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Executive Summary  
 

Habitat suitability maps can be constructed and used to target pest surveillance to locations 
where the pest is most likely to occur.  However, the varying environmental attributes and 
land uses in a landscape may affect more than just the probability of pest occurrence.  
Biodiversity or economic value, and the ease of pest detection and control are also likely to 
vary.  To incorporate these factors, we build a simple general model of pest detection and 
management to determine the surveillance strategy that minimises expected surveillance 
and management costs.  First, we identify how much surveillance effort is economically 
justified by weighing its cost against the expected benefits of early detection.  Second, we 
determine how to allocate a limited surveillance budget over space to minimise expected 
management costs.  Sites with a high probability of pest occurrence and great benefits 
associated with early detection warrant intensive surveillance; however the level of 
surveillance is a nonlinear function of these factors.  Sites where the pest will be relatively 
easy to detect are prioritised for surveillance, though only a moderate amount of effort may 
be necessary to guarantee a high probability of detection.  Intensive surveillance effort may 
be allocated to other sites if the probability of pest occurrence and the budget or economic 
returns are sufficiently high.  This approach to allocation of surveillance resources is 
demonstrated using data and models of orange hawkweed (Hieracium aurantiacum) in alpine 
Victoria, Australia. However the method is sufficiently flexible for use in a range of terrestrial 
and marine environments, where natural features and/or economically valuable species are 
threatened by pest species. 
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Introduction  
Invasive pest species cost billions of dollars to agriculture annually as well as altering 
biodiversity via predation, competition or habitat alteration (Pimental et al. 2000, 2005, Mack 
et al. 2005, Sinden et al. 2005).  This has yielded an extensive literature on the prevention of 
entry, eradication, control, and impact mitigation of such species.  Many studies employ an 
economic framework to advise the best approach, trading off the costs of implementing pest 
management against the damages that the pest inflicts on the environment (Pandey and 
Medd 1991, Sharov and Liebhold 1998, Wu 2001, Eisworth and Johnson 2002, Eiswerth and 
van Kooten 2002, Leung et al. 2002, Olson and Roy 2002, Sharov 2004, Odom et al. 2005, 
Cacho et al. 2008). 
 
The most effective approach to pest management at any time typically depends on the 
abundance and/or distribution of the species.  Such information can rarely be obtained 
quickly, cheaply or completely.  Fewer studies have considered the effects of imperfect 
detection on pest management (Brown et al 2004, Cacho et al. 2006).  In particular, only a 
small number of studies have explicitly incorporated the costs and benefits of monitoring pest 
species into an economic framework of pest management.  Sharov (2004) calculated a 
sample intensity that minimises the cost of pest treatment, independent of the damages 
caused by a pest.  Regan et al (2006) and Rout, Salomon and McCarthy (unpublished data) 
determined the optimal duration of post-control monitoring at a site by trading the costs of 
such monitoring against the potential costs of prematurely declaring eradication.  Mehta et al. 
(2007) identified the level of search effort that minimises the expected total costs of 
monitoring, control and damage for a newly introduced pest species.  Prattley et al. (2007) 
used portfolio theory to find robust allocations of monitoring resources in space and time for 
the detection of disease in animals; however they did not model the process of imperfect 
detection while monitoring is applied. 
 
These studies outline the conditions under which the collection of information on pest 
presence or abundance is justified, yet the spatial heterogeneity of pest distribution over a 
landscape has not yet been fully addressed (though Prattley et al. 2007 use semi-
quantitative methods to model differential risk).  Studies by Buchan and Padilla (2000), 
Underwood et al. (2004), Inglis et al. (2006) and Williams et al. (2008) provide species-
specific models that predict the probability of pest presence as a function of environmental 
variables.  The resulting maps are intended to assist in the targeting of monitoring and 
control resources to areas that have mostly likely been invaded. 
 
We take this approach further by setting it within an economic framework.  When we seek to 
minimise the costs of surveillance and incursion management, the resource allocation to 
each point in space should not depend only on the probability of pest occurrence provided by 
a habitat suitability index.  It should also be influenced by the ease of detection in the local 
environment, and the costs of detecting and failing to detect the pest where it occurs.  We 
determine the best allocation of resources across a heterogeneous landscape, both with and 
without a budget constraint.  We illustrate our method with surveillance of orange hawkweed 
(Hieracium aurantiacum) in south-eastern Australia. 
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The Model 
  
We divide the landscape that the pest could potentially inhabit into n sites of equal area.  Site 
boundaries are chosen so that within a site, there is a uniform probability that the pest is 
present and a uniform probability of detecting the pest using the available surveillance 
methods.  For example, sites might represent different vegetation types across a landscape, 
fields with different crops and other land uses, or marine areas with different depths.   
 
The probability that the pest is present at site i is denoted pi.  It can be estimated using any 
information available relating to the pest or the site, e.g., host density; environmental 
characteristics that indicate its suitability for the pest; a history of pest presence; distance 
from known incursions. 
 
The probability of detecting the pest, conditional on its presence, depends on the ease of 
pest detection using the available surveillance methods, given the terrain.  For example, it 
may be more difficult to detect a weed in a site with shrubby vegetation than a site with open 
vegetation.  In addition, the probability of detecting a pest where it is present depends on the 
amount of effort or resources expended.  As surveillance effort increases, the probability that 
an incursion remains undetected declines.   
 
We use a Poisson model to calculate the probability of detecting the pest.  This comes with 
the assumption that the spatial distribution of the pest within the site is random.  Parameter 
�i defines the underlying efficacy of the surveillance method at site i, per dollar spent on 
surveillance.  The total monetary allocation to surveillance at site i is denoted xi.  Thus, the 
probability of failing to detect a pest incursion at site i after xi was spent on surveillance, is  
 
exp(–�i xi).  
 
Conversely, the probability of successfully detecting the pest when it is present is  
 
1 – exp(–�i xi).   
 
We assume that where the pest is absent, it is never erroneously detected. 
 
At sites where the pest is detected, we assume that actions are triggered to locally eradicate 
the pest.  This may include methods of destruction or removal, as well as follow-up 
monitoring of the infested area to confirm eradication.  Such procedures incur staffing and 
equipment costs.  There may also be losses associated with the confirmed pest presence, 
from damage to biological integrity through to lost revenue from agriculture.  We use D

ic to 
represent the combined costs associated with detecting the pest at site i. 
 
If the pest is present but not detected at a site it has the capacity to spread to other sites, 
causing further damage and becoming more difficult to eradicate.  We use  to denote the 

cost of having an undetected pest at a site, and assume that it is larger than 

U
ic

D
ic . 
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Minimising the costs of surveillance and management 
 
In the absence of budget restrictions, there exists a trade-off between the cost of surveillance 
and the cost of managing pest incursions.  At each site i, the expected combined costs of 
surveillance and incursion management are  
 
(1) ( ) ( ){ }( ) 1 exp exp .D U

i i i i i i i i i iT x x p c x c xλ λ⎡ ⎤= + − − + −⎣ ⎦  

 
The expected combined costs at site i therefore depend on the surveillance expenditure xi.  
While the cost of the chosen surveillance allocation is always incurred, the expected cost of 
incursion management varies depending on the surveillance strategy and the distribution of 
the pest.  If the pest is absent there are no incursion costs, and so the cost of incursion 
management is weighted by the probability of pest presence pi.  If the pest is present, the 
incursion could be detected (with probability 1 – exp(–�ixi)) and incur costs D

ic  or left 

undetected (with probability exp(–�ixi)) and incur costs . U
ic

 
We find the surveillance expenditure xi

* that minimises the combined expected costs of 
surveillance and incursion management by partially differentiating the cost function (equation 
1) with respect to xi and setting the result to zero: 
 

(2) ( ) *1 exp( ) 0.U Di
i i i i i i

i

T p c c x
x

λ λ∂
= − − − =

∂
 

 
Rearrangement of this equation gives 
 

(3) 
( )*

ln U D
i i i i

i
i

c c p
x

λ

λ

⎡ ⎤−⎣ ⎦= . 

 
However, this solution is only meaningful if xi

* ≥ 0.  This holds true if and only if  
 

(4) ( ) 1 .U D
i i i

i

p c c
λ

− ≥  

 
The term ( )U D

i i ip c c−  can be interpreted as the expected savings made by determining the 
status of the site, while 1/�i is the mean surveillance expenditure required to detect the pest 
at the site, given that the pest is present and surveillance ceases on detection.  If this 
condition (4) does not hold, then the cost of surveillance overwhelms the benefits it is 
expected to provide and the surveillance allocation that minimises costs is xi

* = 0.  This may 
occur because the pest is unlikely to be at the site (pi is small), the surveillance method is 
ineffective per dollar spent at the site (�i is small), or early detection of the pest offers few 
benefits (  is small). U

ic c− D
i

 
Thus, the surveillance allocation xi

* that minimises expected costs of surveillance and 
incursion management at site i is 
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(5) 
( )

( )
*

ln ( ) 1,

10,

U D
i i i i U D

i i i
i i

i
U D

i i i
i

c c p
p c c

x
p c c

λ

λ λ

λ

⎧ ⎡ ⎤−⎣ ⎦⎪ − >
⎪= ⎨
⎪ − ≤⎪⎩

 

 
When , there is a positive amount of surveillance effort that optimises the 
trade-off between surveillance costs and incursion management costs.  The higher the 
probability of pest presence at a site, the more surveillance effort should be allocated (Fig 
1a).  Note however that the relationship in equation 5 is logarithmic rather than directly 
proportional.  Similarly, as the benefits from early incursion detection ( ) increase, so 
does the optimal surveillance effort (Fig 1a).  This again is a logarithmic relationship. 

i
D
i

U
ii ccp λ>− /1)(

U
ic c− D

i

 
The effect of surveillance efficacy on the optimal surveillance effort at a site is more 
complicated (Fig 1b).  A highly ineffective surveillance method should not be used at all, 
while a moderately effective method warrants a high allocation of effort at a site.  When a 
surveillance method is highly effective, less effort is required at the site because detection is 
almost certain given only moderate effort.  Further marginal increases in detection probability 
(which are declining exponentially) are not large enough to justify the additional surveillance 
expenditure. 
 
 

 

(a) (b) 

xi
* xi

*

pi or U D
i ic c−  λi 

 
Figure 1.  Optimal surveillance effort as a function of (a) probability of pest presence pi and 
benefits accrued from early detection ( U

i ic cD− ), and (b) surveillance efficacy �i. 
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Allocating surveillance effort subject to a budget 
 
In many circumstances the resources available for surveillance will be limited.  If the 
resources available for monitoring are less than those required for the optimal solution in 
section 3, then we are faced with distributing monitoring resources amongst the sites.  We 
denote the surveillance budget as B, and add the constraint that 
 

1
.

n

i
i

x B
=

≤∑  

 
We determine how to distribute this budget B across sites to minimise the total expected cost 
of incursion management: 
 

(6)  
[ ]{ }

( )
1

1 1

( ) 1 exp( ) exp( )

exp( )

n
D U

i i i i i i i
i
n n

D U D
i i i i i i i

i i

T p c x c

p c c c p x

λ λ

λ

=

= =

= − − + −

= + − −

∑

∑ ∑

x x

x

 
which is the expected cost of incursion management for a site (given in equation 1) summed 
over all sites i = 1, 2, …, n.  The second expression of this cost divides it into two parts.  The 
first part is the unavoidable control cost incurred when all incursions of the pest are detected 
(averaged over the possible number of infested sites).  The second part is the additional 
control cost incurred by a failure to detect one or more incursions, given the surveillance 
allocation: x = {x1, x2,…, xn}. 
 
Our control over the system is limited to altering the surveillance allocation x, so minimising 
T(x) is equivalent to minimising 
 

(7)  ( )
1

( ) exp( ).
n

U D
i i i i i

i
U c c p λ

=

= − −∑x

 
 

(i) Graphical method 
 
The benefit of allocating surveillance effort to each site can be observed by plotting their 
contributions to the sum U(x) individually, as a function of surveillance effort (Fig 2): 
 

( )( ) exp( ).U D
i i i i i i iU x c c p xλ= − −  

 
We call this the expected control impact at site i given that xi is spent on surveillance.  This 
impact declines as surveillance effort increases but the absolute reduction made by each 
additional dollar spent on surveillance diminishes.  That is, the gradient of Ui(xi) determines 
the efficiency of investing in further surveillance at site i, given that xi dollars have already 
been allocated to the site: 
 

( )( ) exp( ).U D
i i i i i i i iU x c c p xλ λ′ = − − −  

 
Thus, the first site to be prioritised for surveillance is the site with the steepest gradient at xi = 
0 in the graph (site 2, Fig 2).  As money is allocated to the site we move along the xi axis and 
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investment efficiency declines.  There may now be another site that offers equivalent 
improvements for each dollar spent on surveillance, and funds are allocated to both sites.  
This procedure continues, with further sites receiving surveillance funding, until the budget B 
is exhausted. 
 
 

1

2

3

4

Ui(xi) 

Surveillance effort xi

0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.  The expected control impact of the pest Ui as a function of surveillance 
expenditure xi at each of four sites: (1) high expected control impact and low surveillance 
efficacy; (2) high expected control impact and high surveillance efficacy; (3) low expected 
control impact and low surveillance efficacy; and (4) low expected control impact and high 
surveillance efficacy. 
 
 
 
 

(ii) Numerical method 
 
The graphical method is an intuitive approach to allocating a surveillance budget when there 
are a relatively small number of sites in the landscape.  However, the optimal allocation of 
surveillance resources can be formalised using the Kuhn-Tucker conditions for nonlinear 
optimisation under inequality constraints (Léonard & Long 1992; p. 52-56). 
 
We introduce a function � and parameter � such that 
 

( )
1 1

( , ) exp( ) .
n n

U D
i i i i i i

i i

c c p x B xφ μ λ μ
= =

⎛ ⎞
= − − − + −⎜ ⎟

⎝ ⎠
∑ ∑x  

 
Then by the Kuhn-Tucker conditions, any optimal solution x must satisfy: 
 

0, 0,  and 0,

0, 0,  and 0 for 1,2,..., .i i
i i

x x i
x x

n

φ φμ μ
μ μ
φ φ

∂ ∂
≥ ≥ =

∂ ∂
∂ ∂

≤ ≥ = =
∂ ∂

 

 
Now 
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1 1

0, 0,  and 0.
n n

i i
i i

B x B xφ φμ μ μ
μ μ= =

∂ ∂ ⎛ ⎞
= − ≥ ≥ = − =⎜ ⎟∂ ∂ ⎝ ⎠

∑ ∑  

 
Since every increase in surveillance expenditure xi improves the objective function U(x), then 
the entire budget must be exhausted.  Thus, 
 

(8)  
1

 and 0.
n

i
i

x B μ
=

= >∑
 
Furthermore,  
 

( ) exp( ) 0,U D
i i i i i i i

i

c c p x x
x

0,  φ λ λ μ∂
= − − − ≤ ≥

∂
 

 
and 
 

(9) ( ) exp( ) 0 for 1, 2,..., .U D
i i i i i i i i

i

x x c c p x i n
x
φ λ λ μ∂ ⎡ ⎤= − − − = =⎣ ⎦∂

 

 
 
Some sites may be allocated zero surveillance funding, while others are allocated a positive 
number of dollars.  As shown during the development of the graphical method, sites can be 
prioritised according to the efficiency of investing surveillance in them i.e. the gradient of 
Ui(xi).  Note that before any surveillance is allocated, the efficiency at any site i is 

( )(0) U D
i i iU c c i ip λ′ = − − .  With this motivation, we relabel sites 1, 2, …, n in descending order 

of ( )U D
i i ic c p iλ− .  If any sites have equal efficiency, then the site with higher surveillance 

efficacy �i is numbered first.  This sets a priority list of where each initial unit of surveillance 
effort will provide the greatest reduction in impact.  Similar to the situation where the budget 
was not constrained, sites that are not allocated any surveillance have an acceptably low 
probability of pest presence (pi), low additional control costs when undetected ( ), or 
the surveillance method is not sufficiently effective at that site (�

U
ic c− D

i

i is low). 
 
Then there exists some k between 1 and n (inclusive) so that sites i = 1, 2, …, k are allocated 
positive surveillance effort, while sites i = k+1, k+2, …, n receive no surveillance.  Then from 
equation 9  
 

(10) *
( )1 ln , 1, 2,...,

0, 1, 2,..., .

U D
i i i i

i i

c c p i k
x

i k k n

λ
λ μ

⎧ ⎡ ⎤−
=⎪ ⎢ ⎥= ⎨ ⎣ ⎦

⎪ = + +⎩

 

 
Substituting equation 10 into the budget equation 8 gives 
 

1

( )1 ln ,
U Dk
i i i i

i i

c c p Bλ
λ μ=

⎡ ⎤−
=⎢ ⎥

⎣ ⎦
∑  

 
which can be rearranged to show that 
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1

1
1

1

ln ( )
ln .

k U D
i i i i ii

k
ii

c c p Bλ λ
μ

λ

−
=

−
=

⎡ ⎤− −⎣ ⎦=
∑

∑
 

 
We define 
 

(11) 
1

1
1

ln ( )1( )  and ( ) .
U Dk
i i i i

k
i iii

c c pkk x k
k

λ
λ

λλ−
=

=

⎡ ⎤−⎣ ⎦= = ∑
∑

 

 
Then ( )kλ  is the harmonic mean of the {�i}, or the average surveillance efficacy.  The 

arithmetic mean ( )x k  is the average unconstrained-optimal allocation across sites 1 to k. 
 
Now the optimal allocation in equation 10 must be  
 

(12) *

ln ( ) ( ) ( ) , 1,2,...,

0, 1, 2,..., .

U D
i i i i

i i i

c c p k B x k i kx k
i k k n

λ λ
λ λ

⎧ ⎡ ⎤− ⎡ ⎤⎣ ⎦⎪ + − =⎢ ⎥= ⎨ ⎣ ⎦
⎪ = + +⎩

 

 
The form of the solution is similar to the unconstrained problem (equation 5), but the 
allocation to each site is moderated by the budget B and the efficiency of investment at this 
site i relative to the other sites 1 to k.  The term B/k is the funding that each site would be 
allocated if surveillance dollars were allocated equally to all sites and ( )x k  is the average 
funding we would hope to allocate to each site if we were not constrained by the budget.  
Thus, the difference between them will be negative when the budget falls short of the ideal 
surveillance expenditure, and the surveillance allocated to the site will be reduced from the 
ideal unlimited-resource level.  Multiplying by ( ) ikλ λ  tailors this reduction according to the 
efficacy of surveillance at the particular site i relative to the other sites.  Thus, sites where 
surveillance is highly effective will not have their allocation of funding reduced as 
substantially as those where surveillance is ineffective. 
 
To ensure that surveillance effort at sites i = 1, 2, …, k are indeed positive, we must have 
 

( )ln ( ) ( )  for all 1, 2,..., .U D
i i i i

Bc c p k x k i k
k

λ λ ⎡ ⎤⎡ ⎤− > − =⎣ ⎦ ⎢ ⎥⎣ ⎦
 

 
Since the sites are indexed in descending order of ( )U D

i i ic c p iλ− , this condition reduces to 
 

(13) ( )ln ( ) ( ) .U D
k k k k

Bc c p k x k
k

λ λ ⎡ ⎤⎡ ⎤− > −⎣ ⎦ ⎢ ⎥⎣ ⎦
 

 
The total expected control impact will then be 
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(14) 

* *

1

1

( ) ( ) exp( )

exp ( ) ( ) ( ) .
( )

n
U D
i i i i i

i

n
U D
i i

i k

U c c p x

k Bk x k c c
kk

λ

λ
λ

=

= +

= − −

⎛ ⎞⎡ ⎤= − − + −⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

∑

∑

x

ip

i

 

 
 
The actual number of sites k that are allocated positive surveillance funding is still unknown.  
To find the optimal allocation of funding amongst n sites subject to a budget, we: 
1. Label sites 1, 2, …, n so that the sites are in descending order of efficiency 

( )U D
i i ic c p λ− .  If any sites have equal efficiency, then the site with higher surveillance 

efficacy �i is numbered first.   
2. Calculate ( )kλ  and ( )x k  for each possible k = 1, 2, …, n using equation 11; 
3. Refine the set of possible k by rejecting those that violate condition 13; 
4. Calculate the objective function U (equation 14) for the remaining plausible k and select 

k* where it is minimised; 
5. Substitute k* into equation 12 to find the optimal allocation. 
 
Rather than examining the 2n combinations of site inclusion and exclusion from the set of 
surveyed sites, this approach reduces the number of candidate solutions that must be 
examined to n. 
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Case study: surveillance for orange hawkweed on the Bogong 
High Plains, Australia 
 
Orange hawkweed (Hieracium aurantiacum) is a daisy with a distinctive orange flower. It is 
native to Europe, but has become a weed in the United States, Canada, Australia and New 
Zealand.  It is thought to have been deliberately introduced to the Bogong High Plains Unit of 
the Victorian Alpine National Park in the 1980s, though it was first recorded as naturalised 
only in 1999.  Since then it has been found at two other widely separated locations in alpine 
south-eastern Australia.  Although its distribution is currently limited, it poses a substantial 
threat to Australian agriculture and to the conservation value of the Alpine National Park if left 
unmanaged.  Thus, orange hawkweed has been declared as a nationally and state 
prohibited weed, and the local population is subject to seasonal survey, mapping and 
herbicide spraying with the aim of eradication (Williams and Holland 2007). 
 
To assist in the targeting of surveys for new infestations, Williams et al. (2008) constructed a 
dispersal-constrained habitat suitability model for orange hawkweed across the Bogong High 
Plains.  The model predicts the probability of hawkweed presence at each location on a 20 
m-resolution grid as a function of the level of disturbance, site wetness, vegetation 
community, and probability of wind dispersal from known infestations.  Observer time 
available to survey for new infestations is limited, and we demonstrate how our method of 
surveillance allocation can inform the management of orange hawkweed on the Bogong High 
Plains. 
 
To divide the Bogong High Plains into a manageable number of equal-sized sites, we used 
resampling techniques to create 4250 sites of dimension 200m x 200m.  Associated with 
each site was a predicted probability of orange hawkweed occurrence (pi) and the site’s 
vegetation community.  It was thought that the local vegetation community would influence 
an observer’s ability to detect orange hawkweed.  Thus, the 15 vegetation communities used 
for the dispersal-constrained habitat suitability model were re-categorised as either ‘low 
grassy’ or ‘shrubby’.  In consultation with a local expert on hawkweed surveillance (N.S.G. 
Williams, personal correspondence) we developed models of the probability of detection as a 
function of time spent at a site (Fig 3), yielding surveillance efficacy estimates � = 0.3283 $-1 
for low grassy vegetation and � = 0.0834 $-1 for shrubby vegetation.  These models 
assumed that the detection surveys were carried out in summer when orange hawkweed 
flowers. Detection probabilities would be much lower if the species was not flowering. 
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Figure 3.  The probability of detecting orange hawkweed at a 4 ha site, given it is present.  
The probability is a function of the time spent at the site, and whether the site contains low 
grassy (solid line) or shrubby (dotted line) vegetation. 
 
 
We assume that the costs of monitoring and spraying known hawkweed infestations do not 
vary from site to site.  Known sites of infestation are visited weekly during the peak 
hawkweed season.  Seeds may survive for up to seven years, and so this monitoring must 
continue over multiple seasons to confirm eradication at the site.  We estimate this cost of 
hawkweed management when it is detected to be .  The ultimate cost of 
managing hawkweed if it is not successfully detected and contained to a site this season 
( ) is more difficult to estimate, and we present results assuming .  During the 
2007/2008 season, roughly $20000 was spent employing two people to search the Bogong 
High Plains for new infestations.  In addition, multiple volunteers contributed to the search 
effort.  These efforts equated to a total of approximately 1125 hours of search time. 
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We determined the optimal surveillance allocations under our model using a simple 
spreadsheet.  The total cost of surveillance under the budget-unconstrained allocation is 
$264000 or 15230 person hours, well beyond the current budget.  Figure 4 shows the 
modelled vegetation type, probability of orange hawkweed presence, and optimal 
surveillance allocation for the Bogong High Plains in the absence of a budget.  While 7.0% of 
sites receive no surveillance at all, the few most high risk shrubby sites are to be visited for 
almost 13 person hours.  This reflects both the relatively high probability of orange 
hawkweed presence (5%) and the difficulty of detecting the plant in this vegetation type. 
 
The effect of the variable surveillance efficacy can also be observed in the far eastern region 
on the maps.  While the probability of orange hawkweed occurrence is relatively uniform 
around 0.005-0.01 (Fig 4b), the optimal surveillance allocation varies substantially (Fig 4c), 
particularly as a response to vegetation type (Fig 4a).  Even though more survey time is 
recommended for a shrubby site than a site with low grassy vegetation and the same 
probability of hawkweed presence (Fig 5), the probability of detection is still lower (Fig 6).  
The probability of detection under the optimal surveillance allocation is a non-decreasing 
function of the probability of pest presence pi, the benefits gained from early detection 
( ), and the surveillance efficacy �U

ic c− i. 
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As the available surveillance budget increases, more sites are included in the surveillance 
plan, and each site receives more effort (Fig 5).  It is also possible to plot U(x*), the total 
expected control impact under the optimal allocation, for a range of budgets (Fig 7).  This 
could assist in deciding what budget to set for the surveillance of a pest, basing the decision 
on the expected incursion management savings to be made.  Note that for budgets greater 
than the budget-unconstrained solution (B = $264000), the expected costs of incursion 
management continue to decrease.  However the savings made to incursion management 
are less than the additional expenditure on surveillance. 
 
Finally, consider the case where we do not have the dispersal-constrained habitat suitability 
model created by Williams et al. (2008).  If we were to distribute effort uniformly across the 
Bogong High Plains, spending 16 minutes at each site, the total expected control impact 
would be almost $1.7 million.  By comparison, the expected control impact using the optimal 
allocation is about $1.3 million.  Thus, the benefit of an accurate dispersal-constrained 
habitat suitability model could be valued at $375,000. 
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Figure 4.  (a) Vegetation type, (b) 
probability of orange hawkweed 
occurrence (Williams et al. 2008), 
and (c) optimal allocation of 
surveillance dollars over the Bogong 
High Plains.  The optimal allocation 
is for the budget-unconstrained 
problem with . 100U D

i ic c=
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Figure 5.  Optimal budget-constrained allocation of survey hours to each site, as a function 
of the probability of orange hawkweed occurrence at the site.  Vegetation is (a) low grassy, 
or (b) shrubby.  The total budgeted survey hours are 500 (dotted line), 1125 (the current 
budget, thick solid line), 5000 (dashed line), 10000 (dot-dashed line) and 15000 (thin solid 
line). 
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Figure 6.  The probability of detecting orange hawkweed at a site where it is present, as a 
function of the probability of orange hawkweed occurrence at the site.  The optimal allocation 
of surveillance resources under the current budget of 1125 person hours is assumed. 
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Figure 7.  The total expected control impact U(x*) (in dollars) under the optimal surveillance 
allocation, as a function of budget.  Squares indicate the current budget of 1125 person 
hours, and the unconstrained-optimal solution where 15230 person hours are used. 
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Discussion 
 
There has been some interest in modelling the probability of pest occurrence to help 
prioritise surveillance effort over space (Buchan and Padilla 2000, Underwood et al. 2004, 
Inglis et al. 2006, Williams et al. 2008).  However, these studies have not demonstrated the 
optimal relationship between the probability of occurrence and variable surveillance effort. 
We have shown that this relationship is logarithmic, so that allocation increases at a 
diminishing rate as the probability of occurrence increases.  It is interesting that the 
mathematical formulation and solution of the problem of allocating effort among areas of 
threat is identical to the problem of allocating conservation reserves among bioregions to 
protect endemic species (McCarthy et al. 2006). 
 
Less attention has been paid to how differences in the probability of pest detection across a 
heterogeneous landscape should influence surveillance effort.  Our case study demonstrates 
the importance of differing detection rates for surveillance prioritisation.  While the eastern 
region in Fig 4 has a relatively uniform (and medium level) probability of hawkweed 
occurrence, the optimal visit length varies according to the vegetation type.  Sites with 
shrubby vegetation are allocated greater funds to ensure a thorough search in difficult 
terrain.  In general, sites where the pest will be relatively easy to detect are prioritised for 
surveillance, though only a moderate amount of effort may be necessary.  Intensive 
surveillance effort may be allocated to other sites if the probability of pest occurrence and the 
budget or economic returns are sufficiently high. 
 
The specific benefits of early detection will also influence both the optimal total expenditure 
on surveillance and its allocation across space.  The difference between the costs of 
incursion management with and without early detection, U

ic cD
i− , exerts influence in the 

same manner as the probability of pest presence pi; sites where early detection offers great 
benefits should receive more surveillance, albeit at a decreasing rate (Fig 1a).  In the case 
study we assumed that this benefit would be the same at all sites, but this may not be the 
case.  Some sites may be considered more valuable than others in some sense, or more 
susceptible to damage.  In these cases our method can accommodate this information and 
prioritise accordingly. 
 
Furthermore, attaching an economic value to the impact of a pest may be difficult or 
inadequate when a pest threatens a landscape valued primarily for its biodiversity rather than 
an economic return.  In these cases the budget-constrained formulation may still be of use, 
with the term  being replaced by some other measure of the relative value of different 
sites.  Otherwise, contingent valuation or other non-market valuation methods might be used 
to assess the value of protecting areas from invasive species. Market-based estimates would 
be available when an invasive species threatens agricultural production. 

U
ic c− D

i

 
It should be noted that the detection rates and probabilities of occurrence modelled here rely 
on expert opinion and parameters of similar systems taken from the literature (Williams et al. 
2008).  It is likely that parameters will not be known with confidence and so there is a need to 
test a surveillance allocation for robustness, rather than relying solely on the optimal 
allocation derived from point estimates.  We have briefly explored the sensitivity of this 
solution to the costs of failing to detect the pest, but further research is warranted. 
 
As we begin to incorporate uncertainty in parameter estimates and perhaps model structure, 
the model can be updated with new information as surveillance progresses.  For example, 
we may alter our habitat suitability map as subsequent pest detections and apparent 
absences alter our understanding of where the pest is likely to occur.  A fully active adaptive 
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surveillance and management plan would require a more dynamic model, explicitly 
incorporating likely dispersal over time and the results of surveillance. 
 
As it stands, we are able to make some inferences on the value of information.  At the end of 
the case study we compared the expected costs under the optimal surveillance allocation to 
those incurred when applying uniform surveillance effort across the landscape, as if there 
were no information about the varying habitat and corresponding likelihood of pest presence.  
In this way we may be able to estimate the value to future management of discerning 
differences in habitat before a habitat model is developed. 
 
Prioritisation of pest management efforts across species, space and time is an increasingly 
important task.  We demonstrate that in prioritising efforts across space for a single species, 
we should be concerned with more than just the probability of pest presence at each 
location.  Both the value of early detection and the relative ability of our surveillance method 
to detect the pest in the local environment should also influence how much we spend on 
surveillance and where we direct it. 
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