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1 Introduction

The Risk-Return Resource Allocation (RRRA) project provides a framework
for the department to make resource allocation decisions that account for biose-
curity risk. The project team has developed a model for estimating risk and
cost given specified biosecurity investment scenarios. The model has been ap-
plied to over 60 organisms arriving by over 50 different pathways. The RRRA
project contributes to the DAFF priorities of ‘continuing the transition to a
fully integrated risk-based approach to managing biosecurity risk offshore, at
the border and onshore’ and ‘to develop a decision support system that will
analyze the cost and effectiveness of biosecurity controls, thereby supporting
DAFF Executive to make risk based decisions on biosecurity expenditure’.

The basic structure of the model is complete. It allows users to compare
output from alternative scenarios to determine whether a change in investment
would be desirable. Currently, the model calculates expected (mean) values, in
accordance with classical decision theory. Sub-models are often represented as
Bayesian networks (BNs), and take advantage of the built-in decision network
features available in off-the-shelf BN software packages. However, sub-models
need not be BNs and can be represented in any appropriate form.1 The model
estimates the number of organisms of quarantine concern that are expected to
arrive on each pathway. Risk is defined as the probability that an organism
enters, establishes and spreads in Australia multiplied by the consequences (or
impact) of its spread. Each pathway application of the RRRA model includes
many parameters (�100). As in all risk analyses, model structures and the
values of individual parameters are uncertain.

Risk return resource allocation implies that decision makers consider both
the cost of investment and the change in risk, when deciding where to invest in
biosecurity. The project is building a system to explore the relationship between
investment and risk.

The impact of uncertainty on decisions depends on the context of the de-
cision and the decision maker’s attitude to the risk. When deciding to change
investment strategies, a decision maker needs to be confident that the change
in risk will be in the direction desired and of an acceptable magnitude. In-
formation on uncertainty will assist the decision maker to assess the likelihood
of unacceptable outcomes, and to devise robust strategies that deliver accept-
able outcomes, even when uncertainty is severe. Measures of uncertainty in the
model output will allow decision makers to gauge how much confidence they
can place in the results.

The objective here is to identify and evaluate methods for characterizing and
reporting uncertainty in the stochastic RRRA model. Uncertainties arise from:

• the different ways in which operational details are simplified in the models
functions and assumptions,

1Of course, BNs are capable of representing any computable function, but unfortunately
BN software packages don’t always provide the most efficient tools to represent those functions.
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• the natural variation that occurs in input parameters such as the volume
of trade, composition and country of origin of trade, prevalences of pests
and diseases in consignments, and so on, and

• lack of knowledge about these parameters.

In this document, we will outline methods for dealing with all of these sources
of uncertainty, and will scope the potential for alternative ways of analyzing
them to support decision making. We begin with a survey of current approaches
to making decisions with models subject to severe uncertainty in Sections 2-
5, and then describe an approach tailored to the RRRA system in Section 6.
Finally, we present a detailed example demonstrating the use of the techniques
in the RRRA system in Section 7.

2 Decision making under uncertainty

2.1 Classical rational decision making

It is worth beginning with a brief description of the most common procedure
(often called a decision rule) for making decisions under uncertainty, based on
the expected utility model [Schoemaker, 1982]. This will be particularly useful
as some of the methods described later deviate from or extend this approach.

In an expected utility framework, it is assumed that a rational decision
maker is faced with a set of actions A, which, combined with current states of
the world S, will lead probabilistically to a set of outcomes O. Thus, for each
action ai ∈ A, state of the world sj ∈ S and outcome ok ∈ O, we can define the
conditional probability:

P (ok|ai, sj)

In addition, we take it that each outcome can be assigned a value or utility,
U(ok). To calculate the expected value (also called the expected utility or
the expected reward) of the action ai, we weight each outcome’s value by the
probability of that outcome occurring, given the state of the world is sj and we
have performed ai:

EV (ai|sj) =
∑
k

U(ok)P (ok|ai, sj)

The classical decision rule then instructs us to choose the action that yields the
highest expected value:

argmax
ai

EV (ai|sj)

There is a good reason for following the rule of maximising the expected
value in our decisions. Assuming our decisions are independent, it leads to the
maximum possible cumulative utility over time. By way of brief explanation,
if the situation sj arises in n cases (where n is very large), then, by the law
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of large numbers, the average return for performing ai across those cases will
be the expected value, and the cumulative value will be EV × n — regardless
of the utility we happen to receive by chance in each case (and regardless of
how positive or negative those case-specific utilities). The law of large numbers
means this will hold true even if sj is unique in each case.

The classical approach has been criticised on many grounds, leading to vari-
ations in the expected utility model and the proposal of alternative systems
such as prospect theory (see [Schoemaker, 1982] for a summary). We will not
explore such variations here. More importantly, while the classical approach
clearly handles some kinds of uncertainty (by way of its conditional probabili-
ties), it seems to ignore other kinds of uncertainty by making several assump-
tions about our knowledge. These assumptions include that we know (or can
assign a reasonably certain degree of belief to) P (ok|ai, sj); that we know U(ok);
or even that we know the set of all ok. Such assumptions can crucially affect our
decision-making, and are indeed common targets for sensitivity and uncertainty
analyses.

2.2 Uncertainty

2.2.1 Levels of uncertainty

Uncertainty is often divided into two kinds: measurable and unmeasurable. The
most famous proponent of this distinction is Knight [1921], and unmeasurable
uncertainty is often called Knightian uncertainty. Ben-Haim [2006] motivates
the development of his info-gap theory (see below) on the basis of Knightian
uncertainty, describing it as severe uncertainty.

Kwakkel et al. [2010] go further, and define four levels of uncertainty. Their
categorisations are reproduced in Table 1. According to Kwakkel et al.’s defini-
tions, uncertainty that can be quantified by probabilities is equivalent to Level 1
(or shallow) uncertainty, while Knightian uncertainty corresponds to Levels 2-4
(particularly 3-4). Many people (including Bayesians) may question whether
Levels 2-4 define genuinely different kinds of uncertainty, or just categories that
are of practical interest (i.e. representing cases in which uncertainty is increas-
ingly hard to quantify, rather than impossible).

2.2.2 Second-order probabilities

An important related idea is that of second-order probabilities, or probabilities
over probabilities (sometimes called hierarchical priors). For instance, we can
be quite certain that the probability of an ordinary coin turning up heads is 0.5.
However, if we are told that the coin might be biased, then we are no longer so
sure of the probability. Nonetheless, we may still have a probability distribution
over the probability of heads — if all we are told is that the coin is biased, we
don’t expect it to always come up heads or tails. Indeed, we expect the coin
will only be modestly biased, in order to avoid detection.

The concept of second order probabilities has raised two difficult questions:
1) How should they be handled? and 2) Are higher order probabilities possible,
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Level of Uncertainty Description Examples

Level 1 Being able to enumerate Being able to enumerate
(shallow uncertainty) multiple alternatives and multiple possible futures or

being able to provide alternative model structures,
probabilities (subjective and specify their probability
or objective) of occurring

Level 2 Being able to enumerate Being able to enumerate
(medium uncertainty) multiple alternatives and multiple possible futures or

being able to rank order alternative model structures,
the alternatives in terms and being able to judge them
of perceived likelihood. in terms of perceived likelihood.
However, how much more
likely or unlikely one
alternative is compared to
another cannot be specified

Level 3 Being able to enumerate Being able to enumerate
(deep uncertainty) multiple alternatives multiple possible futures

without being able to rank or specify multiple
order the alternatives in alternative model structures,
terms of how likely or without being able to specify
plausible they are judged their likelihood
to be

Level 4 Being unable to enumerate Keeping open the possibility
(recognized ignorance) multiple alternatives, while of being wrong or of being

admitting the possibility surprised
of being surprised

Table 1: A reproduction of the levels of uncertainty defined by Kwakkel et al.
[2010].
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ad infinitum? Good responses have been given on both counts. Pearl [1987] has
effectively argued that no new specialised logical machinery is required to handle
such probabilities; conditional probabilities are perfectly suitable. Similarly, the
concern about higher order probabilities is not so great; hierarchical priors are
naturally robust at higher levels, meaning they can be specified with much less
precision [Berger, 1990]. This line of reasoning can be seen as an attack on
the distinction between measurable and unmeasurable uncertainties, and gives
pause for thought as to whether such a distinction may really be needed.

2.2.3 Uncertainties in Bayesian networks

Bayesian networks (BNs) were formulated as models for performing reasoning
under uncertainty. The uncertainty that BNs work well with is measurable
uncertainty (Level 1 in Kwakkel et al.’s hierarchy). However, uncertainty may
still exist, affecting not only our choice of parameters (conditional probabilities
and utilities), but also our choice of state spaces, conditional relations and
variables. The number of possible ways any given BN can be altered — meaning
the number of possible ways the model can be wrong — is enormous. In theory,
this is no different to other forms of modelling. Any kind of modelling can only
reduce the number of parameters by making assumptions; BNs just make such
assumptions explicit. Nonetheless, this can make a deeper uncertainty analysis
of a BN model more difficult in practice.

Second and higher order probabilities are particularly relevant when we talk
about uncertainties in the parameterisation (and to some extent, structure) of
Bayesian networks and Bayesian models more generally. Indeed, most Bayesian
approaches to sensitivity analysis explicitly aim to model these higher order
probability distributions. This is what we will aim to do later as well, but with
an eye on keeping the effort manageable given the large number of parameters
involved.

3 Sensitivity analysis

Sensitivity analysis is a common technique used in validating models and simu-
lations where there is uncertainty about the appropriate values for input param-
eters. Specifically, sensitivity analysis is an investigation into how the output of
a model varies in response to variation in the input parameters [Saltelli et al.,
2000], particularly where the input variation captures uncertainty of interest to
the modeller.

3.1 Local and global sensitivity analysis

There are two main kinds of sensitivity analysis: local and global [Wainwright
et al., 2013, Saltelli et al., 2008]. Local methods begin with an initial (or refer-
ence) set of input parameters, and restrict their exploration to the space around
those parameters, often using derivative or difference based methods. By con-
trast, global methods aim to analyse the full domain of inputs (or at least the
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full domain of a subset of inputs), looking at how overall variation and inter-
actions amongst inputs affects the uncertainty in outputs. Local methods are
well suited to cases in which one already has a reasonable estimate of what the
input parameters should be, and wishes to assess how well the estimate holds up
under small changes. Global methods, on the other hand, are better suited to
understanding the features of the input parameter space that affect the model’s
output. Ultimately, though, both forms of sensitivity analysis can be adapted
for either purpose [Wainwright et al., 2013].

Sensitivity analysis is also often divided on the basis of whether the im-
pact of one variable is investigated at a time (called one-at-a-time or OAT) or
whether the impact of variables are analysed in combination (called variation-
in-combination or VIC) [French, 2003], though this classification is of mostly
technical interest.

3.2 Uncertainty analysis

Sensitivity analysis is sometimes distinguished from what is called uncertainty
analysis. Uncertainty analysis typically refers to an analysis of how uncertain-
ties in inputs propagate to uncertainties in outputs [Iman and Helton, 1988]
(as opposed to an analysis of how changes in inputs produce changes in out-
puts). An alternative, mostly operational, definition is that it is the analysis
of how correlated variations in multiple inputs affect output (e.g., Bedford and
Cooke [2001]). Both definitions fit comfortably within the domain of sensitivity
analysis. This is particularly true when we take the advice of French [2003] and
consider the purpose of such analyses, which is about understanding uncertainty
in both cases. Nonetheless, if a distinction is to be made, we take the term as
referring to an analysis of the full range of uncertainties (not just variations in
parameters) that can affect our models and, ultimately, decisions.

3.3 Common approaches to sampling the input space

If a model can be described in the form of a closed-form expression, many analyt-
ical techniques are available for analysing the propagation of changes in inputs
to changes in outputs directly, often using a derivative based approach. For
more complex models, some form of simulation is required, such as Monte Carlo
simulation [Saltelli et al., 2000]. The approach used (and often, as shorthand,
the set of input values created using the approach) is called the experimental
design of the analysis. An experimental design that uses Monte Carlo simulation
involves the random sampling of values for parameters and assessing the impact
on the output. In the case of local sensitivity analysis, this is restricted to some
neighbourhood around a set of reference parameters. For global analysis, the
entire input range may be sampled.

An improvement to a Monte Carlo design for such analysis (whether local
or global) involves the use of a Latin hypercube. A Latin hypercube partitions
each parameter into equal probability regions, and ensures that any new sample
that is generated is located in a region not already covered by previous samples
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(unless all regions are covered, in which case the sampling process begins anew).
While over the long run, both Monte Carlo and Latin hypercube approaches
converge to the same sampling coverage of the input space, a Latin hypercube
design will more faithfully represent the variation in the parameters than a
Monte Carlo design for the same number of samples, and is thus far more
efficient. Other approaches that can improve the efficiency of the sampling
process still further include Sobol sequences, Faure sequences and Niederreiter
sequences [Sobol’, 1998].

3.4 Implications for decision making

The results of a sensitivity analysis do not affect the decision maker’s decision
rule. Rather, the results are provided to the decision maker as additional infor-
mation that they must then weigh and integrate with all the other information
they have available. In some cases, this may provide the decision maker with
confidence in using the model output for their decisions. In other cases, the de-
cision maker might reject the model or ask for it to be refined, in which case the
sensitivity analysis provides a guide to which parts of the model would be most
worth improving. Ideally, the sensitivity analysis would provide an indication
of the likelihood that a model’s results apply to the system being modelled, but
this seems to receive little coverage in the literature. As such, since the deci-
sion maker must handle the information from a sensitivity analysis manually,
it is important that the results of a sensitivity analysis can be communicated
well. Fortunately, this is frequently the case, and we will see some examples in
Section 5.

4 Approaches to uncertainty analysis

4.1 Variance-based sensitivity analysis

Sobol’ [2001] proposed a global sensitivity analysis approach that attributes vari-
ance in the output of a model to variances in the input parameters of the model
or combinations thereof. The method, generally called variance-based sensitiv-
ity analysis (VBSA), is capable of giving sensitivity indices for each parameter
and for interactions between all subsets of parameters. These sensitivity indices
are all non-negative and sum to 1, and give the proportion of variation in the out-
put that is due to a parameter (or combination of parameters). The technique
can therefore be used to rank parameters by importance, identify unimportant
parameters and identify the strength of interactions between parameters.

The approach begins by treating the model as a black box that can be
represented by a function f(X) = Y , where X is a vector of n i.i.d random
variables, Xi, each ranging uniformly over the interval [0, 1], and Y is a scalar
output. f(X) can be decomposed into the following form:

f(X) = f0 +
∑
i

fi(Xi) +
∑
i<j

fij(Xi, Xj) + ...+ f12...n(X1, X2, ..., Xn)
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which is called Hoeffding decomposition [Saltelli et al., 2010]. When the value
of the integration over the interval [0, 1] for each term in this decomposition is
equal to 0, the terms are orthogonal and can be expressed as integrals of f(X):

f0 =

∫
f(X)dX = E(Y )

fi(Xi) =

∫
f(X)

∏
k 6=i

dXk = E[Y |Xi]− f0

fij(Xi, Xj) =

∫
f(X)

∏
k 6=i,j

dXk = E[Y |Xi, Xj ]− f0 − fi − fj

Hence, f0 represents the mean output value for the model, fi(Xi) represents the
effect on the output of varying Xi alone and fij(Xi, Xj) represents the effect on
the output of varying Xi and Xj in combination.

Given this decomposition, and assuming f(X) is square integrable, we can
calculate variances for each of the terms by squaring and integrating (over [0, 1])
the decomposition:∫

f2(X)dx = f20 +
∑
i<j

f2ij(Xi, Xj) + ...+ f212...n(X1, X2, ..., Xn)

which we can rearrange as:∫
f2(X)dx− f20 =

∑
i<j

f2ij(Xi, Xj) + ...+ f212...n(X1, X2, ..., Xn)

Note that the left hand side of this last equation can be restated E[Y 2] −
E[Y ]2, which is the formula for the variance of Y , Var(Y ). Similar transforma-
tions apply to the terms on the right, giving:

Var(Y ) =
∑
i=1

VarXi
(fi(Xj)) +

∑
i

∑
j>i

VarXi,Xj
(fij(Xi, Xj))

+ ...+ VarXi,...,Xn(fij(Xi, ..., Xn))

or, substituting V for Var(Y ), Vi for VarXi
(fi(Xj)), and Vij for VarXi,Xj

(fij(Xi, Xj)),
etc.:

V =
∑
i=1

Vi +
∑
i

∑
j>i

Vij + ...+ Vi..n

Dividing the above by V tells us the proportion of output variation that is
produced by each parameter, and each parameter combination:

V/V =
∑
i=1

Vi/V +
∑
i

∑
j>i

Vij/V + ...+ Si..n/V

1 =
∑
i=1

Si +
∑
i

∑
j>i

Sij + ...+ Si..n
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Where the S• are called sensitivity indices. Both the sensitivity indices and
variances can be used directly by modellers to identify parameters that would
benefit from greater accuracy and ultimately by decision makers to examine the
robustness of the model outputs.

VBSA can be performed on analytically tractable functions and numerical
models equally well. Monte Carlo approaches, as well as quasi-Monte Carlo
approaches (i.e., Latin hypercubes or Sobol sequences) that can be used to
approximately calculate these sensitivity indices for numerical models are well-
established [Saltelli et al., 2010, Sobol’, 2001], although can be very computa-
tionally expensive depending on the speed of the model.

4.2 Value of information

Value of information (VoI) [Raiffa and Schlaifer, 1961] approaches uncertainty
from a different angle. It starts from the idea that if a classically rational decision
maker has a lack of information about some decision, and she is in a position
to acquire information that fills this gap, she will be willing to pay up to as
much as the new information is expected to yield. Applications of VoI include
fishery management modelling [Mäntyniemi et al., 2009], evaluation of medical
equipment [Oostenbrink et al., 2008] and assisting in the allocation of research
funding [Karnon, 2002]. (See [Yokota and Thompson, 2004] for a review of VoI
and its applications.)

Mäntyniemi et al. [2009] provide a good example to illustrate the idea. Sup-
pose a population of 1000 fish moves between two habitats — offshore O and
estuary E — such that at any given time 80% of the fish are in one of the
habitats. A fisher has two choices: fish offshore, aO, or fish in the estuary, aE .
In either case, she will catch all of the fish present. Suppose she believes there
is a 0.7 probability that 80% of fish are in the estuary:

P (FE) = 0.7

P (FO) = 0.3

If C(FH1, aH2) is her catch given that she chooses to fish in habitat H2 when
the majority of fish are in H1, her expected values for each choice is then as
follows:

EV (aE) = P (FE)C(FE , aE) + P (FO)C(FO, aE)

= 0.7× 800 + 0.3× 200 = 620

EV (aO) = P (FE)C(FE , aO) + P (FO)C(FO, aO)

= 0.7× 200 + 0.3× 800 = 380

Suppose the fisher can choose to pay for perfect information about where the
fish are located. Such information will consist of two possible messages: MO, the
majority of fish are offshore, with perfect information implying P (FO|MO) = 1;
or ME , the majority of fish are in the estuary, with perfect information implying
P (FE |ME) = 1.
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The maximum expected value of the decision given the new perfect infor-
mation is then the maximum possible catch of 800 (unsurprisingly, since the
information is perfect and free):

EV (aE |ME) = P (FE |ME)C(FE , aE) + P (FO|ME)C(FO, aE)

= 1× 800 + 0× 200 = 800

EV (aO|MO) = P (FE |MO)C(FE , aO) + P (FO|MO)C(FO, aO)

= 0× 200 + 1× 800 = 800

However, the change in expected value for each choice is the expected value
of the choice she makes given the new information (which is now always 800),
minus the expected value of the choice she would have made before seeing the
new information:

∆ME
= EVnew(aE |ME)− EVold(aE |ME) = 800− 800 = 0

∆MO
= EVnew(aO|MO)− EVold(aE |MO) = 800− 200 = 600

(Seeing ME would not change the fisher’s choice, hence ∆ME
= 0.) We can

then calculate the expected value of the new information to the fisher if we have
probabilities for the messages. We have such probability estimates — they are
simply the fisher’s prior probabilities for the majority of fish being offshore or
in the estuary:

P (ME) = P (FE) = 0.7

P (MO) = P (FO) = 0.3

Giving the expected value of new information in this case to be:

EV (M) = P (ME)∆ME
+ P (MO)∆MO

= 0.7× 0 + 0.3× 600 = 180

Thus, the fisher would be willing to pay up to the equivalent value of 180 fish
in order to acquire the new information.

In addition to the expected value of perfect information (EVPI), there are
also techniques for calculating the expected value of partial information [Yokota
and Thompson, 2004]. This is sometimes abbreviated as EVPXI, the expected
value of perfect X information, where X represents an uncertain model input
(and, by implication, other uncertainties in the model are set aside). EVPXI
can be calculated as the expected value of the optimal action given that we
know X exactly, minus the expected value of the optimal action given only prior
information about X.

It is easy to see how VoI can be used to assist modellers and decision mak-
ers. The most natural application is in identifying which input parameters would
provide the most benefit from increased accuracy (assuming one has prior dis-
tributions over the model inputs). VoI can also be applied to dispelling deeper
uncertainties, so long as prior distributions can be defined over them. For in-
stance, one can define a model space, and a distribution over that space, in
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order to determine the value of learning a better model, as done by Williams
et al. [2011]. VoI can also be used to screen out unimportant parameters. Felli
and Hazen [1998] reanalyse several sensitivity analyses from the literature that
used traditional sensitivity techniques and compare them to an EVPI approach,
finding that EVPI is able to screen out unimportant parameters much more ef-
fectively than other approaches.

While VoI essentially comes equipped with its own decision rule (i.e. that
of classical decision theory), the rule is applied only to whether gathering new
information is worthwhile. It is of no help to the decision maker if she can’t (or
she is unwilling to) gather new information. This is despite the fact that VoI
provides information about the relative importance of uncertainties surrounding
inputs on a model’s output, regardless of whether one is able to reduce that un-
certainty in reality. Such information can inform a decision maker’s assessment
of the reliability of a model, and her assessment of the choices based upon it.
Indeed, it would be interesting to see if such information could be used within
a new decision rule. But since no way of obtaining such information currently
exists, it seems that VoI is best suited to screening parameters for the present.

4.3 Info-gap theory

Info-gap theory, originally developed by Ben-Haim [2006], is an attempt at deal-
ing with severe uncertainty in decision making. The gap referred to is that gap
between what is known now (i.e. the information we have now) and what could
be known (i.e. the information we could have). In the language of info-gap
theory, severe uncertainty refers to uncertainty that can’t be quantified by a
probability. Info-gap theory has been applied to the surveillance of invasive
species [Davidovitch et al., 2009], handling uncertainty in conservation manage-
ment [Regan et al., 2005] and calculating the parameters for hypothesis tests
[Fox et al., 2007], amongst many other applications.

The info-gap approach is fundamentally a sensitivity analysis approach (pos-
sibly, a local sensitivity analysis approach; see [Sniedovich, 2012]), however it
goes one significant step further. Whereas sensitivity analysis does not impact
on one’s decision rule, info-gap proposes its own method in place of the classical
rational decision rule. In particular, it suggests that an action is to be chosen
on the basis of how robustly it can meet desired performance criteria, rather
than on its expected value.

More formally, suppose that f̃ is a function that models our best guess as
to how our actions, a, input parameters x, and states of the world, s, lead to
outcomes, o:

ok = f̃(ai, x, s)

(For simplicity, we will assume that ok are numerical, but this is not essential.)
Since we assume that this model is subject to severe uncertainty, there are many
alternative functions, f , that may be better models. Info-gap focusses on those
functions that produce outputs around our best guess function’s outputs. It
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defines a critical parameter, α, that defines how far the alternative functions
can be. Specifically, we define the set of functions, F , such that:

F(α, f̃ , ai) = {f(ai, x, s) : |f(ai, x, s)− f̃(ai, x, s)|≤ α}

The parameter α is called the uncertainty parameter or the horizon of uncer-
tainty. We then define a reward (or utility) function on the outputs of our
model:

R(f(ai, x, s))

and a minimum desired reward:
Rmin

For a given action, we then find the maximum α, which we denote α̂, that
identifies a set of functions, where the minimum reward for those functions is
greater than Rmin:

α̂(ai, Rmin) = max{α : ( min
f∈U(α,f̃,ai)

R(f(ai, x, s)) ≥ Rmin)}

In place of choosing the action with the maximum expected value, as per
classical rationality, we choose the action that has the greatest α̂:

âi = argmax
ai∈a

α̂(ai, Rmin)

That is to say, we choose the action that will achieve (at least) the minimum
reward under the widest range of uncertainty.

Two major criticisms have been levelled at info-gap theory (for the discus-
sion, see [Sniedovich, 2012, Burgman and Regan, 2014, Sniedovich, 2014]). The
first is that the decision rule it proposes is not new — namely, it is a form of
maximin optimisation. The second is that the claim of being able to handle se-
vere uncertainty is false, given that it is ultimately based on a local robustness
approach. Whether or not the criticisms are correct, info-gap’s inclusion of a
sensitivity analysis into a clear decision rule still seems novel and worthwhile.

One additional concern that might be raised with info-gap theory is that α̂
defines the equivalent of an unweighted volume of uncertainty. When making
use of info-gap’s decision rule, we are required to choose that action which yields
the largest such volume. However, each point in the model space is given equal
weight in this measure — which is equivalent to assigning a uniform distribution
over the space of all possible models. As Ben-Haim himself well explains (Chap-
ter 2, [Ben-Haim, 2006]), assuming the uniform is not always benign, depending
on our model representations, and can lead to contradictions if our representa-
tion is changed in semantic-preserving ways. Thus, it seems to be a dangerous
choice of prior if we have good evidence that the space is not uniformly probable
— and this is almost always the case (recall even the simple example of the bi-
ased coin from Section 2.2.2). While Ben-Haim eschews the ability to quantify
such higher order probabilities (classifying them as unmeasurable uncertainties),

15



the info-gap approach seems to have quantified things uniformly by default. A
simple remedy would be to make this an explicit part of the approach, so that
the distribution over models can be changed from uniform when appropriate.

4.4 Robust Bayesian analysis

Robust Bayesian analysis [Berger, 1990] is a form of sensitivity analysis for
Bayesian models (though not necessarily Bayesian networks). It aims to char-
acterise the uncertainty in the input parameters in terms of a class of priors, with
a prior distribution over the class (i.e. higher order probabilities), and assesses
the impact of this uncertainty on the posterior of some variable of interest. The
class of priors need not be specified with any great accuracy, and loose, rather
than exact, shapes for the distribution can be given. Berger [1990] gives the
example of a class of priors defined by a median, quartiles and the statement
that it is symmetric and unimodal, all of which an expert can reasonably be
expected to provide in many circumstances. Pericchi [1998] gives several further
examples of classes of priors that can often be easily specified.

While a promising approach, Berger et al. [2006] note that it has run into
severe limitations when used in practice — namely that prior classes that are
easy to work with result in posterior intervals that are too wide to be of practical
use — and so may be premature as a practical technique.

4.5 Metamodelling

One approach that is becoming increasingly common in the analysis of partic-
ularly complex computer models is to create a “metamodel” that approximates
the more complex model [Conti and O’Hagan, 2010]. Typically, this is done
whenever the complex computer model runs too slowly to perform the large
number of iterations required to perform a full global (or local) sensitivity anal-
ysis. However it has several further advantages. For example, as French [2003]
points out, it can be used to assess whether the process represented by the orig-
inal complex model can effectively be described by a simpler model, allowing
one to identify factors that are not relevant to the original model. Furthermore,
simple approximations may be easier to work with for a range of purposes, in-
cluding analysis, efficient communication with decision makers and stakeholders,
comparison with other models, and so forth. Indeed, arguably the meta-models
need not be simpler in any sense than the original models; they merely need
to be more convenient for the purpose at hand. From this perspective, the
decomposition used in VBSA is a metamodel. In most cases the decomposed
model remains theoretical, but that is not the case in an approach called high
dimensional model representation (HDMR) [Li et al., 2002].

Metamodelling approaches often treat the model as a black box function
that takes a vector of inputs X and returns an output f(X) = Y (in the same
manner as VBSA). Simpler models can then be defined manually (e.g., Kennedy
and O’Hagan, 2000), derived analytically using simplifying assumptions, fitted
to a model using regression on sets of input-output pairs yielded by the complex
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model (e.g., Conti and O’Hagan, 2010) or learned from the same input-output
pairs using machine learning techniques.

When the metamodel is kept simple, either the model or its key results can
be passed on to decision makers directly, as is the case with the sensitivity
coefficients in a regression, or indeed the sensitivity indices from VBSA. While
there is no clear way to explicitly factor this into a decision rule, such information
is clearly valuable in assessing the uncertainty of the model.

5 Reporting on uncertainty

Once we have a means of assessing the uncertainty in our model across the
choices we have available, we need to represent these uncertainties to decision
makers. This section briefly covers some of the approaches that have been used
to achieve this.

5.1 General approaches

Confidence intervals, or their Bayesian equivalents, credible intervals, are com-
monly used to depict the uncertainty in an estimate. They have the advantage
of being broadly familiar and easily represented graphically. (One should keep in
mind that frequentist confidence intervals can be misleading as to their meaning
and credible intervals should be preferred where possible.) Box plots contain-
ing quantile information on the uncertainty are also commonly used, such as
the plot in Figure 1 (from Helton et al. [2006], who provide further graphical
examples of displays of uncertainty).

5.2 Sensitivity analysis

The results of a sensitivity analysis can be depicted using many standard tech-
niques. Sensitivity coefficients and sensitivity indices are effective numerical
means of reporting the results of a sensitivity analysis, and can be reported
graphically in the form of tornado plots. OAT sensitivity analyses have par-
ticularly straightforward graphical representations. These can be plotted using
scatter plots or confidence intervals and box plots (if the exact co-variation
with the input parameter is not of interest). The results of a VIC analysis is, of
course, more complicated to represent graphically given the higher number of
dimensions, however approaches such as 3 dimensional plots, parallel coordinate
plots and glyph plots can assist.

5.3 VBSA

Saltelli et al. [1998] provide a good approach to visualisation for their case
study, in which they performed a VBSA of a nuclear waste disposal model
with 12 input parameters. They group the input parameters into categories
that would be of interest to the decision maker. Figure 2a shows 3 groupings
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Figure 1: An example box plot. (From Helton et al. [2006].)

(biosphere factors, far field factors and near field factors), while Figure 2b shows
an alternative set of 2 groupings (natural barrier factors and engineered barrier
factors). (Both figures show the sensitivity of the model output to these different
groups of factors over time.) These figures very effectively communicate the
relative importance of the different categories of variables.

(a) (a)

Figure 2: The sensitivity of a nuclear waste disposal model to 12 input parame-
ters, grouped into (a) 3 categories focussed on field and (b) 2 categories focussed
on barriers.
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VBSA approaches also provide a very natural approach to visualising the
uncertainty around model outputs, since characterising the input uncertainty
using distributions that represent the input variation accurately will produce
outputs that also vary accurately. Thus, output distributions can be displayed
directly, and we will make substantial use of this technique in our own analysis.

5.4 Info-gap

In info-gap theory, the trade-off between the horizon of uncertainty and the
value function lends itself to a simple and clear approach to visualising the
impact of uncertainty. An example can be found in Regan et al. [2005], and
is shown in Figure 3. This figure shows the result of evaluating three different
management strategies for protecting the Sumatran rhinoceros (using a decision
tree model based loosely on Maguire et al. [1987]). We can clearly see that as
the horizon of uncertainty increases (i.e. as the amount of uncertainty allowed in
the model increases), the minimum expected utility for each strategy falls away.
We can also see that for small horizons, captive breeding is the best strategy
(down to an expected value of 0.12), but as the horizon increases, the dominant
strategy is clearly the development of a new reserve. Hence, information about
the uncertainty in the model can be communicated very clearly to the decision
maker — even in the absence of a pre-determined minimum desired expected
utility.

6 Analysing uncertainty in the RRRA model

6.1 Overview of the model

Before describing the proposed approach to analysing uncertainty in the RRRA
model, it will be helpful to provide a more detailed overview of the system as
it currently operates. The RRRA model applies to over 60 organisms that may
enter the country via over 50 different pathways, the bulk of these pathways
(approximately 70%) being forms of cargo. In the RRRA system, each of these
pathways is represented by a model, called an entry model, which handles all of
the organisms that may enter via that pathway. In principle, an entry model
can be any kind of computational function that takes management actions as
inputs, and produces probabilities of organism entry as outputs (see Figure 4).
At present, all entry models are implemented as BNs, although in many cases,
the parameters for the BNs are calculated or derived from external programs
and databases. An example prototype entry model for containers (not including
any cargo the container might carry) can be seen in Figure 5.

After entry, post-entry models are used to determine whether an organism
will establish and spread. Often, post-entry models have the same structure,
but are parameterised differently for each organism. The current prototype for
the post-entry model for aquatic organisms is shown in Figure 6.

For each organism on a given pathway, the entry model is coupled to the
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Figure 3: The minimum expected utility for increasing horizons of uncertainty,
for 3 different strategies.

organism’s post-entry model to give the expected number of spread events given
a set of management actions. The expected number of spread events is the ex-
pected number of times an organism will enter the country, establish and spread.
The total expected number of spread events for that organism is obtained by
summing across each entry pathway. The system then calculates the expected
consequence (or risk) of the organism allowing for the possibility that the con-
sequence of a second or subsequent spread event is not necessarily the same as
the first, to give an estimate of the impacts per organism under a given man-
agement scenario. The estimated impact is broken into 6 different categories:
the impact to animals, the environment, infrastructure, health and society, as
well as the financial impact to industry. A high level algorithm for this process
is given in Algorithm 1.

6.2 Comparing management strategies with the RRRA
model

The purpose of the RRRA model is to allow comparisons of the impact of
different management strategies. For a given management strategy, the RRRA
model calculates the expected impact on the 6 different categories of interest
as described above. One way to compare strategies, therefore, is to determine
which strategy has the lower expected impact, adjusting for the cost of each
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Algorithm 1 High-level algorithm for the overall RRRA model

Require: EMs ← Set of entry models
Require: PMs ← Set of post-entry models
Require: A ← Set of management actions

1:

2: for each organism do
3: for each pathway do
4: EM ← Entry model for pathway
5: T ← Number of transmission units for pathway
6:

7: . Given EM and A, calculate probability of organism entering on one
transmission unit

8: EP ← Probability of organism entering on one transmission unit
9:

10: . Expected number of organism entries on this pathway
11: Np ← T × EP
12: end for
13:

14: . Expected number of organism entries via any pathway
15: Nm ←

∑
p Np

16:

17: PM ← Post-entry model for organism
18:

19: . Given PM and A, calculate probability of spread event for organism
20: Sm ← Calculate post-entry spread probability for organism
21:

22: . Expected number of spread events for this organism
23: ESm ← Nm×Sm
24: for each consequence category i do
25: . Calculate expected impact for category i. d is a diminishing function
26: EIi,m ← Cost per spread event × d(ESm)
27: end for
28: end for
29:

30: for each consequence category i do
31: . Calculate total expected impact for category i over all organisms
32: EIi ←

∑
m EIi,m

33: end for
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Action 1=Current

Management
Controls

Action m=None

P(Organism A)

P(Organism D)

Probabilities of Entry
(Outputs)

Figure 4: Entry model template. f is the model, a1..n the actions, and θ1..n the
parameters of the model.

strategy. In the case of the financial impact to industry, the expected value is in
dollars, as is the cost of the strategy, hence the comparison is potentially quite
simple. If:

EV (S1)− EV (S2) > 0

then strategy S1 is to be preferred2, where:

EV (Si) = E(IndustryCost(Si))− E(StrategyCost(Si))

Unfortunately, things aren’t quite so simple. First, a proper assessment would
need to be based on expected utility, rather than the expected dollar amount.
Even in the restricted case of comparing strategies based on impact to industry,
this point is important, since a dollar saved on implementing the strategy will be
valued very differently (and by different people) to a dollar saved by industry.
The RRRA model already handles this by reporting the impacts separately,
and allowing the human decision maker to make the trade-off (i.e. to apply the
utility functions mentally). What’s more, the model assesses the impact on
other categories, such as health and the environment, in units of utility. While
an analysis in terms of utility for all aspects would be more proper, to keep things
simple, the focus of this study will be on impacts that can be easily estimated
in dollars, and hence will focus on the model’s estimates of the financial impact
to industry.

A second issue that complicates the comparison, and the one that concerns
us in this study, is the uncertainty over the expected values calculated by the
model. The RRRA model is very complex, incorporating 48 sub-models (one for
each entry pathway) each having probability and utility parameters numbering
into the hundreds and sometimes thousands, and each parameter subject to its
own uncertainty. The main model that unifies these sub-models also includes
its own parameters (though many fewer). Hence, the final expected values,
EV (Si), that the model calculates will be affected by the uncertainties present
across many thousands of parameters.

2One could also compare the ratio of the expected values:

EV (S1)

EV (S2)
> 1
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Figure 5: The Container entry model
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Indeed, the issue is more significant than even the above suggests. Models al-
ways implicitly reflect a large number of modelling choices and the RRRA model
is no different. These choices are implicit parameters, that may be subject to
the same sorts of uncertainty as explicit parameters. This may be particularly
true in the RRRA model, where the structure of the BN sub-models have not
yet had a chance to be widely reviewed and agreed upon. In addition to the
probability and utility parameters, the BN sub-models include uncertain choices
for the arcs, which variables to include and omit, the variable arities (i.e. num-
ber of states) and discretization methods used, the level of abstraction for the
model, etc. Of course, the unifying model is also the result of many modelling
choices, including the modelling choice that organisms (on and after entry) can
be treated separately, and that as the number of spread events increases, the
impact diminishes. Fortunately, all of these modelling choices can be treated
as just further uncertain parameters during the uncertainty analysis (see, for
example, the “Decision Analysis” example from Chapter 2, Saltelli et al., 2004).
Unfortunately, however, even on their own, these implicit parameters constitute
an intractable number of parameters to analyse!

Finally, to make matters seem especially difficult, if we place no constraints
on the parameters during our uncertainty analysis other than those that are
logically necessary (by, for example, the rules of probability), the range of un-
certainty around EV (Si) will be so large as to be completely uninformative.

We believe these problems can be managed (if not resolved) with the follow-
ing techniques:

1. Provide uncertainty distributions (second order priors) for input parame-
ters of the model

2. Implement a model review process to identify parts of the model that can
be treated as certain

3. Group parameters and take advantage of local structure wherever possi-
ble to reduce the effort needed for confidence assessments and sensitivity
analyses

4. Treat the RRRA model as a hierarchy of models, and analyse each part
of the hierarchy separately (with a summary of the analysis from lower
levels feeding into higher level metamodels)

The first two techniques will allow us to produce an informative assessment
of the uncertainty in the model and is ultimately required when doing any
uncertainty analysis. The last two techniques will help us manage both the
computational demands of the analysis, as well as the manual effort required.
Each of the above techniques are described in the following sections.

6.3 Uncertainty distributions for parameters

In order to get a sense of how uncertainties in the inputs of a model affect
uncertainties in the outputs, one has to begin by quantifying the uncertainty
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on the inputs. Variance-based sensitivity analysis techniques explicitly require
distributions to be provided for the input parameters. Indeed, any sensitivity
analysis technique explicitly or implicitly requires distributions over the inputs,
usually defaulting to the assumption of a uniform distribution over whatever
range the parameter happens to span. Using an uninformative uniform distri-
bution may not pose a problem if the number of parameters being investigated
is small or their effects on the output are small. In most (interesting) cases,
however, this is not true, and it is clearly not true for the RRRA model. Thus,
in order to have any hope of providing insight into the uncertainty of the model,
specific distributions will need to be provided for the input parameters.

Given the complexity of the RRRA model, providing such input distributions
may at first seem to add an unworkable burden. For example, suppose we were to
perform an analysis of the Container model in Figure 5 in isolation. It contains
217 probability parameters, or 110 probability parameters if we take into account
degrees of freedom. Let’s call the parameters of these input distributions meta-
parameters. Specifying a distribution for each parameter would require at least 3
meta-parameters per parameter (i.e., which distribution to use, such as normal,
beta, etc., along with the parameters needed by the distribution, such as means
and standard deviations or alphas and betas), giving a total of at least 330 meta-
parameters. Specifying all these meta-parameters would indeed be unworkable.

However, we can reduce the effort required significantly. To begin with,
the models come with values for the parameters already supplied. Even if we
know nothing else about the models, we can make some assumptions about
how these parameter values were chosen. In particular, it’s reasonable to hope
the modeller chose what they considered the most likely value of a parameter,
and we can also assume that their uncertainty will be some spread around this
value. Hence, it is not unreasonable to use this as an estimate of the input
distribution, taking it to be a normal distribution (appropriately constrained;
or perhaps a Beta distribution), with the parameter value as mean, leaving only
a standard deviation unspecified. This reduces the number of meta-parameters
to 110. Depending on how easy it is to specify the spread, this might already be
a workable number of meta-parameters. However, it’s possible to make further
assumptions that reduce the number of required meta-parameters still further,
as we will see in Section 6.5.

It’s important to note that specifying input distributions makes an impor-
tant contribution to the documentation of the models. To the extent that input
distributions apply to modelling and parameter assumptions (rather than nat-
ural variation) they document the modeller’s uncertainty across different parts
of the model. The modeller’s uncertainty is not information that can be derived
from any (current) automated analysis.3

3Though developing such an automated analysis is no doubt possible, and would constitute
its own interesting project.
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6.4 Structural uncertainty

The above discussion is centered on numerical parameters such as probabilities,
utilities and distribution parameters. As noted, however, the models them-
selves are the result of many modelling choices (such as the choice to include
or exclude arcs and nodes, choice of discretizations, etc.), and each such choice
can be treated as its own parameter. If alternative choices require additional
modelling work, then it is likely to be impractical to include it in the analysis;
however, inclusion can be practical if the modelling work can be automated in
a computationally efficient way (such as when working with models created via
machine learning, or when applying model simplifications).

Some elements of the structure of a BN can feasibly be investigated in an
uncertainty analysis without requiring extra modelling work. For instance, the
modeller can assign a confidence (or probability) to the existence of each of the
arcs in a network. The existence of each arc (or perhaps just low-confidence arcs)
can then be treated as a parameter, using a binomial for the input distribution,
with p equal to the assigned confidence. Testing the model without the arc
marginalises out the influence. This has the side-effect that the meta-parameters
associated with any removed conditional probabilities will also disappear. A
similar approach can be taken to uncertainty about the existence of nodes.
Again, removing the node will marginalise it out, which can both destroy and
create meta-parameters (for instance, removing X in a X→ Y→ Z relationship
will create derived parameters between X and Z that need their own meta-
parameters). However, meta-parameters created this way can be inferred rather
than specified manually. Alternative discretisations can also be tested, assuming
the modeller is able to specify a function relating the child to its parents.4

The most general approach to dealing with structural uncertainties is to per-
form model reviews. Model reviews can work well because we usually attach
a much higher degree of certainty to structure than we do to parameters —
for example, we have much more knowledge about the existence of influences
between variables than we have about the degrees of those influences. Thus,
with sufficient reviews, we may be able to achieve a wide consensus on the
structure5, and can thereby treat the structure as certain when doing our un-
certainty analysis. In the (hopefully limited) cases where this is not true, we
can apply meta-parameters to the uncertain structural elements.

6.5 Grouping parameters and local structure

So far, the number of meta-parameters that we need appears almost manageable
— potentially, one meta-parameter per free probability parameter, plus perhaps
some meta-parameters for structural uncertainty. However, we would still like
to drive down the number of meta-parameters as low as possible. One way to
do this is to group parameters where the nature of the uncertainty is likely to
be similar. An example of where this approach can clearly be applied is in the

4BN software such as AgenaRisk allow re-discretisations on the fly if a function is provided.
5Something that is often rarely true for numerical parameters!
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Figure 7: The Post inspection status CPT from the Mail network

distributions of the CPT. Figure 7 shows the CPT for the Post inspection status
node in the Mail entry model. Without grouping, we would need to specify 8
meta-parameters (since each of the 4 distributions has 2 degrees of freedom).
However, for a given distribution, it seems reasonable to suppose that the un-
certainty that affects the probability of None is the same as the uncertainty
that affects the probability of Detected (or Undetected). The uncertainty might
differ, but in many cases (perhaps the vast majority of cases) they are likely to
be the same. Thus, we only really need to specify one measure of spread per
row of the CPT, allowing us to halve the number of meta-parameters in this
case.

We can scale this kind of grouping up the model. Perhaps our uncertainty
for the whole Post inspection status node is roughly similar, in which case we
can have just one meta-parameter for the whole node. We might go further, and
decide we only need one meta-parameter for the network as a whole, or even the
entire RRRA model. A practical approach here would be to specify the meta-
parameters from the top-down, starting at the entire RRRA model, and then
altering the meta-parameter where we believe our confidence differs from the
value given at a higher level. (We will see an example of this later.) We need not
adhere to this hierarchical approach to grouping — in some cases, we may also
want to group parameters in other ways. For example, the cargo models all have
a Release status node, and we might have a similar level of uncertainty for this
node across all the cargo entry models (which would override meta-parameter
values from higher levels).

This clearly makes meta-parameter specification very manageable. Unfortu-
nately, reducing the number of meta-parameters won’t help at all with making
the sensitivity analysis computationally tractable. For that, we need to reduce
the number and range of input parameters.
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Figure 8: The Demand to resources node from the Passenger network

6.5.1 Local structure

One critical technique we can use to achieve a reduction in the number of input
parameters is to identify an underlying structure over subsets of parameters.
This is particularly relevant when using BNs with discrete CPTs, as the tables
are often the discretised product of a more general relation. An example can be
seen in Figure 8, which shows the Demand to resources node from the Passenger
network.6 Note that each distribution looks to have an underlying model with a
central tendency. In particular, given the node states sit on a scale, we might be
able to fit a beta distribution that ranges over this scale to each row. We would
then have two input parameters per row (i.e. mean and dispersion) rather than
three, reducing the total number of input parameters from 12 to 8.

More importantly in this case, sampling the beta distribution’s parameters
will produce variations in our CPT parameters that are more realistic than if
we were to directly sample the three parameters themselves. For instance, we
would be surprised to see a row in this table with parameters 0.4,0.1,0.1,0.4 —
in fact such a distribution is very likely to be impossible — so we would like to
avoid wasting our time testing sensitivity to parameter values like these (and
giving a wider spread to the output uncertainty than is warranted).

To provide a quick example of how this would work in practice, we will fit the
first row with a beta distribution. Using a simple stochastic search over the beta
parameters yields a best-fitting beta with mean of 0.56 and standard deviation
of 0.14. Rediscretising this beta distribution in the same way over the 4 states
gives the multinomial distribution 0.0135, 0.3223, 0.5747, 0.0895 — by no means
an exact fit. In this case, no exact fit is possible and this is likely a common
occurrence. Nonetheless, we might prefer the new distribution if we believe it
better captures the modeller’s intention. Alternatively, we can discretise the
distribution in such a way as to achieve a better fit (ideally, taking into account

6This CPT has been modified to better illustrate the technique being described.
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the fit for all the rows in the CPT at the same time). Once satisfied, we would
then have a beta distribution description of each row, and we could then estimate
our uncertainty over the beta parameters (the mean and dispersion, or alpha
and beta if we prefer).

Typically, the model that underlies one row also applies to other rows in the
CPT in a related fashion. We can see this in Figure 8; in comparison to the
first row, the mean for the second row has shifted to the left, and significantly
to the right for the fourth. In the third row, the mean has stayed relatively still,
but the distribution has narrowed. Thus, we could specify one beta distribution
(for the first row), and provide further meta-parameters indicating how either
the mean or the dispersion (or both) change in relation to the first row. Doing
so in this case allows us to reduce 12 free parameters to 5. More importantly,
our input parameters now capture our intentions better, and hence describe our
confidence distributions better. Thus, a dramatic change to the mean of the
first row entails similar dramatic changes to the other rows, and specifying local
structure allows us to make such related changes automatically, making them
amenable to automated analysis.

In many cases, the relations between rows can be summarised by a formula
that combines the parents in some way. In Netica, this is often represented
by using an equation for the node. In such cases, it is the parameters of the
equation that should be treated as input parameters, rather than the CPT
probabilities generated from the equation. In other cases (and as is often the
case in the RRRA system) the CPTs may be generated by external programs,
and again the parameters of those external programs should be the subjects
of the analysis. Ultimately, the analysis should be performed on the input
parameters to whatever model (be it CPT, equation, program or whatever else)
captures the true uncertainties of the modeller.

This also extends to any implied connections between the input parameters.
For example, if the modeller knows that the product of a set of input parameters
must come to a certain value, these constraints should be a part of the analysis
— possibly by including the known constraints (or correlations) in the existing
model. In the present example, this might mean using the final product value as
the main input parameter rather than treating the individual factors as separate
parameters.7

The RRRA model currently contains only a few cases where the above ap-
proach to exploiting local structure is of value. However, it can often be cru-
cial in such cases. Figure 9 shows an excerpt of the Assessment decision table
from the Passenger entry model. The full table contains 720 rows, and 2880
free parameters, making a VBSA-style analysis completely intractable. How-
ever, the parameters are clearly not all uniquely specified — for example, as
Demand to resources moves from High to BelowNormal, the probability of No-
tAssessed falls and as Demographic Profile moves from LowRisk to HighRisk,
the probability of NoScreening drops, both independently conditional on Screen-

7Alternatively, correlations between inputs can be handled with some VBSA techniques,
but these can be complicated to work with [Saltelli et al., 2004].
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Figure 9: The Assessment decision node from the Passenger network

ing inspection system and nothing else. Ultimately, there may be just a handful
of rules and corresponding parameters that were used to generate this table, re-
ducing 2880 free parameters to perhaps a few dozen — a much more manageable
prospect.8

There is one further approach that is especially worth highlighting, as it
works particularly well for the RRRA model — namely, identifying parameters
that can be treated as fixed. Returning to the Post inspection status CPT in
Figure 7, we can see that the second through fourth rows are deterministic,
suggesting very high confidence (in this case, they suggest logical certainties
given the structure of the problem). Similarly, the first row shows that No IBC
is impossible; again, this suggests there is no reason to assume uncertainty over
the No IBC probability in this row, reducing the number of free parameters from
two to one. In other cases, we may have domain-specific reasons for having a
high enough confidence in a parameter (or group of parameters) that we need
not investigate it.

The Mail entry model provides a good example of how this technique can
reduce the number of parameters. This model contains 427 conditional prob-
abilities, 249 of which are free parameters. By eliminating deterministic rows
from our analysis, we can reduce the number of input parameters to 134. If we
also eliminate conditional probabilities of 0 or 1, wherever they might appear
(i.e. not just in rows that are entirely deterministic), we can reduce this to 105
parameters.

8It’s also possible in this case that the node could be further broken up using BN modelling
techniques, such as the technique known as ‘divorcing parents’; see p.319, [Korb and Nicholson,
2010].
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Main model

Sub-model Sub-model...

Figure 10: Using sub-models to estimate the variance of inputs in a higher level
model

6.6 Hierarchical sensitivity analysis of the RRRA model

While the above techniques are useful, they will not allow us to reduce the
number of parameters in the highly complex RRRA model far enough to allow
for computational efficiency. One way to resolve this problem is to break down
the model in our analysis. The structure of the RRRA model is naturally
hierarchical. As noted, the model has already been broken down into sub-
models, with 48 entry models (covering the 51 organisms) and 3 post-entry
models, as well as the main model that glues them together as described in
Algorithm 1. All of the sub-models can be analysed separately, as these do not
interact.9 Furthermore, the main model can also be analysed separately. Such
an analysis can be informed by the analyses of the sub-models — in particular,
we can characterise the uncertainties in the outputs of the sub-models using a
sensitivity analysis, and use those to specify prior distributions over the inputs
to the main model. Figure 10 gives a schematic of how this can work. Breaking
up the full model in this way can be viewed as a form of metamodelling. This
is especially true when we analyse the main model, since it is merely a reduced
version of our full model.

In some cases, it may be possible to extend this hierarchical approach further,
by breaking down the sub-models themselves. Given that the sub-models are
presently all represented as BNs, one possibility would be to re-work the models

9Of course, that sub-models don’t interact is a modelling choice that we are very confident
about, and thus assume does not impact the uncertainty of our output.
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Figure 11: Breaking up the BNs into sub-models by analysing the output node
separately

as object-oriented BNs (OOBNs). However, we need not go to that effort in
order to break up the analysis, as we can take advantage of the structure of
a BN. While any node in a BN can be treated as an ‘output’ node, in the
RRRA sub-models, output nodes always sit at the bottom — i.e. as leaf nodes,
with parents but no children. One way to split up the analysis of the BN,
therefore, is to analyse the CPT of the output node, separately from the sub-
parts of the network capable of influencing the parent nodes. (See Figure 11.)
This will work well when the parent nodes are independent. When the parents
are not independent (as is often the case in the RRRA models), one can use
node absorption (see Section 7.2.3, [Kjærulff and Madsen, 2008]) to retain any
correlations between the two parents that are present in the underlying joint
distribution.

7 Example analysis

We will now look at examples of how some of the above techniques can be em-
ployed. Not all the techniques are covered, but the examples provided should
provide enough grounding in the basic techniques to make extensions straight-
forward.

It should be noted that the following analysis is based on an in-development
version of the RRRA model, filled with many placeholder parameters. There-
fore, the following analysis is solely to illustrate the techniques, and cannot be
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Organism Entry Spread Impact per
Frequency Probability Spread Event

($m)

AGM 67.85636691 0.00614 220
animal other bacteria 11.31414285 0.014354998 100
animal other microorg other 2.484612038 0.014354998 100
Animal other virus 2.491915444 0.014354998 100
Ant 6.141447392 0.00614 0
...

Table 2: Extract of resultant input values for a full RRRA model run, with all
controls set to their default

used to draw any conclusions about the final version of the RRRA model.

7.1 The main RRRA model

We will begin with a metamodel analysis of the main (highest level) model, with
sub-models excluded from the analysis. Our metamodel will look much like the
algorithm in Algorithm 1, however lines 3-22 will be removed, along with all
consequence categories aside from ‘financial impact to industry’. To make up
for this removal, for each organism, m, the number of organism entries via any
pathway, Nm, and the spread probability, Sm, will be taken as inputs to the
metamodel. This gives us the simplified model in Algorithm 2.

Algorithm 2 RRRA metamodel

1: for each organism do
2: . Expected number of spread events for this organism
3: ESm ← Nm×Sm
4:

5: . Calculate expected financial impact to industry. d is a diminishing
function

6: ECm ← Impact per spread event × d(ESm)
7: end for
8:

9: . Calculate total expected impact for category i over all organisms
10: EC ←

∑
m ECm

In order to anchor our uncertainty over the inputs, we will run the full RRRA
model to obtain point estimates of the relevant parameters. We will leave the
management actions for this run at their default setting (‘Current’ for all actions
except Vessel surveillance system, which is ‘None’). Table 2 shows an extract
of the results of such a run for the input parameters to our metamodel.

For this analysis, we will assume all these input parameters to be fixed,
aside from the entry frequencies, giving us 51 input parameters (one for each
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organism). Also note that the final expected impact to industry for this model
run is about $30 billion.

We now need to choose a type of distribution to characterise the uncertainty
over these inputs. Given that, for each parameter, we have a point estimate
for the mean of the parameter (derived from the sub-models), and that we
expect such estimates to vary around a centre point, a normal distribution
seems appropriate. Of course, none of the frequencies can be below zero, so we
would need to use a truncated normal distribution. We have other choices, of
course, such as beta or truncated log-normal distributions, if we believe those
better characterise our uncertainty. However, for simplicity, here we will stay
with the normal.

At this point, we have several further choices for how we specify the meta-
parameters of the normal distribution for each parameter. One direct approach
would be to take the values from the model run as means, and specify a stan-
dard deviation for each. A slightly more intuitive approach would be to specify
an error interval around the point estimate (e.g. ±10%) coupled with an as-
sumption on how much of the distribution’s mass this interval captures (e.g.
99.7%). From this, we can estimate a standard deviation (e.g. 99.7% = 3 stan-
dard deviations). We could also allow the user to specify their own interval
boundaries (using the point estimate as information only), and estimate a mean
and standard deviation from those boundaries. One good approach if a group of
experts is available is to use the 4 step Delphi protocol [Burgman et al., 2011],
in which the group is asked for their highest, lowest and best estimates, along
with a rating of their confidence, which can easily be translated into truncated
normal or (better still) beta distributions.

Here, we will use an error interval of ±10% for every point estimate, along
with the assumption that this captures almost all (99.7%) of the input uncer-
tainty. Thus, for example, our interval for AGM entry frequency is [61.1, 74.6],
which translates to a S.D. of 2.26. This choice of error interval is arbitrary,
however it will serve to illustrate the method. In practice, these particular in-
tervals would be estimated by analysis of the sub-model outputs, as described
in Section 7.3. In the absence of sub-models, estimation from data or elicita-
tion approaches like the 4 step Delphi protocol would be recommended. In the
absence of any solid knowledge, a variety of intervals can be investigated to at
least produce an understanding of how the model is affected by different kinds
of uncertainty.

With our input distributions specified, we can now perform our variance-
based sensitivity analysis. For this analysis, we have use the R package called
‘sensitivity’ that implements a range of efficient algorithms for calculating sen-
sitivity indices. The overall analysis process is managed from within a Python
script (calling into R as needed), which also encodes the metamodel. There are
3 major phases in the sensitivity analysis:

1. Setup the experimental design (i.e. generate a sample over the input
space)

2. Run the model on each point in the experimental design
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Figure 12: Extract of the metamodel experimental design

3. Calculate the variances and sensitivity indices

An extract of the experimental design generated using the extended-FAST
method (called ‘fast99’ in R) is shown in Figure 12. Each row constitutes a set
of input parameters for a single run and each cell corresponds to one of the entry
frequency parameters (named in the column header). This design is simply a
sampling of the input space that allows variances and sensitivity indices to be
calculated with as few model runs as possible. We could also have used a Latin
hybercube or simple Monte Carlo design, but at a greater cost to efficiency.

After creating the experimental design, we run our model on each point (i.e.
each row of Figure 12). This allows us to produce a distribution over the outputs,
giving Figure 13. This gives us our first insight into the output variance given
the uncertainties we specified in the inputs. Note that the variance is roughly
centred around $30 billion (our expected impact from the model run) as we
would hope (though not always expect, if there were non-linear responses from
significant parameters).

We can also now identify which parameters the model is most sensitive to.
Table 3 summarises the sensitivity indices computed for each of the parameters,
as well as their impact on the output variance. Only the ten most sensitive pa-
rameters are shown. The Main Effect column refers to the first order sensitivity
index for a parameter — that is, what proportion of the total output variance
does the parameter by itself account for. The Total Effect column refers to both
the main effect plus all of the interaction effects it has with other parameters.
If there are no interactions between parameters, then the total effect will be
equal to the main effect, and the sum of the main effects will be equal to 1. If
there are indeed interaction effects, the sum of the main effects will be less than
1 (since 1 - the sum of main effects is equal to the effect of the interactions)
and the sum of the total effects will be greater than 1 (due to double counting
of interactions across parameters). The final two columns show the proportion
of the output variance (represented by the standard deviation here, since it is
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Figure 13: Output distribution of the metamodel sensitivity analysis

easier to interpret) caused by the parameter either by itself (Output SD), or in
interactions with other variables (Output Total SD).

The sensitivity analysis indicates the metamodel is highly sensitive to the
FMD, Kaphra and fruitfly entry frequency parameters. This is as we would
expect: inspection shows the impact to industry per unit for these organisms is
much higher than for any other organism.

Entry Frequency Main Effect Total Effect Output SD Output
Parameter Total SD
FMD 0.3084676 0.337481661 472.9537387 494.6966559
Khapra beetle 0.083661018 0.113564265 273.9412843 319.1661036
fruitfly 0.031406199 0.061502309 180.2453882 252.2331587
Zoonotic bacteria 0.002508103 0.032688937 56.47561472 203.886618
Horticulture bacteria 0.000536184 0.030728995 26.78916765 202.8039701
Horticulture virus 0.000529311 0.030722185 26.62083472 202.8112635
Livestock microorg oth 0.000315339 0.030433094 20.65194211 202.882784
Broadacre fungus 0.000202883 0.030397607 16.62685886 203.5200334
horticulture fungus 0.000160603 0.030354954 14.81717124 203.7058103

Table 3: Sensitivity indices for the 10 most sensitive parameters for the meta-
model run
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Figure 14: (a) Output distribution of the metamodel Scenario B sensitivity
analysis vs (b) the original Scenario A output distribution

7.2 Comparing management strategies with the RRRA
model under uncertainty

As described in Section 6.2, the RRRA model is capable of comparing the
consequences of two management strategies based on expected value. However,
uncertainty affects this comparison. Ideally, we would like to know how probable
it is that the management strategy with the higher expected value will in fact
be better. This will depend on the uncertainty in our model, and the example
above shows how we can begin to understand that uncertainty. Here, we will
show how the decision maker can make use of that understanding to compare
scenarios.

We will run the RRRA model again, this time setting the management
controls to ‘Modified’ where possible, or otherwise ‘Current’.10 Let’s call the
original run Scenario A and the run in which controls are set to ‘Modified’
as Scenario B. When we do so, the model calculates an expected impact to
industry of $28.5 billion. The implementation costs are roughly equal ($329
million to $332 million), thus, there is an expected $1.5 billion saving to industry
in Scenario B. Let’s setup the input parameters to our metamodel as before,
by taking the point estimates from the RRRA model under Scenario B as the
parameter value, ±10%. Figure 14 shows the distribution over the outputs.

If we do a statistical test, the distributions are highly significantly differ-
ent, but of course that’s of little interest (we knew they were different to begin

10‘Modified’ is a placeholder option that, in practice, would be replaced by specific manage-
ment interventions. However, we use it here to provide a simple illustration of the technique,
by creating a contrast between the ‘current’ management strategy and some ‘modified’ man-
agement strategy.
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Figure 15: (a) Distribution over differences between Scenario A and Scenario B
(i.e. the Scenario B effect size). (b) Box plot of the same data.

with). More interestingly, we can derive a distribution over the possible dif-
ferences between outcomes for Scenario B and Scenario A (Figure 15a). This
distribution was produced by sampling the Scenario A and Scenario B outputs
in pairs, 10,000 times, and calculating the difference for each pair. This allows
to calculate the chance that Scenario B will produce a lower impact; in this
case, it is 82%. Thus, we can now say to our decision maker that, assuming our
model is correct and given ±10% uncertainty in each of our input parameters,
Scenario B has an 82% chance of producing a better outcome than Scenario
A, and our best estimate of that improvement is $1.5 billion. If the decision
maker is open to having more information, we can provide the full distribution
over the expected effect sizes. Alternatively, we can provide a box plot with the
quantiles which may prove easier to understand (Figure 15b) or the equivalent
in words (e.g. 25% chance of at least $2.6 billion saving, 50% chance of at least
$1.5 billion saving and 75% chance of at least $400 million saving).

It is important to note that this is not a final or absolute statement about
the value of Scenario A vs Scenario B. In particular, we have assumed cer-
tainty for our model, as well as for other input parameters (such as impacts
and postentry spread probabilities). If the decision maker is happy with such
assumptions, then she can decide if an 82% chance of producing an improved
outcome is worth the cost. Otherwise, we can revisit the model, and reduce our
uncertainty, by focusing in on the variables that the sensitivity analysis indi-
cates are most in need of attention. For example, by reducing the uncertainty
for FMD, Kaphra beetle and fruitfly to ±2%, we get the distributions shown
in Figure 16, giving a 99.5% chance that Scenario B produces an outcome bet-
ter than Scenario A (given we consider our model and other parameters to be
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certain).
It should also be noted that the metamodel that we created here is not the

only one that could be created at this level of abstraction. We have focused
on a metamodel that looks at sensitivities to organism frequencies because it
provides a clear demonstration of how the metamodel analysis can be separated
from the analysis of the sub-models, while still being informed by that analysis.
However, other elements of the model can also be incorporated into the analy-
sis. For example, spread probabilities, consequence estimates and diminishing
impact functions (none of which appear in the sub-models) can all be treated
as input parameters, depending on the question one wants to answer. It’s also
possible that one is only interested in a restricted set of input parameters to the
metamodel, perhaps because proposed management strategies affect only one
or two pathways. In such a case, the metamodel could treat all but those path-
ways of interest as having fixed parameters, so as to focus on the uncertainty
surrounding the changes in those specific pathways. There should be little risk
in doing so, given the independence of the sub-models. The approach proposed
here allows for all of these alternatives,11 requiring only slight changes to the
metamodel used.

7.3 Analysing the BN sub-models

Now that we’ve seen the framework for analysing the metamodel, we can step
down the hierarchy to the sub-models. In some sense, if we had enough confi-
dence in our uncertainty estimates over the input parameters of the metamodel,
we might not need to take this step. In particular, if our sensitivity analysis
gave us enough confidence to pick one scenario over another at this stage of
the analysis, we would not need to move further down the hierarchy. However,
assuming we needed further surety, we can analyse the sub-models to improve
our understanding of the uncertainty surrounding their outputs, and we can feed
such improvements directly into the uncertainty distributions for the metamodel
input parameters.

As noted in Section 6.5, we can assign confidence meta-parameters to groups
of parameters within our BN, such as to CPT rows, CPT columns, whole CPTs,
or parameters across an entire network. In this example, we will apply that
approach to the analysis of the Container entry model (see Figure 5). As noted
earlier, the Container model has 110 free probability parameters. This allows
for a relatively tractable sensitivity analysis.12

As we did for the metamodel, we have created a Python script to manage
the overall analysis process, which in this case also makes use of the Netica API
to manipulate the BNs. We also take advantage of the Netica API to embed the
meta-parameters into the Netica BN files. Figure 17 shows how we have chosen
to embed the meta-parameters that specify the spread (as a standard deviation)
in this example. By default, the parameters in the network are assumed to have

11As do the scripts developed for this report.
12The experimental design takes just 3 minutes to produce on a single CPU on a 2011 model

laptop, and the model evaluations take about a minute overall.

40



Impact ($millions)

F
re

qu
en

cy

26000 28000 30000 32000 34000

0
10

0
20

0
30

0
40

0
50

0
60

0

(a)

Impact ($millions)

F
re

qu
en

cy

26000 28000 30000 32000 34000
0

20
0

40
0

60
0

80
0

(b)

Difference

F
re

qu
en

cy

−4000 −2000 0 2000 4000

0
20

0
40

0
60

0
80

0
10

00
12

00

(c)

●
●
●●●●●

●

●

●●●

●
●●●
●●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●
●

●

●●

●

●

●

●

●●
●●
●

●●
●

●

●
●

●

●

●●

●

●●●

●

●

●●
●●

●

●

●

●●

●
●

●

●

●●

●

●

●●
●

●

Original Reduced

−
50

00
0

50
00

Im
pa

ct
 (

$m
ill

io
ns

)

(d)

Figure 16: The effect of reducing uncertainty in FMD, Kaphra beetle and fruit-
fly. (a) Output distribution of the metamodel Scenario B sensitivity analysis
vs (b) the Scenario A output distribution. (c) The new effect size distribu-
tion between Scenario A and Scenario B. (d) Box plots of the original output
distribution (Original) and output distribution with reduced input uncertainty
(Reduced).
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Figure 17: Embedded meta-parameters for the network. (a) The default stan-
dard deviation meta-parameter for the entire network, (b) the default for the
BRM on container node and (c) a custom meta-parameter for row 14 of the
BRM on container node.

a spread defined by a normal distribution, with the mean being the existing value
of the parameter, and the standard deviation given by the constant node (a).
We specify a custom spread meta-parameter for the BRM on container nodes in
(b) and another for one of the CPT rows (row 14) in the BRM on container node
in (c). The Python script reads the network, extracts the meta-parameters, and
then runs through the 3 phases of the sensitivity analysis (setup experimental
design, run models and calculate variance and sensitivity indices) as before,
but taking into account the extracted meta-parameters when setting up the
experimental design. We focus on the posterior for the Ant output of this model
— in particular, P (Ant = T) — leaving the controls unspecified (i.e. assuming
uniform probabilities over the controls).

7.3.1 A full CPT analysis

When we run the analysis with no meta-parameters other than the default
spread for the network, we get the output distribution for the Ant posterior
shown in Figure 18a. This distribution may be of interest in itself, or it may be
used as the input distribution for our metamodel (for the Ant organism entry
probability on the Container pathway). As always, the degree to which we are
justified in doing this will depend on the degree to which we trust our meta-
parameters. In the absence of such trust, we should try a variety of generic
meta-parameters to understand how the model responds to different levels of
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Figure 18: Output distribution over P (Ant = T) with (a) all parameters and
(b) probabilistic parameters only

uncertainty.13

Of particular interest, we can now identify the parameters that have the
greatest impact on our uncertainty over the output (Table 4). Note the pa-
rameter names encode the cell of the CPT from which they come — the first
number after the node name indicates the row number of the CPT (as viewed in
Netica), and the second number indicates the column. These accord with what
we expect — in particular, it is no surprise that BRM Imported has the greatest
impact on Ant, being a direct parent. It’s also not especially useful information,
as the BRM Imported node is deterministic and encapsulates a logical relation-
ship that couldn’t be otherwise. BRM on container is also clearly influential,
which accords with the impact we observe when changing its value in Netica
(but keep in mind that the sensitivity analysis varies over CPT values, not over
sets of possible evidence).

7.3.2 Specifying custom uncertainties

Let us narrow our analysis now to the parameters in which we are most in-
terested (and likely to be least confident). We will do so first by omitting
deterministic rows and probabilities. Doing this in the Container model gives
us 44 free parameters, and generates the output distribution shown in Fig-
ure 18b and the sensitivity indices shown in Table 5. Our uncertainty has now
clearly been reduced. In addition, BRM imported disappears from our sensi-
tivity table (as it should), and the order of the remaining parameters changes

13We may even adopt an info-gap style approach here to discover how our management
strategies compare over different levels of uncertainty, though how to do so systematically is
not clear.
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Parameter Main Effect Total Effect Output SD Output
Total SD

BRM imported 3 0 0.776702487 0.801993602 2.65E-05 2.69E-05
BRM on container 8 0 0.005833892 0.023369383 2.81E-06 5.63E-06
BRM on container 17 0 0.005833892 0.023369383 2.81E-06 5.63E-06
BRM on container 26 0 0.005430693 0.02289524 2.72E-06 5.58E-06
Port of origin 2 0 0.001574675 0.018378988 1.52E-06 5.19E-06
BRM on container 5 0 0.001456881 0.018095519 1.46E-06 5.16E-06
BRM on container 14 0 0.001456881 0.018095519 1.46E-06 5.16E-06
BRM on container 2 0 0.001456447 0.018094623 1.46E-06 5.16E-06
BRM on container 11 0 0.001456447 0.018094623 1.46E-06 5.16E-06
BRM imported 2 0 0.001430924 0.015608651 1.42E-06 4.70E-06

Table 4: Sensitivity indices for the 10 most sensitive parameters (not including
the Ant CPT itself) in the Container network

Parameter Main Effect Total Effect Output SD Output
Total SD

BRM on container 8 0 0.135835696 0.152595755 3.13E-06 3.32E-06
BRM on container 17 0 0.135835696 0.152595755 3.13E-06 3.32E-06
Port of origin 2 0 0.014142188 0.030223666 1.18E-06 1.73E-06
BRM on container 2 0 0.008719815 0.025824417 9.52E-07 1.64E-06
BRM on container 11 0 0.008719815 0.025824417 9.52E-07 1.64E-06
BRM on container 5 0 0.008183333 0.025544052 9.26E-07 1.64E-06
BRM on container 14 0 0.008183333 0.025544052 9.26E-07 1.64E-06
Destination 0 0 0.00139647 0.019143149 4.22E-07 1.56E-06
BRM on container 6 0 0.001316926 0.016413419 3.90E-07 1.38E-06
BRM on container 15 0 0.001316926 0.016413419 3.90E-07 1.38E-06

Table 5: Sensitivity indices for the 10 most sensitive probabilistic parameters
(not including the Ant CPT itself) in the Container network

slightly, but the story for these other parameters otherwise remains much the
same. Now suppose we have some reason to be more confident about almost
all of the BRM on container node’s parameters, but substantially less confident
about row 14 of that node’s CPT. Rerunning the analysis gives us Table 6.
Here we see that the sensitivity to BRM on container has reduced somewhat,
except for the one free parameter in the uncertain row, which has the highest
sensitivity index by quite a way. The result in this case is intuitive, but it’s
important to note that a higher uncertainty distribution does not always pro-
duce higher sensitivities — if we increase the uncertainty on the BRM Found
node to even very high levels (say, with a standard deviation of 0.8), one of
its non-deterministic parameters has the second highest sensitivity index, while
the remaining 6 parameters all fall outside the top 10. This counter-intuitive
result can be double-checked by opening the Container BN and removing its
conditional probability table: doing so leaves the marginal probabilities for the
Ant node nearly unchanged!
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Parameter Main Effect Total Effect Output SD Output
Total SD

BRM on container 14 0 0.671063368 0.694115992 4.06E-06 4.13E-06
Port of origin 2 0 0.062791163 0.067718781 1.38E-06 1.44E-06
BRM on container 8 0 0.016972884 0.022364641 7.82E-07 8.98E-07
BRM on container 17 0 0.016972884 0.022364641 7.82E-07 8.98E-07
Destination 0 0 0.001402837 0.008937726 2.62E-07 6.61E-07
BRM on container 2 0 0.001288608 0.007363271 2.34E-07 5.59E-07
BRM on container 11 0 0.001288608 0.007363271 2.34E-07 5.59E-07
Wharfgate inspection 4 0 0.001254049 0.008236173 2.46E-07 6.32E-07
BRM on container 5 0 0.001217699 0.007359897 2.28E-07 5.60E-07
Port of origin 1 0 0.000939848 0.008009676 2.12E-07 6.20E-07

Table 6: Sensitivity indices for the 10 most sensitive probabilistic parameters
(not including the Ant CPT itself) in the Container network, with uncertainty
on BRM on container reduced, and the uncertainty on Row 14 increased

7.3.3 Structural analysis

Finally, it’s worth demonstrating that structural elements can also be treated
in the analysis. Here, we will focus on the arcs in a model. Again, we look at
the Container model, and will treat four arcs as uncertain (chosen to illustrate
a range of sensitivities):

1. Controls → Point of origin

2. Controls → BRM on container

3. BRM found → BRM imported

4. BRM on container → BRM imported

Each arc will be assigned a probability (confidence) of 0.5 — thus, the arc
will be present in 50% of the model evaluations. Figure 19 shows the output
distribution when we take these arcs into account in the analysis. (We use a
density plot here to capture more of the detail of in the output distribution, that
would otherwise be lost in a histogram.) Table 7 shows the sensitivity indices.

We can immediately note that this distribution fails to have a neat cen-
tre, and appears to be multimodal. In fact, if we analyse the experimen-
tal design and the resultant outputs, we can note that when the BRM found
→ BRM on imported arc is missing, the posterior for P(Ant=T) is always 0
(hence the large spike in the distribution at 0). We can also note that when
BRM on container → BRM imported arc is missing, P(Ant=T) is two orders
of magnitude lower than when it is not missing. This explains the two arcs high
sensitivity indices. The other two arcs don’t have nearly the same effect; in
particular, Controls → Point of origin is quite insignificant in both main effect
and total effect14 and might well be a candidate for removal if further model
simplicity were sought.

14Opening the Container BN and deleting this arc shows that it does not have much impact
on the marginal probability of Ant, unlike the other arcs.
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Figure 19: Output distribution over P (Ant = T) for probabilistic parameters
and selected arcs

Parameter Main Effect Total Effect Output SD Output
Total SD

BRM found → BRM imported 0.316553213 0.682320037 0.000257984 0.000378759
BRM on container → BRM imported 0.296958654 0.666954495 0.000255037 0.000382211
BRM on container 14 0 0.134378139 0.327031974 2.27E-06 3.55E-06
Controls → BRM on container 0.087042325 0.328248605 9.83E-07 1.91E-06
Port of origin 2 0 0.027984185 0.175550477 7.57E-07 1.90E-06
BRM on container 8 0 0.014053708 0.156627114 5.14E-07 1.72E-06
BRM on container 17 0 0.014053708 0.156627114 5.14E-07 1.72E-06
BRM on container 2 0 0.006965147 0.148836792 3.51E-07 1.62E-06
BRM on container 11 0 0.006965147 0.148836792 3.51E-07 1.62E-06
BRM on container 5 0 0.006948859 0.148841704 3.50E-07 1.62E-06

Table 7: Sensitivity indices for the 10 most sensitive parameters, including arcs
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It’s also very interesting to see that the total effects of the arcs are sub-
stantially higher than their main effects — this is quite intuitive, as their pres-
ence enables other parameters to have more of an effect. In the extreme case,
BRM found → BRM imported disables the effect of other parameters entirely
when it is missing.

8 Summary and future work

While there are a variety of approaches for making decisions with models subject
to severe uncertainty, many have shortcomings or are still at an early stage of
development. Therefore, here we chose to develop on an approach for the RRRA
model that is based on the widely used and tested technique known as variance-
based sensitivity analysis, while folding in useful ideas from standard Bayesian
analysis such as higher level priors (i.e. confidence estimates). The core of this
approach was outlined in Section 6.2 and consisted of the following techniques:

1. Provide uncertainty distributions (second order priors) for input parame-
ters of the model

2. Implement a model review process to identify parts of the model that can
be treated as certain

3. Group parameters and take advantage of local structure wherever possi-
ble to reduce the effort needed for confidence assessments and sensitivity
analyses

4. Treat the RRRA model as a hierarchy of models, and analyse each part
of the hierarchy separately (with a summary of the analysis from lower
levels feeding into higher level metamodels)

We also proposed a method for incorporating the results of such an anal-
ysis directly into the decision making process, allowing the decision maker to
compare strategies on the basis of both expected value and uncertainty, and in
this case, allowing the decision maker to weigh the cost of a management inter-
vention against the changes in risk. This information can be communicated to
the decision maker and stakeholders in either straightforward or technical forms
(e.g. summary numbers versus effect size distribution graphs), or in forms that
aim to balance the level of information against simplicity of communication
(such as a box plots or verbal quantile scales).

Importantly, we also ensured that the method we developed was practical
and showed how it can be applied to the RRRA model. While the model con-
tains thousands of parameters and modelling choices, each requiring its own
confidence assessment, we can reduce both the assessment burden and the com-
putational burden by grouping parameters, taking advantage of local structure,
and breaking up the model into hierarchical components (techniques 3-4 above).
This allows submodels containing several hundred parameters to be reduced to
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several dozen, and allows easily analysed metamodels to be created that are
informed by more detailed lower level models only where necessary.

While the proposed approach is ready to be used as is, there are some ex-
tensions that may be worth exploring in future. At a technical level, it would
be worth extending the investigations into structural uncertainty to better ac-
count for modelling choices such as level of discretisation and variable selection.
More generally, it would be useful to see if an info-gap inspired approach could
be applied, in which a range of confidence assessments are explored in order
to identify the strategy that achieves a desired performance criterion most ro-
bustly. It would also be of at least curiosity value to see if the method could be
extended in such a way as to create a complete decision rule.
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