our case study pest, brown marmorated stink bug, the assumption of
perfect detection was less of an issue because the rate of detection of large aggrega-
tions capable of establishing a hitchhiking founder population — the detection quantity
of concern to the Australian government (DAWR, 2017) — was expected to be high
(McCarthy et al., 2013). Furthermore, given Australia has one of the most comprehen-
sive and stringent biosecurity systems in the world (Nairn ef al., 1996; Beale et al., 2008;
Craik et al., 2017), we believe that the interception/ general contamination datasets col-
lated by the Australian government are likely to represent the gold standard currently
available for estimating country-level exposure risk.

5.1.2. Model decision 1: Pest-specific interceptions vs. general
contamination?

A decision needs to be made as to whether the model is parameterised using pest-
specific interceptions or general contamination data. While our analysis revealed that
both data types resulted in similar risk profiles among countries, differences in rank-
ings did occur. In most situations, pest-specific interception data are likely to be the
gold standard and should be preferenced ahead of general contamination records.
However, if the data are biased (e.g. border surveillance focused on particular coun-
tries or tariffs) or otherwise not considered representative of the entry pathway risk
profile then the use of general contamination data may be more appropriate. A new
and emerging pest or disease that has limited or no interceptions is one such example
where general contamination data will be necessary. How well such data represents
the focal species’ risk pathways, however, will ultimately depend on how narrowly
contamination data can be practically defined. For plant pests, for which this method
is designed, we recommend that border-surveillance staff attempt to identify contam-
inations to at least taxonomic class, or in terms of functional type (e.g. sap sucking
insects, fruit flies, etc.). Doing so should allow biosecurity analysts to subset contami-
nation to the group that is expected to be most representative of the emerging threat.

5.1.3. Model decision 2: Susceptible tariffs

In our analysis, we identified susceptible 4-digit HS tariff codes that could support
BMSB hitchhikers using border interception data. While this dataset is likely to repre-
sent the most comprehensive list of susceptible tariffs available for a country, it may
not encompass the full list of susceptible commodities. For example, a susceptible com-
modity may be missing from the list if infected countries exported that commodity to
other countries but not the country used to create the list. We attempted to reduce this
possibility by running the analysis at the 4-digit HS code level as opposed to the 8-digit
code level. Further HS code aggregation (e.g. to chapter level) could be undertaken;
however, doing so may severely underestimate risk in some situations (e.g. where there
is only one sub-chapter tariff susceptible to the pest). Moreover, further aggregation
may diminish the model’s ability to inform risk-based decisions at the level required
for setting tariff-level border inspection rates. We recommend further research be un-
dertaken to determine the most appropriate aggregation level to 1) adequately capture
high risk tariffs; and 2) inform on-ground border inspection rates.
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5.2. Future extensions

It is important to note that this model only considers exposure risk associated with
trade. Currently the model does not account for exposure related to air passenger
movement, illegal trade, air-can movement, natural spread, or other pathways of entry.
Modelling natural spread is likely to be a difficult exercise as it requires precise GIS lo-
cations of known established populations coupled with accurate estimates of dispersal
kernels — data that may not be easily sourced from all countries. By contrast, estimat-
ing the exposure related to air passenger movements may be achievable through the
combination of passenger inspection data and global air passenger movement data,
which is increasingly being made available (Mao et al., 2015).

The model may also be extended by examining the potential risk posed to Australia
from individual countries (e.g. UK to Australia) as a function of estimated exposure
score derived from this model, estimates of likely contamination rates (potentially de-
rived from known infected countries, or assumptions about expected population sizes)
and the value/volume of goods imported exported from one country the other. The
reason for conducting such an analysis is that it will provide decision-makers with a
more nuanced understanding of which countries, beyond those known to be infected,
contribute the greatest potential risk to Australia, and thus, where to invest border
screening activities to mitigate this risk.

Lastly, the model can be extended in two important ways that will ultimately in-
crease decision-makers’ ability to forecast changes, and thus plan for the future. First,
rather than estimating exposure risk as a function of historical trade data sourced di-
rectly from the UN Comtrade database, which is typically 1-year or more behind in
terms of complete data (e.g. as of 6th June 2020 only only 74.61% of the data for 2019 are
available — https://comtrade.un.org/db/), one could use data from the Global
Trade Analysis Project (GTAP; Aguiar et al., 2016) coupled with GTAP models (e.g.
Van Ha et al., 2017) to forecast changes in trade flow patterns under a range of po-
tential future global-trade scenarios. The second extension is to estimate the potential
distribution of a pest’s suitable climate under various climate change scenarios. By
implementing both extensions it should be possible to forecast temporal and spatial
changes in exposure risk, and consequently, predict when and where incursions are
most likely to occur.

5.3. Model validation

Models such as the one proposed in this report are notoriously difficult to validate
due to the nature of the problem it attempts to estimate — rare events — coupled with
there being very few independent datasets available to accurately test model predictive
performance. While out of scope for this project, one possibility would be to examine
how well historical temporal patterns of establishment align with hind-cast predictions
from the model. This validation exercise would bring additional challenges in that it
requires:

1. the pest/disease to have only spread among countries predominately as a func-
tion of international trade or in a way that is correlated with international trade;

2. a detailed understanding of the time line of incursions and which country they
originated from;
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3. estimates of how interception/contamination rates have changed among coun-
tries and tariff types over time;

4. an understanding of how effective each countries biosecurity system is at miti-
gating the pest entry and establishment; and

5. historical estimates of trade flows among countries

Compiling a dataset that would meet all of the above conditions to accurately test
the model’s predictive performance would be a substantial undertaking. However,
with the increased use of DNA analyses coupled with more sophisticated collation of
border surveillance statistics among World Trade Organisation member countries such
a dataset may be much easier to produce in future.
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Figure A.1.: Published brown marmorated stink bug (Halyomorpha halys) CLIMEX (Kriti-
cos et al., 2017) and Maxent (Zhu et al., 2012) distribution models. Darker
shades indicate more suitable climate.
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Figure A.2.: Cross-validation findings: Poisson vs negative binomial for interception
model. Mean (& 95% confidence intervals) Expected Log Predictive Den-
sity (ELPD) based on 10-fold cross-validation.
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Figure A.3.: Posterior predictive check for interception model. Proportion of zeros pre-
dicted by model based on sample from posterior (T(yrep)) vs observed (T(y)).
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Figure A.4.: Cross-validation findings: Poisson vs negative binomial for general contam-
ination model. Mean (4 95% confidence intervals) Expected Log Predictive
Density (ELPD) based on 10-fold cross-validation.
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Figure A.5.: Posterior predictive check for general contamination model fitted with a:
A) Poisson distribution; and B) a negative binomial. Proportion of zeros
predicted by model based on sample from posterior (T(yrep)) Vs observed

(T(y))-
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Figure A.6.: Cross-validation findings: additional covariates for interception model.
Mean (£ 95% confidence intervals) Expected Log Predictive Density (ELPD)
based on 10-fold cross-validation.
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Figure A.7.: Model observations vs predictions. A) BMSB interception model; B) general
contamination model. Solid line defines the 1:1 relationship.
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or diseases that are presumed not to be limited by ambient climatic suitabil-

ity.
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A.2. Appendix Tables

Table A.1.: BMSB-susceptible commodities

HS code Description

0802 Nuts (excluding coconuts, Brazils and cashew nuts); fresh or dried, whether or not shelled or peeled

0810 Fruit, fresh; n.e.c. in chapter 08

1108 Starches; inulin

1404 Vegetable products not elsewhere specified or included

2530 Mineral substances not elsewhere specified or included

2708 Pitch and pitch coke; obtained from coal tar or from other mineral tars

2710 Petroleum oils and oils from bituminous minerals, not crude; preparations n.e.c, containing by weight 70% or more of petroleum oils or oils from bituminous
minerals; these being the basic constituents of the preparations; waste oils

2832 Sulphites; thiosulphates

2921 Amine-function compounds

3102 Fertilizers; mineral or chemical, nitrogenous

3105 Fertilizers; mineral or chemical, containing 2 or 3 of the elements nitrogen, phosphorus, potassium; other fertilisers; goods of chapter 31 in tablets or packages of
gross weight not exceeding 10kg

3214 Glaziers’ putty, grafting putty, resin cements, caulking compounds and other mastics; painters’ fillings; non-refractory surfacing preparations for facades, indoor
walls, floors, ceilings or the like

3502 Albumins (including concentrates of two or more whey proteins, containing by weight more than 80% whey proteins, calculated on the dry matter), albuminates
and other albumin derivatives

3506 Prepared glues and other prepared adhesives, n.e.c. or included; products suitable for use as glues or adhesives, put up for retail sale as glues or adhesives, not
exceeding 1kg net weight

3602 Prepared explosives, other than propellent powders

3603 Safety fuses; detonating fuses; percussion or detonating caps; igniters; electric detonators

3808 Insecticides, rodenticides, fungicides, herbicides, anti-sprouting products, plant growth regulators, disinfectants and the like, put up in forms or packings for retail
sale or as preparations or articles

3809 Finishing agents, dye carriers to accelerate the dyeing, fixing of dyestuffs, other products and preparations, of a kind used in the textile, paper, leather or like
industries, n.e.c. or included

3812 Prepared rubber accelerators; compound plasticisers for rubber or plastics, n.e.c. or included; anti-oxidising preparations and other compound stabilisers for rubber
or plastics

3824 Prepared binders for foundry moulds or cores; chemical products and preparations of the chemical or allied industries (including those consisting of mixtures of
natural products), not elsewhere specified or included

3917 Tubes, pipes and hoses and fittings thereof (for example, joints, elbows, flanges), of plastics

3920 Plastics; plates, sheets, film, foil and strip (not self-adhesive); non-cellular and not reinforced, laminated, supported or similarly combined with other materials, n.e.c.
in chapter 39

3921 Plastic plates, sheets, film, foil and strip n.e.c. in chapter 39

3923 Plastic articles for the conveyance or packing of goods; stoppers, lids, caps and other closures of plastics

4009 Tubes, pipes and hoses, of vulcanised rubber (other than hard rubber), with or without their fittings (e.g. joints, elbows, flanges)

4010 Conveyor or transmission belts or belting, of vulcanised rubber

4011 New pneumatic tyres, of rubber

4016 Articles of vulcanised rubber other than hard rubber, n.e.c. in chapter 40

4201 Saddlery and harness for any animal (including traces, leads, knee pads, muzzles, saddle cloths, saddle bags, dog coats and the like) of any material

4407 Wood sawn or chipped lengthwise, sliced or peeled, whether or not planed, sanded or end-jointed, of a thickness exceeding 6mm

4410 Particle board, oriented strand board (OSB) and similar board (e.g. waferboard) of wood or other ligneous materials, whether or not agglomerated with resins or
other organic binding substances

4802 Uncoated paper and paperboard, used for writing, printing or other graphics, non perforated punch-cards and punch tape paper, in rolls or rectangular sheets, of
any size, other than paper of heading 4801 or 4803; hand-made paper and paperboard

4811 Paper, paperboard, cellulose wadding and webs of cellulose fibres, coated, impregnated, covered, surface-coloured, decorated or printed, rolls or sheets, other than
goods of heading no. 4803, 4809, or 4810

4901 Printed books, brochures, leaflets and similar printed matter, whether or not in single sheets

4911 Printed matter, n.e.c., including printed pictures and photographs

5606 Yarn and strip and the like of heading no. 5404 or 5405, gimped (other than those of heading no. 5606 and gimped horsehair yarn); chenille yarn (including flock
chenille yarn); loop wale-yarn

6302 Bed linen, table linen, toilet linen and kitchen linen

6307 Textiles; made up articles n.e.c. in chapter 63, including dress patterns

6802 Monumental or building stone, worked (except slate) and articles thereof (not of heading no. 6801) mosaic cubes etc., of natural stone including slate; artificially
coloured granules of natural stone

6803 Slate, worked; and articles of slate or of agglomerated slate

6804 Millstones, grindstones, grinding wheels, etc without frameworks, for grinding, sharpening, polishing, etc and parts thereof, natural stone, agglomerated natural or
artificial abrasives or of ceramics

6807 Asphalt or similar material; articles (e.g. petroleum bitumen or coal tar pitch)

6810 Cement, concrete or artificial stone; whether or not reinforced, articles thereof

6904 Ceramic building bricks, floor blocks, support or filler tiles and the like

6914 Ceramic articles; n.e.c. in chapter 69

7318 Screws, bolts, nuts, coach screws, screw hooks, rivets, cotters, cotter-pins, washers (including spring washers) and similar articles, of iron or steel

7322 Radiators for central heating, not electrically heated and parts thereof, of iron or steel; air heaters, hot air distributors not electrically heated, with motor fan or blower

7610 Aluminium; structures (excluding prefabricated buildings of heading no. 9406) and parts (e.g. bridges and sections, towers, lattice masts, etc) plates, rods, profiles
and tubes for structures

7616 Aluminium; articles n.e.c. in chapter 76

8203 Tools, hand; files, rasps, pliers (including cutting pliers), pincers, tweezers, metal cutting shears, pipe cutters, bolt croppers, perforating punches and similar

8204 Tools, hand; hand-operated spanners and wrenches (including torque meter wrenches but not including tap wrenches), interchangeable spanner sockets, with or
without handles

8302 Base metal mountings, fittings and similar articles for furniture, doors, staircases, windows, trunks, chests etc, castors with mountings of base metal, automatic door
closers of base metal

8309 Stoppers, caps, lids (including crown corks, screw caps, pouring stoppers); capsules for bottles, threaded bungs, bung covers, seals and other packaging accessories,
of base metal

8311 Wires, rods, tubes, plates, electrodes of base metal or metal carbides; of a kind used for soldering, brazing, welding; wires and rods for metal spraying

8403 Central heating boilers; excluding those of heading no. 8402

8408 Compression-ignition internal combustion piston engines (diesel or semi-diesel engines)

8409 Parts suitable for use solely or principally with the engines of heading no. 8407 or 8408

8412 Engines and motors; n.e.c. (e.g. reaction engines, hydraulic power engines, pneumatic power engines)

8413 Pumps; for liquids, whether or not fitted with measuring device, liquid elevators

8414 Air or vacuum pumps, air or other gas compressors and fans; ventilating or recycling hoods incorporating a fan whether or not fitted with filters
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Table A.1.: (continued)

HS code Description

8415 Air conditioning machines; comprising a motor driven fan and elements for changing the temperature and humidity, including those machines in which the humidity
cannot be separately regulated

8418 Refrigerators, freezers and other refrigerating or freezing equipment, electric or other; heat pumps other than air conditioning machines of heading no. 8415

8419 Machinery, plant (not domestic), or laboratory equipment; electrically heated or not, (excluding items in 85.14) for the treatment of materials by a process involving
change of temperature; including instantaneous or non electric storage water heaters

8421 Centrifuges, including centrifugal dryers; filtering or purifying machinery and apparatus for liquids or gases

8422 Dish washing machines; machinery for cleaning, drying, filling, closing, sealing, capsuling or labelling bottles, cans, boxes, bags, etc, machinery for aerating bever-
ages

8424 Mechanical appliances for projecting, dispersing or spraying liquids or powders; fire extinguishers, spray guns, steam, sand blasting machines

8427 Fork-lift and other works trucks; fitted with lifting or handling equipment

8428 Lifting, handling, loading or unloading machinery; n.e.c. in heading no. 8425, 8426 or 8427 (e.g. lifts, escalators, conveyors, teleferics)

8429 Bulldozers, graders, levellers, scrapers, angledozers, mechanical shovels, excavators, shovel loaders, tamping machines and road rollers, self-propelled

8430 Moving, grading, levelling, scraping, excavating, tamping, compacting, extracting or boring machinery, for earth, minerals, or ores; pile drivers and extractors; snow
ploughs and snow blowers

8431 Machinery parts; used solely or principally with the machinery of heading no. 8425 to 8430

8432 Agricultural, horticultural or forestry machinery for soil preparation or cultivation; lawn or sports-ground rollers

8433 Harvesting and threshing machinery, straw and fodder balers, grass or hay mowers; machines for cleaning, sorting or grading eggs, fruit or other agricultural
produce, other than machinery of heading no 8437

8455 Metal-rolling mills and rolls therefor

8479 Machinery and mechanical appliances; having individual functions, n.e.c. in this chapter

8481 Taps, cocks, valves and similar appliances for pipes, boiler shells, tanks, vats or the like, including pressure-reducing valves and thermostatically controlled valves

8483 Transmission shafts (including cam and crank) and cranks; bearing housings and plain shaft bearings; gears and gearing; ball or roller screws; gear boxes and other
speed changers; flywheels and pulleys; clutches and shaft couplings

8502 Electric generating sets and rotary converters

8535 Electrical apparatus for switching, protecting electrical circuits, for making connections to or in electrical circuits; for a voltage exceeding 1000 volts

8538 Electrical apparatus; parts suitable for use solely or principally with the apparatus of heading no. 8535, 8536 and 8537

8542 Electronic integrated circuits

8544 Insulated wire, cable and other electric conductors, connector fitted or not; optical fibre cables of individually sheathed fibres, whether or not assembled with electric
conductors or fitted with connectors

8609 Containers; (including containers for transport of fluids) specially designed and equipped for carriage by one or more modes of transport

8701 Tractors; (other than tractors of heading no 8709)

8703 Motor cars and other motor vehicles; principally designed for the transport of persons (other than those of heading no. 8702), including station wagons and racing
cars

8704 Vehicles; for the transport of goods

8708 Motor vehicles; parts and accessories, of heading no. 8701 to 8705

8711 Motorcycles (including mopeds) and cycles; fitted with an auxiliary motor, with or without side-cars; side-cars

8716 Trailers and semi-trailers; other vehicles, not mechanically propelled; parts thereof

8903 Yachts and other vessels; for pleasure or sports, rowing boats and canoes

9026 Instruments, apparatus for measuring or checking the flow, level, pressure of liquids, gases (e.g. flow meters, heat meters etc), not instruments and apparatus of
heading no. 9014, 9015, 9028 or 9032

9401 Seats (not those of heading no. 9402), whether or not convertible into beds and parts thereof

9403 Furniture and parts thereof, n.e.c. in chapter 94

9404 Mattress supports; articles of bedding (e.g. mattresses, quilts, eiderdowns, cushions pouffes and pillows), fitted with springs or stuffed, whether or not covered

9999 Commodities not specified according to kind
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Table A.2.: BMSB exposure ranks for all countries (including infected) based on intercep-
tion and trade data.

Country Range Overall rank Median rank 2.5% rank 97.5% rank

USA Invaded 1 1 1 1

Germany Invaded 2 2 2 2

Japan Native 3 3 3 4

France Invaded 4 4 4 3

Rep. of Korea Native 5 5 5 8

United Kingdom Absent 6 8 7 7

Netherlands Absent 7 9 9 5

Australia Absent 8 7 6 12
Canada Invaded 9 6 8 13
Spain Invaded 10 10 11 11
Poland Absent 11 11 12 9

China, Hong Kong SAR Absent 12 12 10 14
Italy Invaded 13 16 13 10
Russian Federation Invaded 14 15 14 16
Belgium Invaded 15 13 16 17
Mexico Absent 16 14 15 22
Switzerland Invaded 17 18 17 19
China Native 18 20 30 6

Turkey Invaded 19 17 22 18
South Africa Absent 20 19 19 27
Sweden Absent 21 21 21 23
Czechia Invaded 22 22 26 21
Romania Invaded 23 23 27 20
Austria Invaded 24 26 29 15
Denmark Absent 25 27 18 28
Viet Nam Absent 26 24 20 31
Brazil Absent 27 25 23 30
Argentina Absent 28 28 28 33
India Absent 29 29 24 38
Slovenia Invaded 30 33 35 26
Chile Invaded 31 30 25 40
Ukraine Absent 32 31 36 29
Hungary Invaded 33 32 42 25
Portugal Absent 34 35 32 32
Greece Invaded 35 36 33 35
Slovakia Invaded 36 39 49 24
Thailand Absent 37 37 31 49
Croatia Invaded 38 40 43 34
New Zealand Absent 39 38 38 44
Algeria Absent 40 34 46 42
Iran Absent 41 41 37 53
Israel Absent 42 44 39 48
Bulgaria Invaded 43 42 53 37
Norway Absent 44 48 45 43
Finland Absent 45 46 52 39
Indonesia Absent 46 43 34 61
Lithuania Absent 47 50 50 41
Ireland Absent 48 52 44 47
Morocco Absent 49 47 54 46
Serbia Invaded 50 54 62 36
Pakistan Absent 51 45 51 59
Malaysia Absent 52 51 40 69
Kazakhstan Invaded 53 49 55 58
Philippines Absent 54 53 41 68
United Arab Emirates Absent 55 55 47 71
Georgia Invaded 56 62 64 50
Latvia Absent 57 65 60 51
Uruguay Absent 58 58 59 62
Colombia Absent 59 57 58 67
Tunisia Absent 60 56 70 60
Albania Absent 61 64 69 55
Singapore Absent 62 61 48 80
Egypt Absent 63 59 63 70
Estonia Absent 64 69 74 54
Lebanon Absent 65 66 61 74
Malta Invaded 66 72 57 73
Saudi Arabia Absent 67 68 56 84
Bangladesh Absent 68 60 68 82
Uzbekistan Absent 69 70 7 64
Belarus Absent 70 71 88 52
Cyprus Absent 71 76 66 72
Kenya Absent 72 67 67 81
Myanmar Absent 73 63 71 87
Peru Absent 74 73 72 79
Ecuador Absent 75 74 75 78
Nigeria Absent 76 75 65 91
Luxembourg Absent 77 89 99 45
United Rep. of Tanzania Absent 78 77 73 90
Ghana Absent 79 78 76 88
Jordan Absent 80 84 79 83
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Table A.2.: (continued)

Country Range Overall rank Median rank 2.5% rank 97.5% rank

Bosnia Herzegovina Invaded 81 97 92 57

Paraguay Absent 82 80 94 76

Dominican Rep. Absent 83 82 83 85

Guatemala Absent 84 88 80 92

Iraq Absent 85 83 82 97

Kyrgyzstan Absent 86 79 108 s

Montenegro Absent 87 112 87 66

Azerbaijan Absent 88 85 122 63

Ethiopia Absent 89 81 101 89

Mozambique Absent 90 87 84 100
Oman Absent 91 90 89 95

Panama Absent 92 94 78 102
Dem. Rep. of the Congo Absent 93 91 86 101
Cuba Absent 94 93 96 94

TFYR of Macedonia Absent 95 114 116 56

Rep. of Moldova Invaded 96 110 113 65

Costa Rica Absent 97 98 85 106
Dem. People’s Rep. of Korea Native 98 86 95 111
Cote d'Ivoire Absent 99 99 91 103
Bolivia (Plurinational State of) Absent 100 101 106 86

Tajikistan Absent 101 92 111 93

Libya Absent 102 96 110 96

Mauritius Absent 103 103 102 99

Armenia Absent 104 115 119 75

Mongolia Absent 105 108 90 112
Angola Absent 106 102 100 110
Honduras Absent 107 104 112 98

Kuwait Absent 108 106 98 115
Cambodia Absent 109 95 107 118
Venezuela Absent 110 100 128 104
Bermuda Absent 111 124 81 128
Jamaica Absent 112 113 114 107
Cameroon Absent 113 111 104 120
Iceland Absent 114 137 97 105
Sri Lanka Absent 115 105 117 121
Madagascar Absent 116 117 127 113
Syria Absent 117 109 141 108
Qatar Absent 118 122 103 134
Trinidad and Tobago Absent 119 125 120 117
Lao People’s Dem. Rep. Absent 120 107 131 129
Zimbabwe Absent 121 120 123 127
Zambia Absent 122 121 118 132
Congo Absent 123 123 125 123
Barbados Absent 124 139 93 139
Bahamas Absent 125 127 135 114
Nepal Absent 126 119 136 122
Togo Absent 127 126 129 124
Uganda Absent 128 118 154 109
New Caledonia Absent 129 142 121 119
El Salvador Absent 130 128 124 131
Botswana Absent 131 133 115 136
Yemen Absent 132 116 143 130
Haiti Absent 133 129 140 126
Afghanistan Absent 134 132 153 116
Gabon Absent 135 130 139 135
Benin Absent 136 134 133 141
Cayman Isds Absent 137 156 105 154
Br. Virgin Isds Absent 138 152 109 155
Nicaragua Absent 139 140 148 133
Bahrain Absent 140 141 130 150
Djibouti Absent 141 131 132 159
Maldives Absent 142 138 137 148
Guinea Absent 143 135 145 145
Malawi Absent 144 147 138 143
French Polynesia Absent 145 154 142 137
Somalia Absent 146 143 126 165
Liberia Absent 147 144 134 160
Guyana Absent 148 150 151 140
Papua New Guinea Absent 149 136 155 151
Equatorial Guinea Absent 150 151 147 144
Rwanda Absent 151 146 172 125
Fiji Absent 152 145 146 156
Namibia Absent 153 155 149 146
Suriname Absent 154 157 152 142
Turkmenistan Absent 155 148 173 138
Senegal Absent 156 149 150 166
State of Palestine Absent 157 159 156 153
Curagao Absent 158 164 159 152
Comoros Absent 159 162 144 171
Belize Absent 160 158 174 149
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Table A.2.: (continued)

Country Range Overall rank Median rank 2.5% rank 97.5% rank
Sudan Absent 161 153 157 178
Aruba Absent 162 169 160 167
Timor-Leste Absent 163 161 158 179
Mali Absent 164 163 162 176
Swaziland Absent 165 166 175 161
Lesotho Absent 166 167 176 163
Andorra Absent 167 177 183 147
Burkina Faso Absent 168 165 168 175
Burundi Absent 169 172 178 158
Dominica Absent 170 174 180 157
Brunei Darussalam Absent 171 160 161 191
Antigua and Barbuda Absent 172 173 179 162
Seychelles Absent 173 180 164 174
Central African Rep. Absent 174 170 177 173
Sierra Leone Absent 175 171 167 184
Mauritania Absent 176 168 166 189
Vanuatu Absent 177 178 165 187
Saint Kitts and Nevis Absent 178 179 184 169
Grenada Absent 179 182 186 164
Tonga Absent 180 175 181 185
Saint Lucia Absent 181 185 188 170
South Sudan Absent 182 176 182 186
Saint Vincent and the Grenadines Absent 183 183 187 181
Marshall Isds Absent 184 186 163 203
Solomon Isds Absent 185 184 169 200
Niger Absent 186 181 185 190
Gambia Absent 187 187 170 199
Eritrea Absent 188 188 189 182
Bhutan Absent 189 193 194 172
Turks and Caicos Isds Absent 190 191 192 180
Chad Absent 191 189 190 194
Samoa Absent 192 195 171 208
Greenland Absent 193 196 196 183
Cook Isds Absent 194 190 191 195
Cabo Verde Absent 195 192 193 197
Sao Tome and Principe Absent 196 197 197 188
Kiribati Absent 197 194 195 198
San Marino Absent 198 211 211 168
Anguilla Absent 199 199 199 193
Faeroe Isds Absent 200 201 201 192
Saint Pierre and Miquelon Absent 201 212 212 177
Guam Absent 202 203 203 196
Guinea-Bissau Absent 203 198 198 207
Palau Absent 204 200 200 206
Norfolk Isds Absent 205 202 202 202
N. Mariana Isds Absent 206 204 204 201
Nauru Absent 207 205 205 205
Tuvalu Absent 208 206 206 210
FS Micronesia Absent 209 207 207 209
Wallis and Futuna Isds Absent 210 208 208 212
American Samoa Absent 211 209 209 215
Western Sahara Absent 212 210 210 213
Montserrat Absent 213 216 216 204
Pitcairn Absent 214 213 213 214
Fr. South Antarctic Terr. Absent 215 214 214 218
United States Minor Outlying Islands Absent 216 215 215 219
Saint Helena Absent 217 218 218 217
Falkland Isds (Malvinas) Absent 218 221 221 211
Heard Island and McDonald Islands Absent 219 217 217 220
Br. Indian Ocean Terr. Absent 220 219 219 221
Niue Absent 221 222 222 216
South Georgia and the South Sandwich Islands ~ Absent 222 220 220 222
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Table A.3.: BMSB exposure ranks for all countries (including infected) based on contam-
ination and trade data.

Country Range Overall rank Median rank 2.5% rank 97.5% rank

Germany Invaded 1 1 1 1

USA Invaded 2 2 4 2

France Invaded 3 3 3 3

China Native 4 4 2 4

United Kingdom Absent 5 5 5 6

Netherlands Absent 6 6 8 7

Poland Absent 7 7 10 8

Spain Invaded 8 9 7 9

Canada Invaded 9 10 6 10
Italy Invaded 10 8 14 5

Belgium Invaded 11 11 9 12
Austria Invaded 12 12 12 13
Rep. of Korea Native 13 13 13 14
Japan Native 14 15 16 11
Czechia Invaded 15 14 17 15
Switzerland Invaded 16 16 15 17
Mexico Absent 17 17 11 20
Australia Absent 18 18 19 16
Turkey Invaded 19 20 18 19
Hungary Invaded 20 19 21 18
Sweden Absent 21 21 20 23
Russian Federation Invaded 22 23 22 21
Romania Invaded 23 22 23 22
Slovakia Invaded 24 24 25 24
Portugal Absent 25 25 26 25
South Africa Absent 26 26 27 26
Brazil Absent 27 27 24 28
Slovenia Invaded 28 28 28 27
Denmark Absent 29 29 30 29
Argentina Absent 30 30 29 30
Finland Absent 31 31 32 32
China, Hong Kong SAR Absent 32 32 33 33
Norway Absent 33 34 35 35
Ukraine Absent 34 33 42 31
Chile Invaded 35 35 34 38
India Absent 36 36 31 40
Bulgaria Invaded 37 37 40 34
Greece Invaded 38 38 37 36
Algeria Absent 39 40 38 41
Morocco Absent 40 39 39 42
Croatia Invaded 41 41 46 37
Thailand Absent 42 45 36 49
Serbia Invaded 43 42 50 39
Lithuania Absent 44 44 47 43
Viet Nam Absent 45 47 44 44
Ireland Absent 46 43 48 46
Israel Absent 47 46 43 48
New Zealand Absent 48 48 45 47
Luxembourg Absent 49 49 51 45
United Arab Emirates Absent 50 50 41 58
Tunisia Absent 51 51 55 54
Iran Absent 52 52 57 52
Colombia Absent 53 53 52 59
Estonia Absent 54 54 67 51
Egypt Absent 55 56 56 60
Indonesia Absent 56 57 53 62
Belarus Absent 57 55 71 50
Saudi Arabia Absent 58 60 49 68
Latvia Absent 59 59 66 53
Kazakhstan Invaded 60 58 70 55
Georgia Invaded 61 63 63 57
Pakistan Absent 62 61 62 61
Malaysia Absent 63 62 59 70
Bosnia Herzegovina Invaded 64 64 74 56
Peru Absent 65 66 60 71
Singapore Absent 66 65 54 79
Lebanon Absent 67 67 65 69
Philippines Absent 68 68 64 75
Dominican Rep. Absent 69 69 58 81
Ecuador Absent 70 70 72 74
Albania Absent 71 71 83 64
Oman Absent 72 75 61 82
Jordan Absent 73 73 69 7
Malta Invaded 74 76 s 76
Cyprus Absent 75 79 78 73
Uruguay Absent 76 72 103 65
Paraguay Absent 7 81 79 80
Uzbekistan Absent 78 s 98 66
Nigeria Absent 79 82 73 87
Kuwait Absent 80 80 68 96
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Table A.3.: (continued)

Country Range Overall rank Median rank 2.5% rank 97.5% rank

Guatemala Absent 81 84 75 89

Azerbaijan Absent 82 78 105 67

Kenya Absent 83 92 80 84

Rep. of Moldova Invaded 84 83 102 72

Iraq Absent 85 85 90 86

Panama Absent 86 87 76 99

TFYR of Macedonia Absent 87 74 126 63

Honduras Absent 88 88 82 94

Ghana Absent 89 91 87 91

Bangladesh Absent 90 90 99 88

Bolivia (Plurinational State of) Absent 91 86 109 83

Costa Rica Absent 92 95 81 102
Bahamas Absent 93 89 94 101
Jamaica Absent 94 97 84 103
Libya Absent 95 94 104 92

Venezuela Absent 96 100 88 104
Trinidad and Tobago Absent 97 96 91 106
Myanmar Absent 98 103 93 97

Qatar Absent 99 99 86 111
Montenegro Absent 100 93 127 78

Iceland Absent 101 101 101 100
Cuba Absent 102 98 113 93

Ethiopia Absent 103 102 110 95

Cambodia Absent 104 109 85 118
United Rep. of Tanzania Absent 105 104 114 98

Andorra Absent 106 107 92 117
Armenia Absent 107 106 129 85

Afghanistan Absent 108 113 100 110
Mauritius Absent 109 108 111 105
Mongolia Absent 110 116 97 116
Sri Lanka Absent 111 115 96 120
Kyrgyzstan Absent 112 112 131 90

Cote d'Ivoire Absent 113 105 128 108
El Salvador Absent 114 110 108 123
Yemen Absent 115 122 95 125
New Caledonia Absent 116 111 130 112
Uganda Absent 117 125 112 119
Benin Absent 118 131 89 136
Haiti Absent 119 119 115 124
Dem. Rep. of the Congo Absent 120 117 133 109
Angola Absent 121 114 132 114
Tajikistan Absent 122 121 135 107
Bahrain Absent 123 120 106 138
Nicaragua Absent 124 126 119 128
Cameroon Absent 125 118 134 122
Syria Absent 126 123 136 115
Mozambique Absent 127 124 137 113
Togo Absent 128 137 107 133
Zambia Absent 129 128 120 131
French Polynesia Absent 130 127 138 127
Lao People’s Dem. Rep. Absent 131 141 117 134
Madagascar Absent 132 132 141 121
Bermuda Absent 133 129 139 130
Cayman Isds Absent 134 133 118 147
Gabon Absent 135 130 140 129
Br. Virgin Isds Absent 136 135 116 150
Guyana Absent 137 138 121 142
Congo Absent 138 134 142 126
Turkmenistan Absent 139 140 145 135
Zimbabwe Absent 140 142 146 132
Suriname Absent 141 136 143 143
Barbados Absent 142 139 144 144
Senegal Absent 143 149 124 156
Botswana Absent 144 145 149 137
Equatorial Guinea Absent 145 144 148 141
State of Palestine Absent 146 143 147 145
Guinea Absent 147 147 151 146
Curagao Absent 148 146 150 149
Fiji Absent 149 165 123 164
Rwanda Absent 150 156 159 140
Nepal Absent 151 157 160 139
Liberia Absent 152 150 153 154
Papua New Guinea Absent 153 151 154 152
Namibia Absent 154 153 156 148
Aruba Absent 155 148 152 159
Antigua and Barbuda Absent 156 152 155 157
Belize Absent 157 154 157 155
Maldives Absent 158 158 161 153
Dominica Absent 159 159 162 162
Guam Absent 160 176 122 185
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Table A.3.: (continued)

Country Range Overall rank Median rank 2.5% rank 97.5% rank
Brunei Darussalam Absent 161 172 125 187
Turks and Caicos Isds Absent 162 155 158 172
Burkina Faso Absent 163 160 163 165
Dem. People’s Rep. of Korea Native 164 169 171 151
Grenada Absent 165 163 166 163
Swaziland Absent 166 161 164 170
Djibouti Absent 167 166 168 161
Mali Absent 168 164 167 167
Saint Kitts and Nevis Absent 169 162 165 173
Sudan Absent 170 167 169 166
Saint Lucia Absent 171 168 170 168
Malawi Absent 172 174 175 158
Somalia Absent 173 170 172 169
San Marino Absent 174 177 177 160
Saint Vincent and the Grenadines Absent 175 175 176 176
Burundi Absent 176 178 178 171
Mauritania Absent 177 173 174 181
Anguilla Absent 178 171 173 188
Seychelles Absent 179 182 182 175
Central African Rep. Absent 180 183 183 174
Sierra Leone Absent 181 179 179 183
Niger Absent 182 180 180 184
Eritrea Absent 183 181 181 182
Lesotho Absent 184 184 184 177
Saint Pierre and Miquelon Absent 185 185 185 179
Bhutan Absent 186 189 189 178
Timor-Leste Absent 187 187 187 186
Cabo Verde Absent 188 186 186 192
Greenland Absent 189 190 190 189
Comoros Absent 190 195 195 180
South Sudan Absent 191 192 192 190
Chad Absent 192 191 191 193
Marshall Isds Absent 193 188 188 202
Tonga Absent 194 193 193 194
Gambia Absent 195 194 194 196
Faeroe Isds Absent 196 198 198 191
N. Mariana Isds Absent 197 197 197 199
Montserrat Absent 198 196 196 203
Vanuatu Absent 199 200 200 195
Solomon Isds Absent 200 199 199 201
Cook Isds Absent 201 201 201 200
Kiribati Absent 202 203 203 198
Sao Tome and Principe Absent 203 204 204 197
Palau Absent 204 202 202 204
Samoa Absent 205 205 205 209
Guinea-Bissau Absent 206 207 207 205
FS Micronesia Absent 207 206 206 210
Nauru Absent 208 209 209 208
Niue Absent 209 208 208 213
Western Sahara Absent 210 210 210 215
Wallis and Futuna Isds Absent 211 212 212 211
American Samoa Absent 212 211 211 216
Tuvalu Absent 213 213 213 212
Pitcairn Absent 214 214 214 214
Norfolk Isds Absent 215 220 220 207
Fr. South Antarctic Terr. Absent 216 215 215 218
Falkland Isds (Malvinas) Absent 217 222 222 206
United States Minor Outlying Islands Absent 218 216 216 219
Saint Helena Absent 219 218 218 217
Heard Island and McDonald Islands Absent 220 217 217 220
Br. Indian Ocean Terr. Absent 221 219 219 221
South Georgia and the South Sandwich Islands ~ Absent 222 221 221 222
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Table A.4.: BMSB exposure scores for all countries (including infected) based on BMSB
interception and trade data. 2.5% and 97.5% refer to the lower and upper 95%
credible limits.

Country Range Median 2.5% 97.5%
USA Invaded 2408.97 370.01 22491.16
Germany Invaded 1293.31 187.03 13370.20
Japan Native 1179.75 176.91 7966.40
France Invaded 1023.91 154.26 8815.45
Rep. of Korea Native 996.17 145.95 5994.44
Canada Invaded 824.64 103.73 4848.04
Australia Absent 803.98 116.94 5221.56
United Kingdom Absent 799.08 110.96 6407.40
Netherlands Absent 701.80 92.98 7079.20
Spain Invaded 635.56 74.62 5286.82
Poland Absent 591.68 69.22 5975.96
China, Hong Kong SAR Absent 585.46 81.80 4277.48
Belgium Invaded 507.34 55.47 4000.74
Mexico Absent 506.92 57.11 3571.25
Russian Federation Invaded 484.69 59.12 4045.96
Italy Invaded 482.26 60.51 5928.24
Turkey Invaded 410.56 32.72 3874.19
Switzerland Invaded 390.22 47.28 3714.52
South Africa Absent 346.62 38.85 2587.14
China Native 326.24 23.50 6425.11
Sweden Absent 322.91 35.50 3455.46
Czechia Invaded 319.94 26.52 3588.46
Romania Invaded 310.21 25.93 3593.21
Viet Nam Absent 307.76 36.30 2314.11
Brazil Absent 305.49 32.58 2341.30
Austria Invaded 299.46 23.58 4059.07
Denmark Absent 288.89 39.36 2557.16
Argentina Absent 287.43 23.63 2273.38
India Absent 274.52 31.39 1922.37
Chile Invaded 257.49 27.09 1802.51
Ukraine Absent 247.75 19.64 2524.94
Hungary Invaded 243.60 15.23 3384.98
Slovenia Invaded 242.96 19.67 2772.75
Algeria Absent 226.84 13.89 1766.79
Portugal Absent 223.04 20.93 2276.46
Greece Invaded 222.43 20.73 2159.86
Thailand Absent 198.91 22.96 1331.39
New Zealand Absent 194.49 18.39 1625.55
Slovakia Invaded 190.23 11.41 3445.44
Croatia Invaded 184.89 14.67 2242.02
Iran Absent 183.27 18.62 1247.92
Bulgaria Invaded 169.34 10.81 2083.93
Indonesia Absent 163.83 20.59 1072.86
Israel Absent 163.68 17.11 1367.03
Pakistan Absent 163.66 11.31 1121.24
Finland Absent 159.57 10.93 1835.94
Morocco Absent 154.12 10.46 1490.50
Norway Absent 145.12 13.89 1693.30
Kazakhstan Invaded 142.97 10.06 1157.68
Lithuania Absent 136.88 11.41 1780.76
Malaysia Absent 133.43 16.52 894.00
Ireland Absent 130.17 14.57 1379.16
Philippines Absent 126.22 15.95 896.68
Serbia Invaded 120.94 7.71 2146.07
United Arab Emirates Absent 118.13 12.48 876.34
Tunisia Absent 111.21 6.57 1101.37
Colombia Absent 104.98 8.93 897.41
Uruguay Absent 103.34 8.68 1037.52
Egypt Absent 102.54 7.52 878.61
Bangladesh Absent 101.03 6.69 677.31
Singapore Absent 95.42 12.23 680.31
Georgia Invaded 94.18 7.46 1317.21
Myanmar Absent 93.11 6.29 564.36
Albania Absent 92.97 6.61 1190.87
Latvia Absent 91.05 8.41 1300.85
Lebanon Absent 88.58 7.75 840.51
Kenya Absent 88.16 6.77 678.99
Saudi Arabia Absent 87.14 9.86 631.49
Estonia Absent 85.80 5.72 1241.03
Uzbekistan Absent 84.77 4.83 965.70
Belarus Absent 83.64 3.62 1298.33
Malta Invaded 80.70 9.41 843.09
Peru Absent 79.31 6.18 704.32
Ecuador Absent 77.64 5.65 721.15
Nigeria Absent 74.79 7.22 533.88
Cyprus Absent 72.26 7.03 851.75
United Rep. of Tanzania Absent 71.82 5.76 541.98
Ghana Absent 66.25 5.54 551.44
Kyrgyzstan Absent 64.53 2.05 755.14
Paraguay Absent 62.10 2.82 788.17
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Table A.4.: (continued)

Country Range Median 2.5% 97.5%
Ethiopia Absent 60.84 2.59 542.62
Dominican Rep. Absent 58.90 4.18 601.49
Iraq Absent 58.22 4.33 481.84
Jordan Absent 57.44 4.61 659.72
Azerbaijan Absent 54.67 1.54 966.37
Dem. People’s Rep. of Korea Native 53.32 2.81 342.50
Mozambique Absent 51.96 3.93 422.32
Guatemala Absent 51.08 4.46 509.02
Luxembourg Absent 50.40 2.61 1497.16
Oman Absent 50.29 3.45 486.01
Dem. Rep. of the Congo Absent 49.82 3.71 413.13
Tajikistan Absent 49.14 1.91 506.30
Cuba Absent 46.48 2.79 494.02
Panama Absent 44.79 4.69 402.66
Cambodia Absent 41.67 2.08 327.58
Libya Absent 39.06 2.00 482.24
Bosnia Herzegovina Invaded 39.04 2.93 1165.08
Costa Rica Absent 38.97 3.84 369.62
Cote d'Ivoire Absent 38.52 3.00 397.52
Venezuela Absent 38.14 1.29 393.75
Bolivia (Plurinational State of) Absent 37.88 2.09 600.54
Angola Absent 37.44 2.59 346.67
Mauritius Absent 37.20 2.55 460.41
Honduras Absent 36.39 1.89 460.97
Sri Lanka Absent 34.25 1.68 306.22
Kuwait Absent 34.21 2.69 333.17
Lao People’s Dem. Rep. Absent 33.25 1.16 266.97
Mongolia Absent 33.03 3.16 340.61
Syria Absent 32.32 0.86 353.54
Rep. of Moldova Invaded 30.70 1.86 942.13
Cameroon Absent 30.60 2.29 310.44
Montenegro Absent 30.09 3.65 921.37
Jamaica Absent 29.52 1.79 365.65
TFYR of Macedonia Absent 28.89 1.70 1175.97
Armenia Absent 28.36 1.67 813.06
Yemen Absent 27.94 0.83 262.05
Madagascar Absent 27.72 1.30 337.70
Uganda Absent 27.04 0.48 352.17
Nepal Absent 26.73 1.01 298.27
Zimbabwe Absent 26.42 1.52 277.93
Zambia Absent 25.87 1.68 253.10
Qatar Absent 24.58 2.42 248.01
Congo Absent 24.18 1.42 294.94
Bermuda Absent 23.36 4.36 274.19
Trinidad and Tobago Absent 23.23 1.60 328.65
Togo Absent 21.83 1.23 284.76
Bahamas Absent 20.33 1.02 334.61
El Salvador Absent 19.78 1.52 259.40
Haiti Absent 19.60 0.89 278.16
Gabon Absent 18.36 0.98 243.06
Djibouti Absent 18.20 1.15 144.13
Afghanistan Absent 18.07 0.52 330.66
Botswana Absent 17.64 1.75 240.73
Benin Absent 17.33 1.14 188.69
Guinea Absent 17.19 0.77 179.20
Papua New Guinea Absent 15.66 0.47 164.22
Iceland Absent 15.29 2.78 391.82
Maldives Absent 15.19 1.00 170.22
Barbados Absent 14.98 2.92 211.94
Nicaragua Absent 14.95 0.71 248.97
Bahrain Absent 14.51 1.22 164.95
New Caledonia Absent 14.25 1.58 324.71
Somalia Absent 14.15 1.34 123.70
Liberia Absent 14.02 1.03 142.10
Fiji Absent 13.53 0.77 147.86
Rwanda Absent 13.45 0.00 282.04
Malawi Absent 12.90 0.99 180.79
Turkmenistan Absent 12.65 0.00 219.99
Senegal Absent 12.24 0.67 119.42
Guyana Absent 12.20 0.64 194.57
Equatorial Guinea Absent 12.02 0.73 179.25
Br. Virgin Isds Absent 11.97 2.03 150.61
Sudan Absent 11.83 0.41 100.70
French Polynesia Absent 11.63 0.86 234.89
Namibia Absent 11.27 0.70 174.74
Cayman Isds Absent 11.03 2.21 151.17
Suriname Absent 9.57 0.59 185.38
Belize Absent 8.39 0.00 168.65
State of Palestine Absent 6.81 0.45 158.10
Brunei Darussalam Absent 6.79 0.30 54.28
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Table A.4.: (continued)

Country Range Median 2.5% 97.5%
Timor-Leste Absent 6.65 0.40 95.97
Comoros Absent 6.19 0.81 104.37
Mali Absent 6.07 0.28 102.17
Curagao Absent 5.97 0.33 159.51
Burkina Faso Absent 5.63 0.16 103.17
Swaziland Absent 5.53 0.00 138.24
Lesotho Absent 5.44 0.00 133.38
Mauritania Absent 5.18 0.17 60.07
Aruba Absent 5.05 0.32 118.22
Central African Rep. Absent 4.50 0.00 103.35
Sierra Leone Absent 4.34 0.16 82.76
Burundi Absent 4.10 0.00 144.28
Antigua and Barbuda Absent 4.04 0.00 137.97
Dominica Absent 3.53 0.00 145.93
Tonga Absent 3.44 0.00 70.79
South Sudan Absent 3.28 0.00 70.57
Andorra Absent 3.17 0.00 172.82
Vanuatu Absent 3.07 0.20 60.84
Saint Kitts and Nevis Absent 2.94 0.00 109.48
Seychelles Absent 2.94 0.23 103.30
Niger Absent 2.83 0.00 58.84
Grenada Absent 2.82 0.00 128.91
Saint Vincent and the Grenadines Absent 2.69 0.00 92.79
Solomon Isds Absent 2.64 0.13 33.86
Saint Lucia Absent 2.62 0.00 107.65
Marshall Isds Absent 2.37 0.28 23.02
Gambia Absent 2.10 0.08 37.05
Eritrea Absent 2.06 0.00 91.84
Chad Absent 1.54 0.00 47.21
Cook Isds Absent 1.51 0.00 46.69
Turks and Caicos Isds Absent 1.47 0.00 95.52
Cabo Verde Absent 1.44 0.00 43.44
Bhutan Absent 1.34 0.00 104.31
Kiribati Absent 1.13 0.00 41.70
Samoa Absent 1.05 0.06 15.45
Greenland Absent 0.77 0.00 83.31
Sao Tome and Principe Absent 0.76 0.00 60.13
Guinea-Bissau Absent 0.72 0.00 16.07
Anguilla Absent 0.66 0.00 49.43
Palau Absent 0.61 0.00 16.63
Faeroe Isds Absent 0.59 0.00 53.43
Norfolk Isds Absent 0.57 0.00 23.32
Guam Absent 0.28 0.00 44.38
N. Mariana Isds Absent 0.27 0.00 24.11
Nauru Absent 0.23 0.00 17.27
Tuvalu Absent 0.14 0.00 5.25
FS Micronesia Absent 0.12 0.00 7.34
Wallis and Futuna Isds Absent 0.07 0.00 3.58
American Samoa Absent 0.04 0.00 1.37
Western Sahara Absent 0.00 0.00 1.98
San Marino Absent 0.00 0.00 115.88
Saint Pierre and Miquelon Absent 0.00 0.00 101.90
Pitcairn Absent 0.00 0.00 1.70
Fr. South Antarctic Terr. Absent 0.00 0.00 0.00
United States Minor Outlying Islands Absent 0.00 0.00 0.00
Montserrat Absent 0.00 0.00 20.25
Heard Island and McDonald Islands Absent 0.00 0.00 0.00
Saint Helena Absent 0.00 0.00 0.48
Br. Indian Ocean Terr. Absent 0.00 0.00 0.00
South Georgia and the South Sandwich Islands Absent 0.00 0.00 0.00
Falkland Isds (Malvinas) Absent 0.00 0.00 4.80
Niue Absent 0.00 0.00 1.03
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Table A.5.: BMSB exposure scores for all countries (including infected) based on con-
tamination and trade data. 2.5% and 97.5% refer to the lower and upper 95%
credible limits.

Country Range Median 2.5% 97.5%
Germany Invaded 5984.46 201.28 41357.73
USA Invaded 4856.88 146.78 37495.32
France Invaded 4571.20 161.06 30285.42
China Native 4334.65 165.27 27158.98
United Kingdom Absent 3725.64 134.07 24408.52
Netherlands Absent 3503.82 111.06 24345.13
Poland Absent 3451.41 108.37 23405.36
Ttaly Invaded 3416.53 88.88 24713.54
Spain Invaded 3198.37 113.84 21212.85
Canada Invaded 3166.16 130.62 19628.33
Belgium Invaded 3122.95 109.10 19481.91
Austria Invaded 2829.04 90.45 18700.87
Rep. of Korea Native 2744.07 89.36 18139.98
Czechia Invaded 2678.96 79.56 17514.52
Japan Native 2595.25 79.67 19514.60
Switzerland Invaded 2492.22 87.88 16001.71
Mexico Absent 2349.90 94.98 15113.85
Australia Absent 2343.55 71.32 16109.36
Hungary Invaded 2240.34 63.59 15426.62
Turkey Invaded 2176.97 72.05 15344.39
Sweden Absent 2095.70 66.96 14577.15
Romania Invaded 2079.32 55.47 14852.23
Russian Federation Invaded 2056.70 58.45 15080.88
Slovakia Invaded 1776.72 46.56 13478.56
Portugal Absent 1610.61 43.63 10590.51
South Africa Absent 1489.61 41.96 10487.56
Brazil Absent 1401.48 51.15 9586.75
Slovenia Invaded 1336.26 37.33 10309.35
Denmark Absent 1269.16 28.74 9368.07
Argentina Absent 1232.50 32.70 8979.25
Finland Absent 1041.19 24.75 7871.80
China, Hong Kong SAR Absent 1013.97 24.52 7710.44
Ukraine Absent 951.28 12.50 8182.93
Norway Absent 945.33 21.51 6953.08
Chile Invaded 928.49 22.66 6699.85
India Absent 889.96 26.41 6425.45
Bulgaria Invaded 856.15 15.31 7119.47
Greece Invaded 849.06 16.70 6849.39
Morocco Absent 844.16 15.32 6029.14
Algeria Absent 801.27 15.33 6248.14
Croatia Invaded 770.85 10.76 6786.36
Serbia Invaded 729.99 9.64 6665.97
Ireland Absent 672.05 10.12 5059.67
Lithuania Absent 640.53 10.49 5813.48
Thailand Absent 632.30 17.13 4619.21
Israel Absent 622.11 12.46 4776.55
Viet Nam Absent 616.18 11.93 5382.81
New Zealand Absent 588.57 11.56 4834.03
Luxembourg Absent 584.38 9.54 5094.93
United Arab Emirates Absent 488.46 13.74 3432.24
Tunisia Absent 472.88 7.89 3720.14
Iran Absent 452.89 7.00 3923.11
Colombia Absent 433.90 8.54 3328.36
Estonia Absent 426.94 4.88 4090.31
Belarus Absent 423.61 3.62 4181.54
Egypt Absent 407.82 7.49 3222.68
Indonesia Absent 404.36 8.37 3152.18
Kazakhstan Invaded 397.14 3.69 3698.29
Latvia Absent 377.28 5.06 3888.92
Saudi Arabia Absent 370.75 10.04 2537.65
Pakistan Absent 342.79 5.64 3156.02
Malaysia Absent 316.63 6.60 2423.86
Georgia Invaded 298.38 5.59 3444.92
Bosnia Herzegovina Invaded 297.20 2.93 3468.15
Singapore Absent 294.67 7.97 2052.87
Peru Absent 288.03 6.18 2375.96
Lebanon Absent 277.37 5.15 2511.77
Philippines Absent 263.29 5.47 2215.88
Dominican Rep. Absent 250.85 6.67 1983.21
Ecuador Absent 242.80 3.22 2221.89
Albania Absent 239.27 1.89 2903.65
Uruguay Absent 234.46 0.87 2643.53
Jordan Absent 234.36 4.13 2163.13
TFYR of Macedonia Absent 231.54 0.00 2986.88
Oman Absent 229.04 5.75 1712.06
Malta Invaded 226.29 2.67 2164.19
Uzbekistan Absent 225.61 1.07 2633.42
Azerbaijan Absent 219.08 0.77 2613.85
Cyprus Absent 217.41 2.54 2354.89
Kuwait Absent 174.18 4.29 1276.26
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Table A.5.: (continued)

Country Range Median 2.5% 97.5%
Paraguay Absent 173.96 2.12 2032.77
Nigeria Absent 169.97 3.02 1515.92
Rep. of Moldova Invaded 165.61 0.91 2372.50
Guatemala Absent 163.97 2.84 1471.56
Iraq Absent 163.70 1.68 1531.68
Bolivia (Plurinational State of) Absent 145.74 0.53 1659.15
Panama Absent 143.86 2.81 1197.54
Honduras Absent 143.65 1.89 1306.17
Bahamas Absent 142.82 1.52 1140.40
Bangladesh Absent 136.24 1.06 1502.96
Ghana Absent 132.51 1.73 1434.86
Kenya Absent 131.52 1.94 1628.65
Montenegro Absent 131.28 0.00 2143.55
Libya Absent 128.39 0.80 1361.33
Costa Rica Absent 127.75 1.92 1117.93
Trinidad and Tobago Absent 123.58 1.60 1068.41
Jamaica Absent 122.35 1.79 1097.21
Cuba Absent 117.84 0.46 1347.65
Qatar Absent 113.94 1.75 879.41
Venezuela Absent 112.28 1.71 1082.59
Iceland Absent 110.28 0.93 1160.24
Ethiopia Absent 107.65 0.52 1291.87
Myanmar Absent 106.27 1.57 1274.76
United Rep. of Tanzania Absent 86.01 0.44 1199.77
Cote d'Ivoire Absent 85.71 0.00 1003.26
Armenia Absent 82.57 0.00 1571.99
Andorra Absent 76.85 1.58 783.71
Mauritius Absent 76.68 0.51 1074.19
Cambodia Absent 74.88 1.78 782.68
El Salvador Absent 73.63 0.61 708.27
New Caledonia Absent 72.81 0.00 873.99
Kyrgyzstan Absent 70.34 0.00 1441.60
Afghanistan Absent 69.17 1.03 886.68
Angola Absent 68.55 0.00 809.04
Sri Lanka Absent 66.33 1.20 767.10
Mongolia Absent 63.05 1.15 785.93
Dem. Rep. of the Congo Absent 61.35 0.00 913.67
Cameroon Absent 56.49 0.00 735.09
Haiti Absent 54.79 0.43 665.35
Bahrain Absent 53.60 0.68 492.98
Tajikistan Absent 51.69 0.00 1023.34
Yemen Absent 50.26 1.25 633.39
Syria Absent 50.20 0.00 792.00
Mozambique Absent 49.74 0.00 833.32
Uganda Absent 49.74 0.48 776.24
Nicaragua Absent 49.66 0.36 604.67
French Polynesia Absent 49.54 0.00 623.99
Zambia Absent 48.04 0.34 591.50
Bermuda Absent 47.97 0.00 594.46
Gabon Absent 46.39 0.00 598.63
Benin Absent 44.31 1.70 499.86
Madagascar Absent 44.18 0.00 750.22
Cayman Isds Absent 42.64 0.37 417.40
Congo Absent 38.41 0.00 628.69
Br. Virgin Isds Absent 37.33 0.41 358.81
Suriname Absent 36.38 0.00 430.26
Togo Absent 36.29 0.62 534.06
Guyana Absent 34.99 0.32 438.94
Barbados Absent 33.61 0.00 423.20
Turkmenistan Absent 31.78 0.00 524.54
Lao People’s Dem. Rep. Absent 30.74 0.39 531.51
Zimbabwe Absent 30.48 0.00 546.34
State of Palestine Absent 28.61 0.00 422.57
Equatorial Guinea Absent 28.41 0.00 440.17
Botswana Absent 27.64 0.00 495.50
Curagao Absent 27.18 0.00 372.69
Guinea Absent 27.04 0.00 421.11
Aruba Absent 27.01 0.00 292.59
Senegal Absent 26.84 0.10 306.73
Liberia Absent 22.88 0.00 307.75
Papua New Guinea Absent 22.65 0.00 330.83
Antigua and Barbuda Absent 22.53 0.00 304.18
Namibia Absent 22.18 0.00 376.62
Belize Absent 21.97 0.00 307.62
Turks and Caicos Isds Absent 20.27 0.00 210.55
Rwanda Absent 18.29 0.00 476.44
Nepal Absent 18.16 0.00 486.95
Maldives Absent 16.94 0.00 329.89
Dominica Absent 16.74 0.00 277.31
Burkina Faso Absent 15.72 0.00 247.49
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Table A.5.: (continued)

Country Range Median 2.5% 97.5%
Swaziland Absent 15.20 0.00 220.40
Saint Kitts and Nevis Absent 15.06 0.00 206.47
Grenada Absent 14.49 0.00 256.89
Mali Absent 14.35 0.00 234.70
Fiji Absent 14.04 0.26 254.07
Djibouti Absent 13.99 0.00 278.66
Sudan Absent 13.95 0.00 235.18
Saint Lucia Absent 13.08 0.00 229.59
Dem. People’s Rep. of Korea Native 12.16 0.00 336.93
Somalia Absent 12.02 0.00 223.61
Anguilla Absent 11.36 0.00 125.83
Brunei Darussalam Absent 11.10 0.07 127.99
Mauritania Absent 11.02 0.00 159.21
Malawi Absent 10.92 0.00 295.95
Saint Vincent and the Grenadines Absent 10.42 0.00 183.59
Guam Absent 9.20 0.28 131.56
San Marino Absent 8.99 0.00 285.63
Burundi Absent 8.21 0.00 216.60
Sierra Leone Absent 6.88 0.00 155.48
Niger Absent 6.51 0.00 134.87
Eritrea Absent 6.19 0.00 158.56
Seychelles Absent 6.10 0.00 198.23
Central African Rep. Absent 5.76 0.00 199.94
Lesotho Absent 5.44 0.00 172.43
Saint Pierre and Miquelon Absent 5.33 0.00 165.91
Cabo Verde Absent 4.92 0.00 97.77
Timor-Leste Absent 4.57 0.00 130.02
Marshall Isds Absent 4.07 0.00 45.86
Bhutan Absent 4.01 0.00 167.10
Greenland Absent 3.85 0.00 111.39
Chad Absent 3.51 0.00 90.36
South Sudan Absent 3.28 0.00 105.09
Tonga Absent 3.23 0.00 85.75
Gambia Absent 3.03 0.00 68.85
Comoros Absent 2.89 0.00 161.37
Montserrat Absent 2.44 0.00 44.67
N. Mariana Isds Absent 2.44 0.00 56.05
Faeroe Isds Absent 2.06 0.00 99.44
Solomon Isds Absent 1.89 0.00 48.46
Vanuatu Absent 1.84 0.00 85.00
Cook Isds Absent 1.51 0.00 48.98
Palau Absent 0.90 0.00 27.04
Kiribati Absent 0.84 0.00 57.18
Sao Tome and Principe Absent 0.76 0.00 64.30
Samoa Absent 0.70 0.00 19.31
FS Micronesia Absent 0.54 0.00 12.03
Guinea-Bissau Absent 0.40 0.00 24.66
Niue Absent 0.26 0.00 5.16
Nauru Absent 0.23 0.00 20.03
Western Sahara Absent 0.17 0.00 3.31
American Samoa Absent 0.12 0.00 3.02
Wallis and Futuna Isds Absent 0.07 0.00 8.64
Tuvalu Absent 0.07 0.00 5.25
Pitcairn Absent 0.00 0.00 3.40
Fr. South Antarctic Terr. Absent 0.00 0.00 0.00
United States Minor Outlying Islands Absent 0.00 0.00 0.00
Heard Island and McDonald Islands Absent 0.00 0.00 0.00
Saint Helena Absent 0.00 0.00 0.89
Br. Indian Ocean Terr. Absent 0.00 0.00 0.00
Norfolk Isds Absent 0.00 0.00 23.31
South Georgia and the South Sandwich Islands Absent 0.00 0.00 0.00
Falkland Isds (Malvinas) Absent 0.00 0.00 23.52
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