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1 Executive Summary

Biosecurity agencies face challenging decisions of how best to allocate scare resources when they
attempt to prevent, detect, eradicate and suppress exotic and established pests and diseases.
In this regard, there is a key di↵erence between the value of biosecurity measures and the extra
value, or value-added, of investments in biosecurity. The overall question, in other words, is not
how valuable a given biosecurity measure (or set of measures) is, but how to allocate resources
across di↵erent biosecurity measures and threats to get the best possible rate of return.

While resource allocation in biosecurity may be approached as a standard portfolio problem
(Akter et al., 2015), allocating resources to address biosecurity threats may pose three additional
challenges. First, policy makers are often faced with a (possibly large) number of pests, and each
can be associated with a range of biosecurity measures, namely pre-border, border quarantine,
post-border surveillance, and containment and eradication. A measure to control or prevent
a particular pest likely influences the e↵ectiveness of other measures, and the overall cost-
e↵ectiveness of the money spent to address this problem. Consequently, a biosecurity portfolio
must allocate a budget not only across di↵erent pests, but also across di↵erent measures to
detect and control them. Second, invasive species are diverse in terms of how they spread,
how they cause damage and how they are controlled, so evaluating cost-e↵ectiveness across
measures and species, as well as making them comparable, is complicated. Finally, apart from
the biological and ecological stochasticity inherent in invasive species that can influence the
outcome (Perrings 2005), a biosecurity portfolio must often be decided at early stages where
information about many of the characteristics of the threats are very rough and scant. For this
reason, biosecurity portfolio models ideally should not be overly demanding in the information
required to calibrate them.

A proper portfolio allocation in biosecurity di↵ers from the common principle which ranks
alternative projects by their benefit-cost ratios (Pearce et al., 2006) and picks the one that
generates the highest benefit-to-cost ratio (BCR). This principle is sometimes referred to as ‘the
winner takes all’ principle because the projects with highest average BCRs will be allocated at
full scale while others may have no budget. This often results, however, in a misallocation of
resources because the average BCR of a biosecurity project can be highly sensitive to its scale.
Instead, it’s best to allocate each (small) block of budget to the treatment and measure that
it is most cost-e↵ective, and consequently determine the optimal scale of the control program
for each threat with di↵erent levels of budget constraints. The cost-e↵ectiveness of each block
of budget spent on a threat is determined by minimising its expected total cost, including the
damages it inflicts and the control expenditures incurred in preventing or mitigating damages.
In this way, rates of return from a given biosecurity measure are maximised. BCRs can be
positive at di↵erent scales, in other words, but the key is to find the largest di↵erence between
benefits and costs.

This report, for CEBRA Project 1608A, illustrates these points, in terms of: (a) the optimal
trade-o↵ between border and post-border biosecurity expenditures, and (b) the optimal level of
post-border ‘early detection’ of an exotic pest. The case we examine is papaya fruit fly (PFF)
through the Torres Strait pathway, although the principles apply broadly. The border is taken
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as trapping (and other) activity in the Torres Straight Islands (TSI) and post-border is defined
by a surveillance measure in northern Queensland.

In terms of (a), allocations between border and post-border surveillance depend on a host of
complicated issues, and a set of parameters that drive a computational outcome. That said, the
idea is simple: we need to find a set of measures, at the border and post-border, that maximise
rates of returns by minimising the sum of all potential damages and the cost of the biosecurity
measures themselves. This is equivalent to finding an allocation that ensures that the extra
benefits of combined biosecurity measures, border and post-border, in terms of all the avoided
losses that go with these measures, exactly equal the extra costs of providing the measures
themselves.

In this part of the report the key parameters are average arrival rates, spread rates, eradi-
cations costs, the discount rate, and the e↵ectiveness of quarantine and surveillance measures.
Using these (and other) baseline parameter values we can calculate optimal border quarantine
and post-border surveillance measures. The results from the PFF case determine an overall op-
timal expenditure or portfolio allocation at a ratio of 1:5 for border and post-border measures.
Given parameter values, in other words, and although both activities are valuable, it pays to
invest more in post-border surveillance than at the border. Sensitivity results outline the range
of possibilities given changes in parameter values.

In terms of (b), allocating resources for post-border surveillance, taken separately, given
border quarantine measures, also generates an issue of value versus value-added or what the
best rate of return should be. For a trapping network for the ‘early detection’ of fruit flies,
for example, the question is, put simply, how early to detect a possible incursion in order to
maximize the probability of eradication. A trapping grid that is very ‘tight’, with many traps
placed in host-suitable areas will detect very early, but then the cost of the program itself, with
a large number of traps, is very expensive. Having less traps means the cost of the surveillance
program is lower, but then detection will be later and thus potential avoided losses will be higher.
In total, if the extra benefits of adding more traps exceed the extra costs, that investment should
take place, and continue to take place until extra benefits exactly equal extra costs.

In this part of the report, which modifies and extends material contained in CEBRA Project
Report 1405C, Baseline ‘Consequence Measures’ for Australia from the Torres Strait Islands
Pathway to Queensland: Papaya Fruit Fly, Citrus Canker and Rabies, we illustrate how to
determine an optimal point of early detection. The parameter set is further complicated with
control costs, production losses, the costs of trapping, and the probability of a given fruit fly
to find a nearby host, among other things. Results indicate an optimal grid size of less than
1km, much less than current practice. As expected, a grid size that is much smaller than
this implies that the cost of the program is too large relative to the extra benefits (in terms
of the smaller avoided losses that go with early detection). A grid size that is larger than
1km generates relatively large and (otherwise) potentially avoided losses. The best grid size is
illustrated by the minimum of all losses and expenditures. This maximises the rate of return
from the surveillance activity. Model runs and sensitivity analysis further elaborate the role of
border versus post-border biosecurity measures in terms of changes in the ‘arrival rate’ and its
e↵ect on expenditures.

Recommendations

1. Both the basic and the more complex spatial model in this report perform well, and clearly
illustrate tradeo↵s between border and post-border expenditures on biosecurity. This
forms a basis for discussions of resource allocation across various biosecurity measures,
and should be further developed or refined going forward.
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2. Although data and estimations are available for most of what is needed, the model frame-
work likely requires a more careful calibration of parameter values, especially in cases
where model results are most sensitive to changes in these values, and where measures of
‘e↵ectiveness’ of border and post-border activities are needed.

3. Pre-border expenditures could be added to the model framework, in principle, given
needed data and estimates of underlying parameter values. This should be pursued go-
ing forward to allow for best ‘portfolio allocations’ of biosecurity expenditures across the
entire spectrum of biosecurity measures.

2 Introduction

Along with established environmental pathways, increases in trade and tourism have increased
the risk of an introduction and spread of exotic pests or invasive alien species (IAS). These pests
and diseases cause enormous environmental and economic damages every year. For example,
in the United States, IAS costs $137 billion yearly (Pimentel et al., 2000) and is the second
most ranked threat to biodiversity, a↵ecting 49% of imperilled species (Wilcove et al., 1998).
The economic loss due to IAS worldwide is extensive, and redressing the disappointing progress
made in reducing their damages to biodiversity is highlighted as one of the United Nations
Millennium Development Goals (Butchart et al., 2010; Gurevitch and Padilla, 2004).

Prevention and control are the first line of defence against an IAS (Olson et al., 2006).
They absorb significant resources. For instance, about $40 billion is spent each year on global
pesticide expenditures (Grube et al., 2011), while almost 50% of national expenditures for
IAS are for prevention activities (NISC, 2001). Spending on prevention and control alone is
not economically e↵ective, however, since: (a) complete prevention has often proven to be
impossible and prevention measures, no matter how stringent they are, cannot keep up with
the increasing risks of a bio-invasion due to globalisation (NISC, 2008) and new or enhanced
environmental pathways; and (b) although the chance of a successful invasion by an IAS is
often small (Williamson, 1996), these threats, once established, are usually very expensive if
not impossible to control unless their presence is detected early (Sinden et al., 2004; Clark and
Weems Jr, 1988). For these reasons, early detection and rapid response (EDRR), the second line
of defence, has attracted considerable attention over the last decade, with a particular focus on
the trade-o↵ that exists between the early detection of an IAS and the future cost of controlling
it (Mehta et al., 2007).

The challenge of finding an optimal early detection point or the appropriate surveillance
level depends on the economics of the problem and how an IAS invades and spreads. In general,
there is a good deal of uncertainty over the likelihood of an incursion, its spread in terms of
spatial and temporal characteristics (Kot et al., 1996; Shigesada and Kawasaki, 1997; Keeling
et al., 2001), and the potential economic damages that might occur. The model context is
also necessarily large in this case, and fully and explicitly considering time, space, uncertainty
and variability in economic damages in an optimisation problem quickly leads to ‘a curse of
dimensionality’ (Bellman, 2003) and computational failure.

This report, for CEBRA Project 1608A, contains two di↵erent (but related) model ap-
proaches. The first approach presents a practical model which can help government agencies
allocate a biosecurity budget to where it is most cost-e�cient. To evaluate the cost-e↵ectiveness
of a single invasive, we draw from a generic framework, first proposed by Moore et al. (2010),
which focuses only on the most common economic features of biosecurity measures associated
with all invasive species, namely (a) quarantine against entry risk and (b) surveillance against
late-detection treatment, loss and inability to eradicate. However, we include two major ex-
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tensions. First, our model makes endogenous the costs of failed quarantine and detection by
allowing them to vary with a number of some fundamental factors such as the spread rate,
damage rate and eradication cost per one infected unit. Second, we model the detection prob-
ability as a function not only of the surveillance expenditure, but also the size of infestation to
better reflect the fact that some threats could be detected with no active surveillance if they
grow bigger and bigger. Both extensions aim at enhancing the practicality of the model while
requiring a few, albeit largely indispensable, parameters which can be estimated or collected by
policy makers or adopted from relevant sources.

Given various border measures, the second approach aims to directly find the optimal level
of surveillance against fruit flies, post-border, in a more complicated spatial setting. This
surveillance problem is particularly challenging since not only do fruit flies disperse quickly in
a highly random manner in a local environment, as well as over long distances, they have a
rate and, to a lesser extent, direction of dispersal that is also largely dependent on time and
environmental factors (Yonow and Sutherst, 1998). Among the biggest challenges in this kind
of problem is the possibility of numerous invasions, across space and time that fruit flies can
make throughout their life cycle, and especially the fact that it is impossible to guarantee any
particular outcome with certainty. All of these features make the simulation of this IAS dispersal
exceptionally di�cult, let alone finding the optimal surveillance measure against them.

The surveillance model we develop here is a stochastic spatial dynamic bio-economic model.
With this model, we examine explicitly time, spatial heterogeneity, uncertainty and the vari-
ability of economic damages. Applied to the case of Asian Papaya Fruit Fly (PFF) (Bactrocera
papayae) in the state of Queensland, Australia, the random dispersal of PFF is calibrated to
mimic the first PFF outbreak in north Queensland in November 1995. Furthermore, the spread
of PFF is modelled using a highly detailed (50m⇥50m) raster map on land use, while the histor-
ical seasonal spread features of fruit flies are fully incorporated. To find the optimal surveillance
to detect PFF early, we use a Sample Average Approximation (SAA) approach combined with
a parallel processing technique to handle dimensional complications. We are not aware of any
other applications of this large dimension modelling in environmental and biosecurity economics.

3 Related Literature

Time, space and uncertainty being considered fully and explicitly in an optimisation routine
is generally limited by the curse of dimensionality. To make the problem manageable, early
studies on optimal surveillance against an invasive threat often reduced the problem to one or
two dimensions, with spatial heterogeneity either ignored (e.g. Mehta et al., 2007; Bogich et al.,
2008), or largely reduced in dimension (Sharov, 2004; Ding et al., 2007; Finno↵ et al., 2010a;
Blackwood et al., 2010; Sanchirico et al., 2010; Gramig and Horan, 2011; Kompas et al., 2016).
Since an IAS spread is highly dependent on spatial heterogeneity, this ‘aggregate’ approach
can produce misleading results (Wilen, 2007; Albers et al., 2010; Meentemeyer et al., 2012).
As a second alternative, some studies opt to neglect the time dimension and thus optimise
surveillance e↵ort at a single point in time (Hauser and McCarthy, 2009; Horie et al., 2013) or
at a steady state (Epanchin-Niell et al., 2012a). The main concern with this approach is that the
solution it generates is not likely optimal for the entire time path, or it may generate a solution
for a steady state which might be reached only very slowly or never be attained (Finno↵ et al.,
2010b). A third approach to IAS modelling (Epanchin-Niell and Wilen, 2012), is to explicitly
model both time and space, but in a deterministic setting, thereby no longer allowing for fully
articulated surveillance problems where uncertainty over spread, space and time matters. When
there is uncertainty in whether an incursion occurs, or whether an (unknown) incursion can be
detected early, or potentially eradicated, (Barnes, 2016; Robinson, 2002; Sivinski et al., 2000),
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decisions on border and post-border measures must take into account possibilities that can be
realised at di↵erent points in time.

For the spread of most IAS, time, spatial characteristics, uncertainty and variability in dam-
ages all play important roles that should not be ignored. For this reason, the literature on some
plant diseases and trans-boundary animal diseases (TADs) relies mostly on simulations, with-
out an optimisation routine, to fully and explicitly model all of these dimensions (Morris et al.,
2001; Ferguson et al., 2001; Tomassen et al., 2002; Keeling et al., 2003; Tildesley et al., 2006;
Ward et al., 2009; Adeva et al., 2012; Hayama et al., 2013; Atallah et al., 2014). Simulations,
however, reveal only the relative e�ciency of one, or at best, a limited number of policy choices.

To address this shortcoming of simulation methods, a simulation-based optimisation ap-
proach has been proposed recently. The idea of this approach is to keep the spatial dimension
manageable by capturing only the ‘average’ movements of IAS over space (Kobayashi et al.,
2007; Kompas et al., forthcoming). While providing useful insights, this approach would likely
loose some spatial heterogeneity in spread patterns during the process of estimating transmission
coe�cients.

To solve large-dimensional optimal surveillance problems explicitly, Kompas et al. (2015) use
a Sample Average Approximation (SAA) method in surveillance problems for TADs. Having
desirable asymptotic statistical properties, SAA solves stochastic dynamic problems by using a
combination of exterior sampling and deterministic optimisation (Shapiro et al., 2014; Shapiro,
2003; Verweij et al., 2003). To make SAA amenable to surveillance problems for TADs, we
design an infection tree model focusing on infection paths, not infectious farms, and implement
sensible ‘pruning’ rules to substantially reduce the dimension of the problem, which in turn is
solved with the aid of parallel processing techniques. However, this innovation is not directly
applicable to surveillance problems for IAS that can fly, since these species can make numerous
contacts and invasions throughout their entire lives, thereby making the proposed infection tree
infeasible to build due to its enormous dimension. Moreover, these IAS can hardly be traced or
contained, making any pruning rules di�cult. Given these modelling challenges, the literature
on optimal surveillance against these IAS is extremely scant and largely ignores the spatial
dimension (Pierre, 2007; Kompas and Che, 2009; Florec et al., 2013).

We aim to solve this problem, making two important contributions to the literature. First,
the random dispersal of PFF in our model is calibrated based on a highly detailed 50m⇥50m land
use raster map with up to 1.4 billion cells, and historical incursion and spread data together
with information on seasonal spread patterns. Second, we solve a large-dimensional optimal
surveillance problem with an adaptation of the SAA approach in combination with parallel
processing, while still retaining complex spatial and time dimensions, and fully incorporating
uncertainties. Few optimisation problems of this dimension have been solved in environmental
and biosecurity economics to the best of our knowledge.

4 Papaya Fruit Flies and Study Area

Fruit flies are a major threat to horticultural crops in many parts of the world. They can cause
profound economic losses and are di�cult and expensive to eradicate. For instance, in the United
States, the potential damages caused by the Mediterranean fruit fly (Ceratitis capitata) are
estimated to be roughly $15 billion if left uncontrolled (Hagen et al., 1981), while its eradication
cost in a first campaign in Florida was $7.5 million in 1930 (Clark and Weems Jr, 1988).
In Africa, the annual damage from fruit flies is worth millions of dollars (National Research
Council, 1992)1. Indeed, more than 50% of Africa’s horticultural production is a↵ected by fruit

1
Billah et al. (2015) provides a thorough review of the pest status, economic impacts and management of

fruit-infesting flies in Africa
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fly infestations (World Bank, 2008; Billah et al., 2015), while this sector employs directly and
indirectly more than 40 million people, many of whom are poor. In like manner, fruit flies cause
substantial losses in many poor developing countries by a↵ecting their export potential (Allwood
et al., 1997). To this end, successful management of fruit flies will help reduce poverty, enhance
food security, provide employment to poor people and foreign exchange to poor developing
countries.

There are two reasons why we choose the state of Queensland (QLD) in Australia as the
case study for our analysis. First, QLD and Australia are under a constant threat of PFF
since PFF is native to and widespread in South-East Asia and in many of the Pacific Island
Countries (Allwood et al., 1997). As seen in Figure 1 with monsoonal winds in the wet season,
PFF can also ‘travel’ though the Torres Strait Islands (TSI), just north of mainland Australia,
to QLD, along environmental and human-assisted pathways (Kompas and Che, 2009). Until
now, an ongoing and strong surveillance and trapping program in the TSI has largely prevented
PFF from travelling to the mainland of Australia. Eradication of detected fruit flies occurs
regularly in the TSI and local traps in QLD can potentially detect PFF early should it escape
the quarantine and surveillance zones in the Torres Strait (DAFF, 2005). However, the threat
to QLD and Australia from PFF remains high with estimates of the damages of a country-wide
spread of PFF being $AUD 3.3 billion over a hundred year horizon (Hafi et al., 2013). The first
outbreak in QLD 1995 cost $AUD 34 million and took over four years to eradicate (Cantrell
et al., 2002). The second reason is that a rich data set is available to construct a detailed
stochastic spatial dynamic bio-economic model to find the optimal level of surveillance against
PFF. As a result, lessons learnt from this analysis could be useful for other countries and regions,
and especially for developing countries where this sort of analysis is yet to be feasible.

Figure 1: Study area: Queensland, Australia
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5 Pre and Post-Border Control from a Macroeconomic Perspec-
tive

5.1 Economic modelling of pre- and post-border control of PFF

We begin with the more basic and practical model, to explicitly pick up both border and post-
border measures. The more fully articulated spatial model is contained in Section 6.

We model the incursion of PFF with a random-walk process b1, b2. . . , with bi being the time
of the ith incursion. The drift, and possibly the variance, of the random walk can be controlled
via prevention or quarantine. Prevention measures that reduce the frequency of incursions,
including border and local quarantine, search, the removal of potential threats (including the
removal of exotic species that have not yet become established), and containment of existing
threats to avoid long distance dispersal (if any). Increasing the budget share allocated to
prevention measures (q) will, on average, reduce the frequency of incursion or (equivalently)
increase the duration of intervals between two consecutive incursion events. This implies that:

bi = bi�1 + � (q) + "i (1)

where �(q) is the average interval between two consecutive incursions which increases with the
quarantine budget q (mathematically @�

@q > 0 implying that stricter quarantine measures will

reduce pest entries and hence incursion probability); "i
iid⇠D, a random distribution with mean

zero; and, for the sake of notational simplicity, b0 ⌘ 0.
Conditional on the incursion at time bi, PFF spreads at rate r, so the infestation size at any

time t from the entry on (t � bi) can be represented with an exponential function:

xi (t) = exer(t�bi) (2)

where ex is the entry size. The larger is an infestation and/or the greater the active surveillance
e↵ort, the more likely PFF will be detected. The detection probability function, denoted as
p (x, s), with s being active surveillance expenditure and x being infestation size when detected,
satisfies the following assumptions:

8 (x, s) : p 2 [0, 1] ;
@p

@s
� 0;

@p

@x
� 0;8s : p (0, s) = 0 (3)

Conditional on being detected at size xi, PFF will be eradicated at a (current value) cost of C
per infected unit. This may not be a one-o↵ item, as eradication might not be always successful
within a campaign, but can be a flow of expenditures spent on physical removal, monitoring and
other follow-up as well as repeated activities. Summing over all entries, the expected eradication
cost (discounted to time zero with an annual discount rate ⇢) is:

Be = E

( 1X

i=1

Cxie
�⇢t(xi)

)
= E

( 1X

i=1

Cexe(r�⇢)(t(xi)�bi)�⇢bi

)

=
1X

i=1

CexE
n
e�⇢bi

oZ 1

ex
e(r�⇢)[t(xi)�bi]@p (xi, s)

@xi
dxi

=
E {e�⇢"i}⇥ e�⇢�(q)

1� E {e�⇢"i}⇥ e�⇢�(q)
Cex

Z 1

ex
e(r�⇢)[t(xi)�bi]@p (xi, s)

@xi
dxi

(4)
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where the detection time t (xi) is the inverse function of (2).
Equation (4) shows how the eradication cost relates to prevention and active surveillance

expenditures. The first fraction on the right hand side of the equation captures two possible
e↵ects of prevention, one on the incursion frequency and the other on the uncertainty over
incursion time. The first e↵ect unambiguously specifies that allocating an increased budget
share to prevention will reduce the frequency of incursion and hence reduce eradication cost.
The second e↵ect of prevention is its potential influence on uncertainty over incursion times,
which can only be calculated with a specific functional form for the uncertainty distribution
(i.e., D).

The remainder of the right hand side of equation (4) captures the e↵ect of active surveillance
on eradication cost. The net e↵ect depends on the relative magnitudes of the discount and spread
rates. The discount rate reflects the rate at which a bank deposit increases over time. If the
spread rate is larger, or equivalently, the eradication expenditure grows at a rate larger than the
rate at which a bank deposit increases, a higher active surveillance budget will unambiguously
reduce eradication costs. On the other hand, if the spread rate is smaller, early detection and
eradication may increase the (present value) of the eradication cost.

It is also worth noting that a large discount rate and a small spread rate are not su�cient
conditions for abandoning e↵orts to facilitate early detection and eradication, because a cu-
mulatively growing loss that occurs when the threat spreads must also be considered (Kompas
et al., 2016). If we denote d and F as the annual rate of loss caused by one invaded unit and
the fixed component of the loss which does not vary with infection size, then the (expected)
loss caused by the threat (summed over all entries and discounted to a present value) is:

L = E

( 1X

i=1

(
F ⇥ e�⇢bi + d

Z t(xi)

bi

xi (t) e
�⇢tdt

))

=
1X

i=1

(
E
n
e�⇢bi

o
⇥
"
F + d⇥

Z 1

ex

Z t(xi)�bi

0
xi (t) e

�⇢tdt
@p (xi, s)

@xi
dxi

#)

=
E {e�⇢"i}⇥ e�⇢�(q)

1� E {e�⇢"i}⇥ e�⇢�(q)

"
F + d⇥

Z 1

ex

Z t(xi)�bi

0
xi (t) e

�⇢tdt
@p (xi, s)

@xi
dxi

#

(5)

We will use the expected eradication cost in equation (4) and the expected loss in equation
(5) to determine the expenditures on prevention and active surveillance that minimise the total
cost of the biosecurity measure itself, plus the expected eradication cost and losses associated
with the invasive, or:

min
hs�0,q�0i

X

n=1

{L+Be +Bq +Bs}

subject to (4)–(5) and
X

n=1

{q + s}  B
(6)

where B is the annual total budget allocated to prevention and active surveillance of PFF,
and Bq and Bs are the present value of the expenditures on prevention and active surveillance
associated with annual budgets for prevention q and active surveillance s, respectively.
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5.2 Functional forms

Optimization problems like (6) do not have analytical solutions, so we must rely on numerical
techniques to solve the problem. To calibrate the model numerically, we specify that the drift
of incursion time (i.e., the expected incursion interval) is a linear function of prevention expen-
diture and any uncertainty in incursion times follows a normal distribution, with a variance
proportional to the expected incursion interval:

� (q) = ↵+ �q

D ⌘ N (0, µ� (q))
(7)

where ↵ is the average interval between two entries without prevention, � measures the e↵ec-
tiveness of intervention and µ is the proportion of the variance of incursion time to the average
incursion interval.

We also assume that the detection probability function takes the functional form:

p (xi, s) =

⇢ xi
x(s) if xi 2 (0, x (s)]

1 if xi>x (s)

with x (s) ⌘
�
X � ex

�
e�⌘s + ex

(8)

where X is the passive-surveillance detection point (the point where the pest or disease has
become so wide-spread that it will be recognised even without surveillance by experts, x (s) is
the detection point with a given active surveillance e↵ort s (the targeted detection point); and
⌘ > 0 is a parameter measuring active surveillance e↵ectiveness.

Given the functional forms in equations (8) and (9), the expected eradication expenditure in
equation (4), and the expected damage caused by the disease in equation (5) can be simplified
as:

Be =
e�⇢(↵+�q)(1� ⇢µ

2 )

1� e�⇢(↵+�q)(1� ⇢µ
2 )

⇥ C(x̃)
⇢
r

�
2� ⇢

r

�
x (s)

⇥
h
x (s)2�

⇢
r � (ex)2�

⇢
r

i
(9)

L =
e�⇢(↵+�q)(1� ⇢µ

2 )

1� e�⇢(↵+�q)(1� ⇢µ
2 )

⇥
⇢
F +

exd
x (s) (r � ⇢)

⇥

2

4(ex)
⇢�r
r

r

2r � ⇢

0

@x (s)

2r � ⇢

r � (ex)
2r�⇢

r

1

A� (x (s)� ex)

3

5

9
=

;

(10)

5.3 Results

To illustrate the model, we first calibrate with a set of baseline parameters and vary these
parameters to examine the sensitivity of the results. For the baseline scenario, we specify an
annual discount rate of 3%, an approximation of the ‘real interest rate’ in Australia (i.e., the
nominal interest rate minus the rate of inflation). The incursion probability, without border
quarantine, is assumed to be 50% (i.e., on average one incursion every two years), and reduced
to 5% (i.e., on average once every 20 years) if $0.5 million dollars are spent on quarantine. The
spread rate is calibrated under the assumption that PFF, if not eradicated, can spread from one
to 1000 properties within a year. The natural detection size and the surveillance e↵ectiveness
are calibrated under the assumption that passive surveillance alone can detect PFF with 100%
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certainty after four months, and spending $1m on active surveillance can reduce this detection
time by 4 times (i.e., detection after one month). The initial pest incursion (if any) is for a
farm which has an average value of $412,000 where the pest can reduce the value of a↵ected
properties by 45%. The eradication cost is calibrated assuming that, if not controlled, PFF
causes an average cost of $1.567 billion a year. The calibration of the baseline parameters
is summarised in Table 1 and largely draws on the estimates contained in CEBRA Project
1405C, Baseline ‘Consequence Measures’ for Australia from the Torres Strait Islands Pathway
to Queensland: Papaya Fruit Fly, Citrus Canker and Rabies.

Table 1: Baseline parameter values for PFF

Parameter
symbols

Parameters Assumptions to calibrate

⇢ Discount rate Annual discount rate is 3%, an approximation of
nominal interest rate minus inflation in Australia.

↵ Average
incursion
interval

Incursion probability without quarantine is 50% (on
average, once every 2 years)

� Quarantine ef-
fectiveness

On average, spending extra $0.5-million (on top of
the existing level) for searching for possible PFF en-
try can reduce the incursion probability by 10 times,
i.e., to 5% or on average, once every 20 years.

µ Interval coe�-
cient

The variance of the uncertainty in the incursion time
is 100% of the incursion interval.

r Spread rate PFF in a farm can spread to 1000 properties in one
year if not eradicated.

F Fixed loss There is no fixed loss associated with PFF.

C Eradication
cost

PFF can cause $1.567 billion a year in damages in
the absence of quarantine and surveillance.

X Passive-
surveillance
detection
point

Awareness enhancement programs could help detect
the pest if it has spread to at least 10 farms.

⌘ Surveillance
e↵ectiveness

Spending $1 million on active surveillance (including
traps, search, etc.) can reduce the detection time
by 4 times (i.e., the pest will be detected after one
month).

ex Initial incur-
sion

Initial incursion is 1 farm. The value of infected
farm(s) is reduced by 45%.

Using these baseline parameter values, we calculate optimal quarantine and surveillance
spending. The results are summarised in Figure 2. The figure shows that optimal quarantine and
surveillance spending are $0.486 and $2.57 million a year for the study area, or put di↵erently,
the total spending is $3.056 million and the share between quarantine and surveillance is 16:84,
or roughly 1:5. This optimal spending is relatively higher than the current budget for the Torres
Strait Fruit Fly Strategy at $400K (Hafi et al., 2013, p19). With the optimal spending level,
the incursion probability will be nearly 0.05, or in other words, once every 20 years, on average.
It follows that at this optimal level of spending and detection, the total cost is nearly $3.468
million, and the sum of eradication expenditure and production loss is $0.412 million a year.
This ($0.412 million) is an annualised value since eradication and production losses will only
arise when incursions occur. This value reflects the amount that should be ‘banked’ every year
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Figure 2: Baseline parameters
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to spend on controlling PFF should an incursion take place. On average, each dollar spent on
quarantine helps reduce the loss by $10 dollars, and each dollar spent on surveillance reduces
the loss by $47.44 dollars.

To control for the possible uncertainty in the chosen baseline scenario, we examine how
the optimal results vary with di↵erent parameter values. To do this, we vary some parameters
while leaving all others unchanged and (repeatedly) solve for optimal quarantine and surveillance
spending. This is referred to as a sensitivity analysis and, for brevity, we provide the results for
key parameters in Tables 2-4 below. Sensitivity results for any other combinations of parameters
can be undertaken upon request.

Table 2 shows the sensitivity for the incursion probability without quarantine together with
quarantine e↵ectiveness. For example, the first cells in two partitions imply that if the pest
incursion occurs every year (incursion probability =1) and spending $0.5 million on quarantine
can reduce the incursion probability by five times (i.e., from 1 to 0.2, or put in terms of frequency,
from every year to once every five years), then total spending is $3.77 million of which 7% goes
to quarantine and the remaining 93% goes to surveillance (or equivalently, $0.26 million for
quarantine and $3.51 million for surveillance). The incursion probability decreases from top to
bottom, and quarantine e↵ectiveness increases from left to right. Moving from top to bottom,
the table shows that as entries are less frequent, total spending declines. Also, as the probability
of a pest incursion falls, so does the incentive for post-border control, and consequently the
share of surveillance in total spending declines. Moving horizontally, as quarantine becomes
more e↵ective, total spending decreases and so does the share of surveillance in total spending
since surveillance itself is relatively less e↵ective. Given the modest choice for the baseline
scenario of an incursion every two years without quarantine and that actual incursions could
be more frequent, the two first rows of Table 2 (where ↵ = 0.7 and ↵ = 1) are more likely than
the two last rows.
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Table 2: Sensitivity analysis of incursion probability and quarantine e↵ectiveness versus total
spending on quarantine and surveillance ($m) and their shares (quarantine : surveillance)

Incursion probability
Total spending ($m)

Shares in the total spending

without

(quarantine : surveillance)

quarantine

a $0.5-m quarantine program a $0.5-m quarantine program

reduces incursion by X times reduces incursion by X times

5 7 10 13 15 5 7 10 13 15

1 3.77 3.62 3.45 3.32 3.24 7:93 9:91 11:89 13:87 14:86

0.7 3.57 3.42 3.25 3.11 3.03 8:92 11:89 13:87 16:84 17:83

0.5 3.39 3.24 3.06 2.9 2.8 10:90 12:88 16:84 20:80 24:76

0.3 3.11 2.94 2.69 2.19 1.94 13:87 17:83 29:71 100:0 100:0

0.1 1.87 1.41 1.04 0.83 0.74 100:0 100:0 100:0 100:0 100:0

Table 3 shows the sensitivity for the detection time of passive surveillance and the e↵ective-
ness of active surveillance. The first cells of the two partitions imply that if passive surveillance
can detect a PFF incursion after 15 farms are a↵ected, and spending $1 million dollars on
active surveillance reduces this by 50% or twice (so the active surveillance can detect after
three months), then total spending will be $4.31 million, and the share between quarantine
and (active) surveillance is 100:0. The e↵ectiveness of passive surveillance increases from top
to bottom, and the e↵ectiveness of active surveillance increases from left to right. The results
show that when passive surveillance is more e↵ective, total spending declines. Also, as the pest
can be detected early after incursion, there is less need for border quarantine so that the share
of quarantine measures in total spending declines. Moving horizontally, spending and the share
for quarantine both decline as active surveillance is becomes relatively more e↵ective.

Table 3: Sensitivity analysis of the e↵ectiveness of passive and active surveillance versus total
spending on quarantine and surveillance ($m) and their shares (quarantine : surveillance)

Passive surveillance
Total spending ($m)

Shares in the total spending

can detect when

(quarantine : surveillance)

X farms become a↵ected

A $1-m surveillance program A $1-m surveillance program

reduces detection time by Y times reduces detection time by Y times

2 3 4 5 6 2 3 4 5 6

15 4.31 3.81 3.37 3.11 2.92 100:0 23:77 18:82 17:83 15:85

13 4.29 3.63 3.22 2.97 2.8 84:16 20:80 17:83 15:85 15:85

10 4.26 3.45 3.06 2.83 2.67 34:66 19:81 16:84 15:85 14:86

7 4.12 3.31 2.94 2.72 2.57 29:71 18:82 15:85 14:86 13:87

5 4.04 3.24 2.88 2.67 2.53 28:72 17:83 15:85 14:86 13:87

Table 4 shows sensitivity for the loss rate of infected properties and the spread rate of PFF.
The first cells of the two partitions imply that if each a↵ected farm loses 35% of its value, and
PFF can spread from 1 to 500 properties within a year if not controlled, then the total spending
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is $2.95 million, and the share between border quarantine and surveillance expenditures is
18:82. Total spending slightly increases with the loss rate (top to bottom) as the pest cause
more damage, but remain unchanged (roughly with two-digit rounding) in the chosen range
of spread rates (left to right). Moving in both directions, the post-border biosecurity threat
becomes more significant and the share of expenditures on surveillance increases.

Table 4: Sensitivity analysis of loss rates and spread rates

Loss rate
Total spending ($m)

Shares in the total spending

of

(quarantine : surveillance)

infected properties

How many properties PFF can How many properties PFF can

spread in a year (if not treated) spread in a year (if not treated)

500 750 1000 1250 1500 500 750 1000 1250 1500

35% 2.95 2.95 2.95 2.95 2.95 18:82 17:83 17:83 16:84 16:84

40% 3 3.01 3.01 3.01 3.01 18:82 17:83 16:84 16:84 15:85

45% 3.06 3.06 3.06 3.06 3.06 17:83 16:84 16:84 16:84 15:85

50% 3.1 3.1 3.1 3.1 3.1 17:83 16:84 16:84 15:85 15:85

55% 3.14 3.14 3.14 3.14 3.14 17:83 16:84 15:85 15:85 15:85

6 PFF Surveillance from a Spatial Perspective

In this section, given various border biosecurity measures, and thus arrival/establishment rates,
our goal is to find the optimal level of spending on local traps to detect PFF early, considering
its potential benefit in reducing the economic damages of a potential PFF outbreak. To do so,
we develop a random dispersal model to characterise the movement of PFF while incorporating
time, spatial heterogeneity, seasonal features and randomness. We then overlay an economic
model on top of this random dispersal model to form a stochastic spatial dynamic programming
surveillance problem.

6.1 Random dispersal model

Consider a land area divided into q small raster cells which is either habitable (i.e., is a suitable
host) or non-habitable (i.e., is not a suitable host) to PFF. The cell is small enough that the
within-cell PFF population growth can be ignored. At the outset, a PFF group ‘settles’ in
a random habitable cell from an outside source. As the PFF population grows, part of the
population will form ‘departing propagules’ and migrate in various directions in search for
new habitable cells or hosts, thus potentially threatening an otherwise substantial horticultural
industry.

We divide the PFF life cycle into two stages. The early development stage lasts for four
weeks when PFF develop from egg to larva and then pupa. During this stage, they stay ‘latent’
at the host (Yonow et al., 2004). In the adult stage, which lasts for another ten weeks, PFF can
potentially reproduce, and more importantly migrate to other hosts and spread the outbreak
(Yonow et al., 2004). We assume adult PFF migrate as propagules to ensure their successful
reproduction in a new host, and we set the time step in our model as weekly so as it is in line
with the PFF life cycle.
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Propagule dispersal is characterised by three important factors, namely range, direction and
the quantity of released propagules (Adeva et al., 2012). In terms of range, some PFF can
make a jump over a long distance rjump in the first week of their adult stage when they are the
strongest and most active (Adeva et al., 2012; Dominiak, 2012). We denote ↵ as the probability
of a propagule to make such a jump. The propagules that do not make a long jump stay in
the neighbourhood and move locally within a range rlocal per week. Depending on whether
a propagule moves locally or over a long distance, the actual distance it makes is a random
event following uniform distributions unif(0, rlocal) or unif(0, rjump), respectively. With regard
to direction, a propagule making a long jump does so in any directions. After the long jump, it
travels in a similar way as the ones that stay local. The movement direction of locally-travelling
propagules depends on the proximity of a nearby host since PFF can sense its presence (Adeva
et al., 2012). We denote the probability of PFF to find a nearby host as �(d) – a function
of d, the distance from a propagule to a host. When �(d) is equal to zero, that is, all hosts
are too far away for PFF to detect, they will move randomly in any direction. Finally, the
number of propagules released from each host per week, ⇡, depends on seasonal features such as
wind, temperature, soil moisture, and host suitability, etc. (Bateman, 1967; Yonow et al., 2004;
Dominiak et al., 2003). Thus, with randomness in range, direction and quantity of released
propagules fully considered, our dispersal model is basically random in nature.

The dispersal process in our model can be represented in an extended network as shown in
Figure 3. In panel (a), solid circles represent hosts or cells that are habitable for PFF while
the broken ones are not. Starting from host C, propagules are released to find new hosts,
expanding their colony. They can find a new host within one period of time (e.g., propagule
fC
2 ), or they can land on a non-habitable cell and have to keep searching until they find a new
host (e.g., propagule fC

1 ). If a host has already been occupied, an arriving propagule has to
leave immediately and continue their search for a new host in the next period (e.g. propagule
fC
3 ). The reason is that eggs are inserted directly into the host fruit and once larvae starts
to feed, an unidentified change occurs in the fruit, which generally causes females to avoid it
(Waterhouse and Sands, 2001). Our dispersal model can be perceived easier in panel (b), where
all non-habitable nodes and ‘unsuccessful’ connections (i.e., connections to/from non-habitable
cells) are hidden, and therefore, a node at a particular time step t can contact multiple nodes
at the following time steps within the length of a PFF adult stage.

For easy presentation and computation, we identify all habitable cells (X) in the research
area while suppressing all inhabitable ones. We denote xit as the infestation state of a habitable
cell i at time t where xit can take either of the two values: xit=1 means the cell is infested
while xit=0 means the cell is susceptible. We denote Xt as a vector of infestation states of all
habitable cells at time t. At t = 0, there is only one cell infested. An infected cell can release
new flies every time period and the flies can live for some period of time, disperse from the
original cell and a↵ect other habitable cells along their journey. Therefore, moving forward in
time, the infestation state of each cell i at time t where t > 0, depends on four factors: (i) all
the cells’ infestation states in the previous A time periods [Xt�1, . . . , Xt�A] where A is the
length of the PFF adult stage or the life span of a PFF propagule, during which it can survive
and search for a new host to colonise; (ii) the realisation of the above mentioned random factors
to the dispersed propagules in the dispersal model over the last A time periods, jointly denoted
as vectors ⇠t�A, ,̇⇠t�1, where the dimension of ⇠t is the total number of released propagules;
(iii) the realisation of the probability of an infested cell getting detected without using traps
during the last A time periods �t�A, ,̇�t�1, where the dimension of �t is the total number of
traps; and (iv) the grid size of traps g (i.e., the larger the grid is, the fewer traps are required).
As a result, the random dispersal of PFF over time and heterogenous space can be expressed
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as:
Xt = f(Xt�1, ..., Xt�A; ⇠t�1, ..., ⇠t�A; �t�1, ..., �t�A; g) = f(⌅t;X0; g) (11)

where, for short notation, ⌅t�1 is a matrix combining all information on the realisations of
random events before t; and X0 is the initial condition, i.e., the cell where an outbreak starts.
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6.2 Economic model

Without any interventions, an infested cell will eventually be detected by farmers, typically
by visual inspection of fruit (Cantrell et al., 2002). This point of detection might be termed
a ‘natural detection point’ indicating a detection made without the aid of any surveillance
measures such as traps. Currently, local traps are the only surveillance measure to detect PFF
early so that an outbreak, if it happens, would be small (Cantrell et al., 2002; Kompas and
Che, 2009). The question is whether it is worthwhile to lay local traps and how much to spend
on them (i.e., how dense should the trapping network be) so that the total cost of controlling a
PFF outbreak, along with total damages and the cost of detecting it early, is the smallest.

To find the optimal level of local traps, we specify all cost components. They include: (i) a
PFF outbreak control cost, (ii) suspension cost; (iii) production losses, (iv) revenue losses due
to trade sanctions and loss of market access, and (v) surveillance cost or the cost of detecting
PFF early. It is worth mentioning that the surveillance cost is an on-going cost while the first
three cost items are incurred largely after PFF is detected. For simplicity, we ignore production
losses incurred before a PFF detection since they would be very small.

Outbreak control costs incur once PFF is detected at a host. Then control/eradication
activities will be carried out at the host and the eradication zone surrounding it on a radius of
reradication, where infested hosts and propagules will be treated and terminated. Similar to the
approach in Epanchin-Niell et al. (2012b), the expected control cost of an outbreak, CE , is:

CE(g) = �⇥ ED0
T (⌅T ;X0; g)⇥ ce (12)

where � is the outbreak arrival rate (probability); T is an outbreak duration; DT is an indication
vector of dimension X representing whether a habitable cell has PFF detected or not and/or
whether it belongs to an eradication zone formed during an outbreak. For simplicity, we apply
eradication to a cell only once within an outbreak, and ce is a control cost for each raster cell. It
is worth noting that we use a di↵erent time notation ⌧ to reflect the point that the summation
in Equation 18 is over an outbreak duration. Moreover, the expected control cost of an outbreak
is product of the average of outbreak control costs and the outbreak arrival rate since we can get
an outbreak every year with a probability of �. Finally, given all the randomness and exogenous
parameters, CE is a function of grid size g.

Suspension cost is the additional cost of spraying the fruit before it can be sold from sus-
pension area CZ . Similar to the above eradication cost, suspension cost can be defined as
follows:

CZ(g) = �⇥ E
TX

t

Z
0
t(⌅t�1;X0; g)⇥ cT (13)

where Zt is an indication vector of dimension X representing whether a habitable cell has PFF
detected or not and/or whether it belongs to an suspension zone at t; and cT is a vector of
weekly suspension costs for habitable raster cells. cT depends on the cost of fruit management
(spraying) and production volume, hence it will be cell-specific.

Likewise, the expected production loss due to PFF eradication activities is:

CP (g) = �⇥ E
TX

t

P
0
t (⌅t�1;X0; g)⇥ cpV p (14)

where Pt is an indication vector dimension X representing whether a habitable cell is in the
eradication zone at t; cp and V p are X ⇥ 1 vectors of production loss and weekly production
values, being specific for each individual raster cell, and Tm is the management time for each
detection.
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In the same fashion, at every time t, with a probability � of a new outbreak, we have a �
chance of getting a trade sanction and loss of market access. Accordingly, this trade sanction
and loss of market access costs the following expected revenues losses, CR:

CR(g) = �⇥ E[T outbreak(⌅T ;X0; g) + Tmkt]⇥ cr (15)

where T outbreak(⌅⌧ ;X0;�; g) is the outbreak duration or time between first and last detection
while Tmkt is the waiting time to gain back full market access; and cr is the weekly trade related
revenue loss.

Finally, following Florec et al. (2010), the on-going surveillance cost, CS , is:

CS(g) = Q⇥
⇣wI + �wS + E

X
+ cq

⌘
(16)

where Q is the number of traps; wI and wS are weekly inspector and supervisor wages, respec-
tively, while � is the ratio of a supervisor to inspectors; E is the weekly equipment cost; cq is the
weekly cost of maintaining a trap; and X is the number of traps inspected per week, calculated
as:

X =
h�

l
v

�
+m

(17)

where h is the weekly working hours per each inspector/supervisor, l is the travel distance
between traps, v is the speed of travelling between traps, and m is the time spent on checking
each trap. The ‘pest quarantine area’ (PQA) management cost is

CM (g) = �⇥ EMT (⌅T ;X0; g)⇥ cm (18)

where MT is an indication vector dimension X representing whether a habitable cell is in the
PQA during the outbreak; and cm is value of management cost assigned to each cell.

To sum up, our surveillance optimization problem is of the form:

min
g

TC = min
g

(CE + CZ + CP + CM + CR + CS) ⌘ min
g

E[f(⌅, g)] (19)

By design, the idea is to minimise all of the losses associated with a potential PFF incursion and
spread and the cost of the surveillance program itself. The more dense is the trapping grid, the
more expensive is the surveillance activity, but detection is also earlier and potential damages
smaller. On the other hand, the less dense is the trapping grid, the smaller are surveillance
expenditures but potential damages from an incursion and spread are much larger and the
probability of eradication is less.

6.3 Planning horizon

In terms of planning horizon, we choose an initial fixed period of 15 months for our optimisation
problem. Any outbreak that is (estimated to be) longer than 15 months will be treated as a
severe outbreak and will ignite a national eradication campaign. The 15 month period is similar
to the time it took from the first incursion until the massive eradication campaign was initiated
in Queensland in 1995. Before the eradication campaign, any positive detection (by traps) will
incur a 15 km eradication and suspension zone around the detection point (Dominiak, 2007).
If that eradication measure fails to eradicate the flies at the end of the 15 months period, a
national eradication campaign will be kicked o↵. In that case, a massive rectangular PQA would
ensue, which includes an 80 km bu↵er zone around infected cells, similar to the area defined
in the 1995 outbreak (see Figure 4a). Road blocks and additional traps will be established
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in this area to enforce movement (fruits) restriction and to determine the outbreak size. We
assume the PQA management cost will be proportional to the outbreak size (the number of
cells in PQA areas). This cost is approximately 13.5 million Cantrell et al. (2002) in total and
is divided by the 1995 outbreak size to determine per cell management costs. In addition to
the PQA, once a national eradication campaign has been kicked o↵, all (existing) suspension
zones will be extended to include the 80 km bu↵er zone around detection points. All fruits
from suspension zones must be treated (sprays and disinfestation), with inspectors’ audit and
approval. These additional measures in the national eradication campaign are designed to mimic
the 1995 eradication campaign (see Cantrell et al., 2002).
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6.4 Sample Average Approximation

We use a SAA method to solve the optimisation problem in equation (19) since the usual
dynamic programming method cannot be applied due to the curse of dimensionality (Bell-
man, 2003). SAA can handle this large dimension while yielding consistent solution estimates
due to the use of a combination of exterior sampling and deterministic optimisation meth-
ods (Norkin et al., 1998; Mak et al., 1999; Shapiro, 2003). The idea is to generate samples of
{⌅1,⌅2, . . . ,⌅Z}, and then the ‘true’ solution to the problem in equation (19) is approximated
by sample averages in conjunction with direct search methods. The exterior sampling method
makes the problem simpler and able to be solved more e�ciently because the random matrix
⌅ is realised outside the optimisation routine (Shapiro, 2003).

With regard to implementation, SAA involves a three-stage procedure, being repeated until
convergence towards the true objective function value TC⇤ is achieved. In the first stage, a
lower bound for TC⇤ is estimated as:

TCN,M =
1

M

MX

m=1

TC
m
N (20)

where TC
1
N , TC

2
N , . . . , TC

M
N are minimum values obtained from M independently and identi-

cally distributed (iid) generated samples of size N :

TC
m
N = min

g

1

N

NX

n=1

TC(⌅m
n , g) (21)

Associated with these objective values are candidate policy solutions ĝ1, ĝ2, . . . , ĝM . In the
second stage, an iid sample of size N 0, typically being much larger than N will be generated to
identify the best solution among ĝm. The best candidate solution ĝ⇤ selected is the one that
gives the smallest objective value, or:

ĝ⇤ 2 arg min{ 1

N 0

N 0X

n0=1

TC(⌅n0 , ĝ) : ĝ 2 {ĝ1, ĝ2, . . . , ĝM}} (22)

In the third stage, to obtain an unbiased estimate (Verweij et al., 2003; Sheldon et al., 2010;
Ahmadizadeh et al., 2010), another iid sample N 00, being also much larger than N , is generated
independently from previous samples to estimate an upper bound for TC⇤ by:

dTCN 00(ĝ⇤) =
1

N 00

N 00X

n00=1

TC(ĝ⇤,⌅n00) (23)

The ‘optimality gap’ is estimated as:

gap(ĝ⇤) = dTCN 00(ĝ⇤)� TCN,M (24)

The smaller the gap(ĝ⇤) the better the quality of the solution. The three-stage procedure
repeats with increasing sample sizes, especially for N , until the gap(ĝ⇤) is small enough to
ensure convergence of the estimated solution to the true solution.

With SAA being based on Monte Carlo simulation techniques, estimators in equations (20–
24) are random. They can be shown to be consistent using some regularity conditions from the
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‘Law of Large Numbers’ (LLN). The spreads of their sampling distributions or the variances
are estimated as:

�̂2
TCN,M

=
1

(M � 1)M

MX

m=1

(TCm
N � TCN,M )2

�̂2
dTCN00 (ĝ⇤)

=
1

(N 00 � 1)N 00

N 00X

n00=1

�
TC(ĝ⇤,⌅n00)� dTCN 00(ĝ⇤)

�2

�̂2
gap(ĝ⇤) = �̂2

dTCN00 (ĝ⇤)
+ �̂2

TCN,M

(25)

6.5 Parallel processing

Detailed spatial heterogeneity coupled with the need to keep track of all propagules results
in an incredibly large-sized problem which cannot be addressed e�ciently by serial computing.
Therefore, following Kompas et al. (2015), we use a parallel processing algorithm which employs
several computers and processes at the same time to solve the problem more e�ciently. In
particular, we apply parallel processing to both simulation and optimisation. We use several
processes, in other words, in several computers to simultaneously generate many fractions of
sample size N , N 0 and N 00, and calculate sample averages as specified in equations (20) and
(23) across processes by sending their outputs to a master process. Similar to an optimisation
process which is based on direct search for the optimal point, we also use several computers
and processes to simultaneously calculate equation (22) which applies various policies to a large
samples N 0 and N 00. In like manner, equation (24) can be executed in parallel. In short, a
combination of SAA and parallel processing makes this incredibly large-sized problem possible
to be solved.

7 Results

In this section, we describe all parameter values used in our model. We then present model
results, followed by a sensitivity analysis. Numerical results and plots are obtained using C and
R programming software.

7.1 Parameterisation

The outbreak in our model starts from an invasion by PFF migrating from Papua New Guinea
via the Torres Strait islands. This event is by far the most likely PFF threat for Queensland.
The Torres Strait Fruit Fly Strategy has been designed to prevent permanent establishment
of exotic fruit flies in the Torres Strait to reduce the risk of them moving south to mainland
Australia, via Queensland (Plant Health Committee, 2013). Given this prior, we limit the PFF
incursion in Queensland to an area of about 1000 raster cells in the far north of Queensland
(above 16.5oS latitude), which are close to the Torres Strait Islands and more likely to be
invaded first. A PFF outbreak begins when flies settle in a random cell within the incursion
area. Once settled, PFF will gradually expand in a southerly direction.

All of the parameter values used in our model are presented in Table 5. The research area
as shown in Figure 1 is 1.85 million km2 in area, which is divided into approximately 1.4 billion
50m ⇥ 50m raster cells. A detailed land use raster map of this area, from ABARES (2015),
provides us with information on six broad categories of land use, with up to as many as 60
di↵erent smaller land use purposes in each category. Based on this map and the fact that PFF
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infest only horticultural areas, we classify the research area into about 1.4 billion non-habitable
and about 0.53 million habitable raster cells.

Table 5: Model parameterisation

Pameter Description Unit Value

Random Dispersal Model
� Outbreak arrival rate (probability)(a) per week 0.2/52
A Life span of a PFF propagule(b) week 10
↵ Probability of a PFF propagule to make a long jump(c) 0.3
rjump Maximum distance of a long jump(d) km/1st week 94
rlocal Maximum distance of local travel(c) km/week 1.4
� Probability of a PFF to find a nearby host(c) Equation 26
⇡ Number of propagules released from each infested cell(e) #/per week 2

Economic Model
reradication Radius for eradication zone(d) km 15
ce One-o↵ control cost(a) $/per km2 539
cr Weekly trade-related revenue loss(f) $ mil/week 25/52
cm PQA management cost(k) $/per cell 114
Tmkt Length of international market closure(g) month 8.5
Tm Management time after each detection(h) month 8.5
� Probability of an infested cell getting detected without using

traps(h)
[0,1]

cp Production loss(i) percent 45
h Number of working hours per week(j) hour 37
v Speed of travelling between traps km/h 40
m Time spent at each trap(j) minute 4.14
cq Cost of trap maintenance(j) $/week 9.75/52
E Equipment cost (cars)(j) per week 15,000/52
� Ratio of supervisor to inspectors (j) 1/3
wI Inspector’s salary(j) $/week 66,700/52
wS Supervisor’s salary(j) $/week 82,200/52

Notes: All values will be converted Australian Dollar 2015.
(a)

Kompas and Che (2009);
(b)

Bateman (1967),

Yonow et al. (2004) & Adeva et al. (2012);
(c)

Adeva et al. (2012);
(d)

Dominiak (2007);
(e)

Authors’ calibration

based on actual infestation Fay et al. (1997, p.260b) & Atlas of Living Australia (2015).
(f)

Cantrell et al.

(2002);
(g)

Underwood (2007);
(h)

Authors’ assumption;
(i)
Authors’ estimation based on Queensland’s horticulture

gross production revenue, in particular, Fruit: $864.77 million, Vegetables and herbs: $376.66 million, Citrus:$

83.18 million, Grapes: $55.67 million (Australian Bureau of Statistics, 2011);
(j)

Florec et al. (2010).
(k)

Authors’

calculation from Cantrell et al. (2002).

Parameter values for the random dispersal model are largely drawn from the literature. In
particular, the outbreak arrival rate is one in every five years (Kompas and Che, 2009). The
length of a PFF adult stage or life span of a propagule is 10 weeks, during which it can survive
and search for a new host to colonise (Bateman, 1967; Yonow et al., 2004; Adeva et al., 2012).
The probability of a propagule to make a long jump is 0.3 based on the dispersal distribution
in Adeva et al. (2012) while the maximum distance of local travel and a long jump are 1.4
km/week and 94km/week, respectively (Adeva et al., 2012; Dominiak, 2012).

Adopted from Adeva et al. (2012, p. 101), the probability of PFF to find a nearby host is
defined as follows:

�(d) =

⇢
�0.0513d3 + 0.335d2 � 0.904d+ 1.083 if d  3 km

0 if d > 3 km (26)
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where d is the distance from a propagule to a host. Equation (26) ensures that a propagule will
detect a habitable host within 0.1 km with certainty. Additionally, the further away a habitable
host is, the less certain a propagule can detect it. When habitable hosts are located beyond
3km away, a propagule cannot detect it, thereby having to keep moving randomly in direction
until it finds a habitable host to colonise, or die due to lack of food or reaching the end of their
life. In line with equation (26), we assume that a PFF will be detected with certainty if within
500m around a trap which uses baits to attract PFF in the same way as a host does.

A key parameter in the random dispersal model is the number of propagules released from
each infested cell. This parameter is important since it largely determines the extent of PFF
spread, hence the size of a PFF outbreak. We calibrate this parameter value based on two
sources of information. The first one is the historical information on the spread of the first
PFF outbreak in north Queensland in 1995. It is widely believed that PFF were present for
12-15 months before the massive eradication campaign in October of that year (Cantrell et al.,
2002). Therefore, in our simulations, we let PFF disperse freely (undetected) for 16 months (4
weeks silent) using our random dispersal model, and compare our simulated infestations with
the actual ones in Queensland in November 1995. Panel (b) in Figure 4 shows infested raster
cells in a medium-sized outbreak among our simulation runs. With two propagules released
from an infested cell per week on average, our model can replicate well the actual infestations
during the same period as shown in panel (a). Note that panel (b) only depicts infested cells,
not travelling propagules. With travelling propagules taken into account, we expect a larger
outbreak, and hence our simulated results would look even more similar to the actual outbreak.
The second source of information is the monthly occurrence records of fruit flies (Bactrocera
(Bactrocera) tryoni) in Queensland from 1950s (Atlas of Living Australia, 2015). Since PFF
and Bactrocera (Bactrocera) tryoni belong to the same genus, Bactrocera, they share some
common biological characteristics including seasonal patterns of incursion and migration. For
this reason, we can use information on Bactrocera (Bactrocera) tryoni as a proxy to estimate
seasonal patterns of PFF. These estimated seasonal patterns are then incorporated into our
calibration of the number of propagules released per week (see Table 6).

Table 6: Seasonal factor for fruit fly incursion in Queensland.

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Seasonal 1.75 0.608 2.20 0.987 0.911 0.0759 0.228 1.97 0.456 0.911 0.532 1.37

factor

Source: Authors’ calculation from Atlas of Living Australia (2015).

Parameter values for the economic model are also largely drawn from the literature. In
particular, the radius for the eradication zone surrounding an infested and detected host is
15 km, following Dominiak (2012). The one-o↵ control cost for each raster cell is calculated
based on the rate of $539 per km2, largely to cover labour and chemicals as used in a previous
study by Kompas and Che (2009). Weekly trade-related revenue loss is estimated based on the
corresponding $100 million loss to producers incurred in the first PFF outbreak in Queensland
in 1995 (Cantrell et al., 2002). We choose this estimate in spite of the availability of more
updated estimates for the whole of Australia (e.g. Hafi et al., 2013) since it comes from an
actual outbreak and the outbreak occurred in our study area. The length of international
market closure Tmkt is 8.5 months following Underwood (2007).

Production losses, clearly, are raster-cell-specific. This complicates matters. We combine
land use information with data on production value by crop and local areas from Australian
Bureau of Statistics (2011) to calculate the production value for each cell. While some raster
cells are categorised as specific to citrus and grape growing areas, the majority of cells can only
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be designated by ‘general horticultural use’, given by perennial, seasonal, irrigated perennial,
irrigated seasonal, and intensive horticulture. Therefore, for each specific horticultural use,
we approximate annual production value for a cell by dividing the corresponding horticultural
production value across the appropriate cells. For the remainder of the other uses, we use their
production value shares to adjust their cell values. Finally, we assume the production loss is
45% of the cell production value. This is half of the maximum damage rate used in Kompas
and Che (2009), reflecting the loss due to flies and limited access to domestic markets, while the
duration of this loss or the management time after each detection in a cell and its surrounding
eradication area is assumed to be 8.5 months, or the same time length as the international
market closure (Kiwifruit Vine Health, 2014).

In terms of on-going surveillance cost we use estimates of cost components from Florec et al.
(2010). Since we don’t know the exact travel distance between traps, we assume that it is the
same as the grid size (or as the ‘crow flies distance’) between traps. This assumption slightly
underestimates surveillance costs.

Finally, the probability of a cell getting detected without using traps is assumed to be zero if
the cell is infested for less than six months, and to be one otherwise. The reason for this is that
PFF is hard to detect. Its eggs are inserted directly into the host fruit well before it ripens, and
the rapidly growing tissues quickly cover any marks made by the fruit fly, making it di�cult for
all but the trained eye to see where eggs had been laid (Cantrell et al., 2002). Since PFF makes
infested fruit look ripe earlier, this attracts the attention of growers and causes notice, and thus
is eventually detected. Therefore, we assume that it takes six months for an infestation to be
naturally detected as this is the average time it would take horticultural crops in Queensland,
such as bananas, to ripen.

7.2 SAA Numerical Results

To get numerical results for Equation 19, parallel processing was carried out using 12 processes
over 3 quad core CPU computers with Hyper-Threading. This parallel processing implemen-
tation helps increase the possible simulation numbers in our computing system by 12 fold,
compared to a similar uni-processing process. As shown in Table 7, when repeating the three-
stage procedure of SAA specified in equations (8–11), we increase the sample size N until the
optimal gaps are stabilised at less than 1% (N ! 672), while keeping M , the number of sam-
ples, constant at 50. As a result, the number of simulations in the first stage increases by up to
33,600 simulations. In the second and third stages, the sample sizes N 0 and N 00 used to find the
candidate optimal solution and check its quality remain constant at 33,600. Algorithms used
for our computation are available upon request.

Numerical results are presented in Figure 5. As can be seen, there is a trade-o↵ between
spending on early detection and the cost of an outbreak. In particular, we find that the optimal
grid size of local traps, ĝ⇤, is around 0.7 km, which is equivalent to about 6,782 traps to be laid
(See Table 7 when � = .2). With this level of traps, the minimised total expected outbreak cost
is approximately $7.7 million and the annual on-going surveillance cost is approximately $2.08
million.

We also pay attention to the outbreak arrival rate as it is directly related to pre-border and
border quarantine controls. Table 7 shows the optimal surveillance grid size at di↵erent arrival
rates. The Table indicates that an increase in the outbreak arrival rate � increases the optimum
number of traps (or equivalently reduces grid size). The optimum grid size (distance between
traps) increases to 750 m when � is less than 15%. The grid size, however, remains unchanged
from its optimum point of 700m when � increases to 15% and beyond. In our particular value
range of � (from 0.05 to 0.5), the optimum grid size is rigid against �. The benefit of early
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detection depends on how much benefit we gain when we have an early detection system in
place or how fast the outbreak grows undetected. This depends on the biological characteristic
of the species and the environment. The arrival rate will not change that, rather it relates more
to the trade-o↵ between the cost of surveillance system and the benefit of early detection.

Figure 5: Total expected outbreak cost of PFF surveillance.
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We next compare our results with the current grid size for traps in Queensland. As shown
in Figure 6, the traps currently laid are less dense than that in the optimal case. Indeed, the
grid size of traps in Queensland is 5km (Kompas and Che, 2009) compared to the optimal grid
size level of 0.7 km suggested in our paper. While this density of traps implies a much lower
surveillance cost per year, $92.9 thousand versus $2.08 million under the optimal policy, the
expected total outbreak cost under the current scenario is $23.92 million which is much higher
than the optimal case (Figure 5).
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Finally, our results support previous studies applied in a similar context (Kompas and Che,
2009; White et al., 2012). (Kompas and Che, 2009) suggested a 60% increase in surveillance
expenses in Australia, which mean a denser surveillance grid. Meanwhile, (White et al., 2012)
also suggest an optimal grid of 700 and 1000 m over the Sunraysia region across northern
Victoria and western New South Wales, Australia.

7.3 Sensitivity Analysis

In this subsection, we check whether our results are sensitive to key parameter values. It is
important to note that unlike deterministic models, our model fully incorporates randomness,
and the SAA optimisation itself method relies on LLN to ensure our solution estimate converges
to its true solution (i.e., is consistent) as the sample size or the number of simulations increases.
Changes in parameter values will alter the data generating process for simulations. New solution
estimates, therefore, reflect the changes in parameter values, not randomness. We aim to
compare these new estimates with our main result to see how sensitive the results are due to
changes in parameter values.

We focus on the key parameters of the random dispersal model and the economic model.
They include the number of propagules released from each infested cell, trade sanction duration,
PQA management cost, production loss, and travel distance between traps. These parameters
are hard to estimate precisely but are instrumental in determining the extent of an outbreak.
Other parameters have a relatively minor impact on model results, and are not discussed here
for brevity. Detailed results are available upon request.

The optimum surveillance grid size is sensitive to the number of propagules released from
each infested cell. Figure 7a shows that an increase in the number of propagules released from
each infested cell will imply an increase in the distance between traps and thus reduce the
number of traps. More propagules released make flies easier to detect.

On the other hand, the economic model parameters have less influence on the optimum grid
size. In our baseline scenario, we assume 8.5 months trade sanctions after the last positive
detection. This assumption is inline with suspension time in the suspension area. The trade
sanction, however, could be longer than that. In Figure 7b we try to measure the impact of ±20
change in trade sanction duration to our optimal surveillance problem. The Figure shows that
the change in trade sanction duration does a↵ect the expected total cost of a PFF invasion, but
not the optimum surveillance grid itself.

The production loss factor cp also has little impact on the optimum surveillance grid. We
choose cp as half of the maximum damage rate in (Kompas and Che, 2009). The rate may
vary in practice for di↵erent invasions. Figure 7c shows the robustness of our result in such a
situation.

The third economic model parameter we need to look at is the PQA management cost
parameter cm. We assume the management cost is proportional to the size of the PQA (number
of habitable cells in PQA). Since these are a fixed component of management costs, cm could
vary from invasion to invasion. Fortunately, Figure 7d shows little impact from changes in cm

to optimal grid size. In fact, the impact of cm is insignificant when the grid size is close to an
optimum point (or lower), because the PQA is less likely to be initiated in stricter surveillance
regimes.

The last, but perhaps most important, economic model parameter is the travel distance
between traps l in Equation 17. Following Florec et al. (2010) we proxy this distance by trap
grid size. The travel distance, in fact, will vary considerably in practice, especially with a
coarser grid and a highly spatial and heterogeneous area. In order to access the diversity of
l, we calculate the mean distance between traps in each row from left to right and from the
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last cell of a row to the beginning cell of the next cell. This serves as an estimation of a upper
bound of l because the long distances in this calculation will generally not be realised. Figure
7e shows how the change in l from our baseline case to that upper bound would a↵ect our
optimum surveillance measures. From the Figure, it is clear that l will significantly impact
expected total cost. The impact is strongest around the optimum point. This is not a surprise,
although l is expected to be much larger than grid size in coarser grids. The number of traps
reduces exponentially with coarser grids and this outweighs the change in l. Similarly with
denser grids, the number of traps increases exponentially while l approaches the grid size. The
optimal surveillance grid is, however, relatively unchanged with the change in l.

8 Conclusion

PFF is a clear and proven danger to Australia horticulture industry. A long term strategy is
in place for controlling fruit flies in the Torres Strait to prevent them from invading mainland
Australia. However, the Torres Strait surveillance activity cannot prevent every possible incur-
sion, and traps are still routinely used on the mainland of Australia to further protect against
a possible incursion. In this paper, we do two things. First, we construct and calibrate a basic
model for the allocation of resources between border and post-border measures. Second, we
design a spatial stochastic dynamic model to study the movement of PFF in Queensland and to
predict the outcomes of potential PFF incursions. We also design an early detection surveillance
grid accounting for both a temporal dimension and heterogeneous space.

Using a new optimisation technique, in a novel way, we solve for an optimal surveillance
program determining the best grid size to detect PFF early. Our method captures far more
detail than the aggregate approach to these problems and is more e�cient than simulation
approaches at finding an optimal outcome. The results indicate a grid size of less than 1
km, suggesting that not enough resources for biosecurity are being directed to this activity in
Queensland. Border and post-border expenditures occur in at a 1:4 ratio given our parameter
set.
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