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Introduction

Foot-and-mouth disease (FMD) is considered to be one of the most contagious animal dis-
eases, affecting cloven hoofed animals (OIE and FAO, 2012). The FMD virus (FMDV) can
survive for a long period of time in many parts of the environment and in the recovered
animal, as well as spread rapidly via various pathways to other animals (Grubman and
Baxt, 2004). The disease produces debilitating effects including weight loss, decrease in milk
production, loss in productivity and high mortality in young animals (Grubman and Baxt,
2004). FMD also brings significant trade barriers and substantial economic losses to affected
countries (Leforban, 1999; Kompas et al., 2015).

To avoid large potential damages, FMD-free countries have focused on attempts to min-
imise the entry and spread of FMD. Measures include stringent quarantine at ports of entry
and across main disease pathways (GAO, 2002). No matter how aggressive these measures
are, complete prevention has proved to be impossible, as seen in a loss of roughly $US25
billion over the last 15 years in countries that were previously free of FMD (Knight-Jones
and Rushton, 2013). In fact, with FMDV being prevalent in two thirds of the world, coupled
with rapid increases in global trade and mobility, FMD-free countries continuously face the
threat of FMD outbreaks (Muroga et al., 2012). As a result, in these countries, there have
been calls for more attention to be paid to post-border measures, namely active surveillance
in the local animal population for early detection and rapid response to an incursion (GAO,
2002; Matthews, 2011).

Delayed detection of FMD has been found to cause substantial damage. It is a key reason
that recent outbreaks have been so widespread and debilitating (Yang et al., 1998; Ferguson
et al., 2001; Bouma et al., 2003; Muroga et al., 2012; Park et al., 2013). These delays often
stem from the fact that infected (and infectious) animals experience a long incubation period
before showing any clinical signs (Orsel et al., 2009). FMD detection traditionally relies on
visual inspection (Bates et al., 2003; Matthews, 2011). But even when clinical symptoms
are evident, FMD can be easily misdiagnosed and is often clinically indistinguishable from
other more common diseases, as seen in several past epidemics (Bates et al., 2003). Existing
analyses using simulation-based modelling suggest substantial economic payoffs from detect-
ing an FMD incursion early (Ward et al., 2009; Hayama et al., 2013). However, none of
this work has proposed any specific measures to achieve early detection, or how early that
detection should optimally be, comparing costs to potential benefits.

Since early detection requires considerable upfront investment, while delays in detection
result in potentially large economic losses, there is a clear trade-off between the two costs
(Mehta et al., 2007). Early detection results in avoided losses, but the cost of detection is
larger the earlier FMD is detected. The challenge in defining the optimal detection level,
which basically minimises the sum of these two costs, is rooted in complications surrounding
the growth and spread of the disease. As FMD spreads across time and space, its proliferation
is formally described by a spatial-dynamic process. This process is complicated by the fact
that not only does FMD spread locally, FMDV also transmits rapidly over a long distance,
with a spread rate that varies across different animal types as well as landscapes (Donaldson
et al., 1982; Kao, 2001; Keeling et al., 2001; Grubman and Baxt, 2004). These features
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make the spatial dynamics of FMD too complicated to simply apply recent (albeit useful)
developments in the literature on spatial dynamic optimisation (Sharov, 2004; Epanchin-
Niell et al., 2012; Epanchin-Niell and Wilen, 2012).1 In particular, the nature of this multi-
host dynamic process, so characteristic of FMD, spreading not only within but across regions
during an outbreak, has not been considered in any existing optimisation models. A principal
reason is the ‘curse of dimensionality’ (Bellman, 2003), which makes the resulting large scale
problems difficult if not practically impossible to solve.

In terms of policy responses to an incursion, existing literature largely focuses on the
relative effectiveness of various FMD control strategies based on disease and spread simu-
lations. These simulations are performed on epidemiological models developed using farm
data, transmission parameters, and a spatial transmission kernel (the relative probability
of transmission over some distance) (Morris et al., 2001; Ferguson et al., 2001; Kao, 2001;
Tomassen et al., 2002; Keeling et al., 2003a,b; Garner and Beckett, 2005; Tildesley et al.,
2006; Ward et al., 2009; Hayama et al., 2013). While these approaches succeed in articulating
the spatial-temporal features of an FMD incursion, in an often elaborate ways, they do not
provide a ‘global’ optimal solution. These procedures generally only simulate a small num-
ber of policy and disease transmission scenarios, thus possibly missing the optimal outcome
(Kobayashi et al., 2007).

To find an optimal policy while retaining FMD-epidemic features, a two-step combination
of simulations and dynamic optimisation has been proposed by Kobayashi et al. (2007).
In particular, the authors estimate transmission parameters using simulations generated
by an FMD spread model, and then use these results to find an optimal solution in a
dynamic programming setting. The procedure reduces the dimension of the spatial dynamic
optimisation problem, making it solvable. Although the authors cannot take into account
long-range dispersal patterns, which is crucial in modelling FMD, their simulation-based
dynamic optimisation approach does allow for important insights.

Our paper aims to complement the literature in two important ways. First, we consider
a specific active surveillance measure for the early detection of FMD, bulk milk testing. We
find the optimal level of spending on this measure, considering its cost and its potential
benefit in reducing the economic damages that would occur from an FMD incursion in
Australia. Second, our optimisation approach takes into account the features of a multi-
host, multi-region setting, with both local and long-range dispersal, which are typical in
an FMD outbreak. To do so, we combine three techniques: (i) simulations performed on
a fully spatial dynamic spread model of FMD for Australia (the AusSpread model); (ii)
meta-population modelling; and (iii) spatial dynamic optimisation. That is, the simulation
results from the AusSpread are used to estimate transmission parameters, which, in turn, are

1Studies on optimal surveillance (i.e., search algorithms) can be found for other invasive species with more
basic spatial-dynamic processes, e.g. Mehta et al. (2007); Bogich et al. (2008); Hauser and McCarthy (2009);
Kompas and Che (2009); Gramig and Horan (2011); Homans and Horie (2011). See Epanchin-Niell et al.
(2012) for a review of the literature. The approach largely applied here is an aggregate dynamic optimisation
method, which does not take into account spatial heterogeneity. The consequences of this (rather limiting)
approach are discussed in detail by Wilen (2007).
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fed into in a meta-population model to represent the typical features of an FMD outbreak.
Results from this meta-population model are then used for dynamic optimisation. We are
thus able to model the typical features of an FMD incursion and spread, while still finding
an optimal level of active surveillance against it.

Surveillance for the early detection of FMD and the study area

Passive surveillance

Passive surveillance for FMD is based on notification of clinical symptoms in animals by
‘front-line people’. Front-line people include farmers, meat inspectors and veterinarians. In
spite of the serious consequences of any delay in detecting FMD, which may result from the
passive system, this approach is generally applied throughout the world, including in key
livestock exporting countries, and often without active surveillance measures in place (Bates
et al., 2003; Matthews, 2011). There are two inherent problems with this approach, which
may likely lead to a delay in detecting FMD in otherwise unaffected countries. First, with
visual inspection, it is often difficult to recognise FMD, and it can be easily misdiagnosed
as one of a number of other clinically indistinguishable diseases (e.g., bovine viral diarrhea,
infectious bovine rhinotracheitis, blue-tongue, and contagious ecthyma) (Bates et al., 2003).
The error in diagnosis can also be made worse due to strain and host-specific variations in
disease severity and infection (Dunn et al., 1997), as well as from a basic lack of understanding
and experience with the disease (McLaws et al., 2009). Second, while it is hoped that
farmers take appropriate reporting and biosecurity safeguards under this approach, they
may instead delay, and make decisions based on the perceived risk to their own enterprise
from a disease incursion (Palmer et al., 2009). In many cases, there is also a basic lack of
trust with government institutions and biosecurity regulations, along with issues over the
cost of repeated visits by the veterinarian (Palmer et al., 2009; East et al., 2013).

Active surveillance: the bulk milk test

Active surveillance entails frequent and intensive efforts to establish the presence of a disease
in an animal or area (Paskin, 1999). This approach can detect recently infected cases that
might not otherwise be identified by passive surveillance, at least not until much later in
the course of the disease and its spread. Active surveillance can be very expensive and
time-consuming. There are many types. Here, we consider bulk milk testing (BMT) as an
active surveillance measure for FMD. This test is based on the finding that the milk from
FMD incubating cattle may contain an FMD virus for up to 4 days before clinical signs of
the disease become evident (Burrows, 1968; Donaldson, 1997). Reid et al. (2006) developed
a test using a real-time reverse transcription polymerase chain reaction (rRT-PCR) as a
diagnostic tool for detecting FMDV in milk. Not only quicker and more sensitive than virus
isolation, an established diagnostic method also suitable for testing FMDV in milk, rRT-PCR
is apparently a very cost-effective test since milk samples need to be collected for various
tests for food safety purposes in any case (Bates et al., 2003). Furthermore, rRT-PCR also
appears to perform much better than other possible approaches to active surveillance, such
as sale-yard inspections (Garner et al., 2015).
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Study area

Our study area is the state of Victoria in Australia. We choose this area as a case study
for three reasons. First, Australia fundamentally relies on passive surveillance against FMD
(Matthews, 2011; Garner et al., 2015) throughout the country and in Victoria, and passive
surveillance has inherent problems as described above. In particular, the probability of
making an appropriate diagnosis by a farmer or a veterinarian, and reporting correctly, are
low, resulting in an estimate of between 19 and 35 elapsed days before initially infected
farm animals are reported (Higgs et al., 2012). This passive surveillance system is applied
in Australia despite it being among the top ten largest livestock producing and exporting
countries in the world (USDA, 2014). Indeed, Australia’s agriculture is highly exposed to
the world market with farmers exporting around 60% of what they grow and produce, and
earning about $32.5 billion per year from exports in a $155 billion agricultural industry
(National Farmers’ Federation, 2012). Thus, the damage that could be caused by an FMD
outbreak to Australia is likely to be very large, with estimates in the range of $6-50 billion,
depending on the size and length of the outbreak (Productivity Commission, 2002; Buetre
et al., 2013).

Second, among the 5 states and 3 territories in Australia, Victoria likely bears the highest
risk of an FMD introduction, establishment and spread. (East et al., 2013). This is associated
with Victoria having higher livestock and human population densities, livestock production
being relatively close to high volume air and sea ports and high suitability of environmental
conditions for FMD virus survival. Victoria is also Australia’s largest food and fibre exporting
state and is the centre of Australia’s dairy production (DEPI 2014). Although occupying
only 3% of Australia’s land mass, it has 9.2 % of the national beef cattle population, 63.6% of
the dairy cattle population, 24.8% of the pig population and 21.3% of the sheep population
(ABARES, 2014).

Finally, the distribution and composition of livestock in Victoria raises both special chal-
lenges to the passive surveillance system while offering opportunities for the application of
BMT active surveillance. For the former, the range and mix of species (Figure 1) means that
FMD could be misdiagnosed as a more common endemic condition, while the large number
of sheep in the state could result in delayed detection due to the generally mild symptoms in
this species (Kitching et al., 2006). At the same time, pig farms, which bear the highest risk
of being exposed and infected to FMDV due to their omnivorous habits of eating both meat
and plant products (Matthews, 2011), are scattered throughout the state, thereby making
the farms vulnerable to a widespread outbreak. In terms of the opportunities, applying BMT
to Victoria, as an active surveillance measure, is natural. Victoria is the main dairy state in
Australia, with large concentrations of dairy cattle and extensive bulk milk collection points.

Methods

Our goal is to find the optimal level of spending on BMT active surveillance considering its
potential benefit in reducing the economic damages of an FMD incursion in Victoria. To do
so, we follow Kobayashi et al. (2007) in feeding simulation-based estimates of spread rates
into a dynamic model to overcome the curse of dimensionality, while largely retaining the
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spatial heterogeneity of the dynamic process. In addition, following Epanchin-Niell et al.
(2012), we use a probabilistic model of FMD dynamics to search for the expected (or ‘steady
state’) optimal level of BMT active surveillance. Arguably, the approach of focusing on the
steady state may perform poorly in cases where invasions cause relatively slow movements to
a new equilibria, or where equilibria are never attained, but for the most part the approach is
generally applicable (Finnoff et al., 2010). This is especially the case for FMD since a FMD
outbreak is typically short in duration and reaches a steady state quickly. Furthermore,
we combine these two approaches with a meta-population modelling technique (Hanski and
Gilpin, 1997; Hanski and Gaggiotti, 2004; Keeling and Rohani, 2008). The latter allows us
to take into account heterogeneity in FMD spread by host type, and the dependency among
regions in FMD spread, both of which are not possible in the model contained in Epanchin-
Niell et al. (2012). It also allows us to account for FMDV dispersal over a long spatial range,
which too is not possible in the model provided by Kobayashi et al. (2007).

To achieve our goal, we consider two scenarios. The first scenario is to implement an
on-going active surveillance program using BMT for detecting FMD, before there is a known
or suspected incursion, called ‘BMT-prior’. Since this scenario can be very expensive when
the probability of an FMD incursion is low and/or the cost of maintaining the programme
is high, we examine a second scenario in which active surveillance using BMT starts only
after a known FMD incursion. We call the second scenario ‘BMT-post’. These two scenarios
are worth consideration only if their net benefits exceed those under the passive surveillance
system. An active surveillance program, if implemented, does not replace on-going passive
surveillance, since the latter always exists. Rather, it complements it, and it is assumed
that an outbreak will always be detected by the passive surveillance system, if it is not first
detected by an active surveillance program.

Epidemiological model: a probabilistic meta-population model of FMD spread

We begin with the epidemiological model. Consider an exotic FMD outbreak, from an
outside source, with an arrival probability λ drawn from a Bernoulli distribution. We choose
a Bernoulli distribution since the arrival probability of more than one FMD outbreak, over
a particular short time period (e.g., a day in our paper), is almost zero. FMD in our model
can spread locally and jump over a long range to create multiple local clusters of infected
farms. Each local cluster of FMD infected farms is called a colony. An outbreak can have
more than one colony and each colony can have more than one infected farm.

We define F as the set of farm types, F = {pig, non-pig}. Each farm type has its
own FMD transmission rate to farms of the same type, βii, and to the ones of different
types, βij where i 6= j and i, j ∈ F . Our farm classification is based on the fact that pigs
get infected and transmit FMDV differently, compared to sheep and cattle. In particular,
pigs usually become infected by direct contact with infected animals or by eating FMDV-
contaminated material, while sheep and cattle are highly susceptible to a virus infection via
aerosol (Grubman and Baxt, 2004). Pigs also excrete large amounts of air-born virus while
other animals do so less (Alexandersen and Donaldson, 2002). Finally, we allow for the fact
that different strains may have different impacts on pigs and other animal types (Dunn et al.,
1997).
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We assume, as commonly thought in Australia, that the FMD outbreak starts from a
pig farm (i.e., the seed farm) in the first colony since pigs have the highest risk of being
exposed to and infected by FMDV (Kitching et al., 2006; Matthews, 2011). This assumption
is relaxed in the second colony so that any farm or animal type can get infected with a
probability πs where s ∈ F .

We define L as the set of regions, L = {dairy, non-dairy}, where the transmission rate
of each farm type also depends on local heterogeneity (Kao, 2001). Dairy regions in Victoria
are located in the south of Gippsland, the south-east of Barwon South West, and the joint
area between Loddon Mallee and Hume (Figure 1). Here, not only are dairy cattle highly
concentrated, with a likelihood that FMDV can be transmitted via milk droplets (Grubman
and Baxt, 2004), but also the livestock density is particularly high.

We define Φl as the number of days it would take for FMD to be detected by passive
surveillance, which varies across regions. We define p as the number of possible infected
farms in a colony, and φ as the colony infection ‘age’, which is measured in days, where
φ ∈ [1, 2, . . . ,Φl]. Accordingly, pφ is the number of farms infected in a colony of infection
age φ. We assume that all farms in the colony of infection age older than Φl are ‘stamped
out’ according to Australian Veterinary Emergency Plan (AUSVETPLAN) (Animal Health
Australia, 2014), while the ones in those of infection age younger than one are susceptible.

We define Q as the set of possible numbers of colonies at each time step, starting from the
first day of an outbreak, Q = {q1, q2, ..., qt} where qt is the number of colonies in day t of an
outbreak. We assume that no new colony is established once the outbreak is detected because
Australia’s national livestock stand-still policy under AUSVETPLAN will be implemented,
preventing all animal movements across the country (Animal Health Australia, 2014).

We define ηql as the probability of a colony being generated in region l, where l ∈ L and
q ∈ Q. For q = 1, η1l is the location probability of the first colony and follows a Bernoulli
distribution. When q > 1, ηql is the probability of a ‘child’ colony being generated in the
region l, and is calculated as ηql =

∑
m η

1m × κml where m, l ∈ L and κ is the probability of
the location of a ‘child’ colony generated by a ‘mother’ colony.

Following Kobayashi et al. (2007), we assume the local growth of FMD in farm type i
with the seed farm s in region l can be described by a logistic function (Verhulst, 1838), and
an undetected colony will move to its next age so that the local dynamics of FMD in each
colony is given by:

plsiφ+1 = plsiφ + (N li − plsiφ )
∑
j

βlij
plsjφ
N lj

for s, i, j ∈ F ; l ∈ F ; and φ ∈ [1, 2, . . . ,Φ] (1)

where N li and N lj are carrying capacities. Likewise, the growth of colonies can also be
described by a logistic function, as done in Levins (2007):

qt+1 = qt + g × (qmax − qt)qt
qmax

(2)

where g is a colony growth parameter and qmax is the carrying capacity.
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Economic model

The economics for our case is basic and designed to exploit the tradeoff between spending
more on early detection and benefiting from avoided losses, compared to the cost of the
surveillance program itself. Active surveillance involves upfront investment, but also poten-
tially reduces the size and length of an outbreak. The more one spends on the former, the
less needs to be spent on the latter. When the sum of these two expenses are minimised,
subject to all of the conditions and constraints in the model, the optimal active surveillance
level is reached.

BMT-prior

In the BMT-prior scenario, an on-going active surveillance programme using BMT for de-
tecting FMD is maintained. We denote T l as the number of days it takes for FMD to be
detected by BMT, where T l < Φl, and T l varies across regions in the same way as Φl.
We assume that a tanker visits h farms in one trip to collect milk every day, and k is the
testing interval of BMT (i.e., one test per k day(s)). The daily cost of this on-going active
surveillance program, Cprior

bmt , is calculated as :

Cprior
bmt = δ × Mdf

k × h
+ Edaily ×Mfac (3)

where δ is the unit cost per rRT-PCR milk test; Mdf is the number of dairy farms; Edaily is
the daily amortised cost of the testing equipment, which is assumed to be fully depreciated
after 10 years; and Mfac is the number of milk collection points or factories in Victoria.

An FMD outbreak is expected to bring economic costs to Australia. Here we focus on
the direct costs including the revenue losses and the control costs of an outbreak, following
recent studies on the economic impact of an FMD outbreak in Australia (Buetre et al.,
2013; Garner et al., 2012; Abdalla et al., 2005; Productivity Commission, 2002). These
direct economic costs occur after FMDV is detected. We do not consider the production
loss, such as weight loss, milk yield reduction, reduction in fertility and high mortality rates
among young animals, since it is deemed negligible due to Australia’s ‘stamp out’ policy of
eliminating animals that are infected (Buetre et al., 2013; Garner et al., 2012; Abdalla et al.,
2005).

The revenue losses are largely caused by immediate and prolonged export bans to Aus-
tralia’s FMD-sensitive markets and depressed domestic prices (Buetre et al., 2013). The
impact of an FMD outbreak on revenues can be long-lasting, and is largest in the first year
(Productivity Commission, 2002). Therefore, the expected daily revenue losses which take
into account the FMD arrival probability is calculated as:

Cr = λ
[
cr1(Dprior

outbreak +Dmkt1) + cr2Dmkt2

]
(4)

where cr1 and cr2 is the daily revenue losses in the first and the following years, while
Dmkt1 and Dmkt2 are the corresponding durations when markets react to an FMD outbreak,
inducing revenue losses; Dprior

outbreak is the expected outbreak duration from the day of the first
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detection until the day of the last detection, plus the time for culling, %bmt, and the time
for quarantine, ςbmt, and therefore, Dprior

outbreak is largely determined by k, T l and Φl (i.e.,
Dprior

outbreak(k, T l,Φl)).
The control costs include the cost of outbreak management and the cost of eradication

(which includes expenses on compensation to farms, slaughtering and disposal, as well as
decontamination) (FAO, 2002; Doel, 2003; Kompas et al., 2015). The expected outbreak
management cost, Cm, which takes into account the FMD arrival probability λ is calculated
as:

Cm = λ× cm ×Dprior
outbreak (5)

where cm is the daily operating cost of an FMD disease control centre(s).
There are two things worth noting in equation (5). First, in the formal model, BMT-

prior is replaced by the existing passive surveillance system when it fails to detect FMDV
earlier than with passive surveillance. Second, Cm is an expectational term, and any colony
of age T l or older can be detected by BMT at any time with an equal chance during the
testing interval k. Here BMT testing efficacy is assumed to be uncorrelated with the testing
interval, which is likely given the mechanisation in the milk testing process.

The expected expenses on eradication, Ce, are based on the number of colonies being
detected and their farms. As a result, Ce depends on λ (the FMD arrival probability),
ηql (the location probabilities of the first colony and a ‘child’ colony), πs (the probability
of a seed farm being a particular farm type), k (the BMT testing interval), as well as T l
(the number of days it would take for FMD to be detected using BMT). Again, Cprior

e is
considered in expectational form, and is calculated as:

Cprior
e =

λ

k

∑
l

∑T l+k−1
t=T l

∑qt
q=1 η

ql
∑

s π
s
∑

i p
qlsi
t clie θ for l ∈ L; s, i ∈ F (6)

where clie is the unit cost of eradication per farm, which varies across farm types and regions;
and θ is the culling ratio which takes into account the pre-emptive culling of susceptible
farms.

The objective is to choose the BMT testing interval (k∗prior) that minimises TCprior, which
is the sum of on-going active surveillance costs, expected outbreak management costs and
expected eradication costs, or:

minimize
k

TCprior(k) = Cprior
bmt (k) + Cr(k) + Cm(k) + Cprior

e (k) (7)

There are two things worth noting in equation (7). First, the optimal value of the total
cost (TCprior(k∗prior)) should always be compared with the expected total cost under passive

surveillance alone, TCps, since an active surveillance program is recommended if and only if
TCprior(k∗prior) ≤ TCps. Second, a discount rate is not needed in equation (7), as shown in a
proof in Appendix A.
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The corresponding expected TCps for comparison is calculated as:

TCps = λ[cr1(D +Dmkt1) + cr2Dmkt2] + λ cmD + λ
∑
l

qt∑
q=1

ηql
∑
s

πs
∑
i

pqlsit clie θ

for l ∈ L; s, i ∈ F, t = Φl

(8)

where D(t,Φl)) is the expected outbreak duration, plus the time for culling, %ps, and the
time for quarantine, ςps, under passive surveillance; and other notations are as specified in
equations (4), (5) and (6).

BMT-post

The previous scenario, BMT-prior, can be very expensive. Hence, in the second scenario,
BMT-post, we consider the case when BMT active surveillance starts only after an FMD
incursion. Accordingly, we do not need to consider the FMD arrival probability λ in this
scenario.

We ask whether the benefit of reducing the size and length of an FMD outbreak once it
happens outweighs the cost of doing so? To answer this question, we also need to choose
the BMT testing interval (k∗post) that minimises the total cost of an outbreak, TCpost. Being
similar to TCprior, TCpost also includes four cost items related to surveillance, revenue losses,
eradication and outbreak management. While the revenue losses and outbreak management
costs are similar for the two scenarios, except withDprior

outbreak now being replaced withDpost
outbreak,

the other two cost items are slightly different. In particular, the surveillance cost in the
BMT-post scenario is calculated as:

Cpost
bmt = δ × Mdf

k × h
×Dpost

outbreak + Eone-off ×Mfac (9)

where Dpost
outbreak is the expected outbreak duration counting from the time FMD is detected

by passive surveillance, plus the time for culling, %bmt, and the time for quarantine, ςbmt,
minus the time for setting up testing equipment; and Eone-off is the one-off cost of the testing
equipment; with all other notations as in equation (3).

The eradication cost for an outbreak under BMT-post, Cpost
e is calculated as:

Cpost
e =

∑
l

qε∑
q=1

ηql
∑
s

πs
∑
i

pqlsit × clie × θ

+
1

k

∑
l

T l+k−1∑
t=T l

qt∑
q=qε+1

ηql
∑
s

πs
∑
i

pqlsit × clie × θ for l ∈ L; s, i ∈ F
(10)

where qε is the number of colonies in day ε when equipment is ready for BMT, and other
notations are as in equation (6). The first term in equation (10) is the eradication cost of the
colonies detected by the passive surveillance system before the testing equipment is available
for BMT active surveillance, while the second term is for the colonies detected by BMT
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active surveillance afterwards. Equation (10) is used to calculate the eradication cost of an
outbreak once it occurs, not the expected eradication cost as in equation (6) and, therefore,
as mentioned, it does not need to take into account the FMD arrival probability λ.

The optimisation problem in this scenario is given by:

minimize
k

TCpost(k) = Cpost
bmt (k) + Cr(k) + Cm(k) + Cpost

e (k) (11)

Similar to the scenario BMT-prior, the minimum value TCpost(k∗post) needs to be compared
with the corresponding total cost of an outbreak under passive surveillance, TCps, which is
calculated as:

TCps = [cr1(D +Dmkt1) + cr2Dmkt2] + cmD +
∑
l

qt∑
q=1

ηql
∑
s

πs
∑
i

pqlsit clie θ

for l ∈ L; s, i ∈ F ; t = Φl

(12)

where all notations in equation (12) are the same as in equation (8). The difference between
these two equations is that the latter refers to the total cost of an outbreak once it occurs
under the passive surveillance system, while the latter refers to the corresponding expected
value given the FMD arrival probability λ.

It is worth noting that in this scenario, we focus on the cost of one particular outbreak.
As a result, the total cost needs to be discounted as shown in Appendix A. That said, since
the outbreak duration is typically short, being less than a year, and the prevalent discount
rate in Australia is low, we drop the discount rate for simplicity.

Model parameterization

Table 1 describes parameters and their values. The epidemic parameters are estimated based
on simulation outcomes from a spatial model for FMD, i.e., the AusSpread model. This
model has been described elsewhere (Garner and Beckett, 2005), and here only a summary
is presented. Developed from a Markov chain model and modified to include stochastic
elements, AusSpread is a state-transition susceptible-latent-infected-recovered (SLIR) model.
It is based on real farm point-location data, and contains detailed information about each
farm such as the number and type of animal species and the production type. AusSpread
simulates disease spread in daily time steps, allowing for interactions between herds or flocks
of different animal species and production type. It accommodates the spread of disease by
way of animal movements through sale-yards, wind-borne spread, local spread, as well as by
direct and indirect farm-to-farm contact.

AusSpread can be used to simulate an outbreak in two phases, including pre-detection
and post-detection. In the pre-detection phase, FMD can spread with the normal pattern of
animal movements and other forms of interactions while in the post-detection phase, policies
described in AUSVETPLAN or customised measures can be configured once the disease
has been confirmed. Model outputs include a range of maps and information describing
the geographic extent of the outbreak, its duration, the number of infected herds or flocks,
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tracing information to identify dangerous contacts (DC) and premises, contiguous (CP) to
infected premises (IP), and so on, at each time step. Since the model is run in a series of
random iterations, their simulation outcomes form a set of random data, which can be used
to estimate parameters for each epidemic.

To obtain data for estimating the parameters for an epidemic, we simulate an outbreak
and its spread under two setups. Both setups have the current passive surveillance in place,
but one also has BMT. The number of simulations is 322 for the former and 222 for the
latter, for an event where an outbreak is randomly introduced into a pig farm of less than
500 pigs. This event is the most likely since, as mentioned, pigs have the highest risk of
getting infected by FMD, and small farms tend to have less stringent biosecurity measures
(Hernández-Jover et al., 2012).

Using non-linear methods, we fit equations (1) and (2) to the simulation data to obtain
estimates for FMD local transmission rates (βii and βij), the long distance transmission rate
(g) and the maximum carrying capacity of colonies (qmax). The maximum carrying capacities
of each farm type in each region are then calculated by using the number of farms of that
type in that region divided by the estimated q̂max. Details on estimation are in Appendix
B. All estimates, except the ones for the local transmission rates of pig farms to farms of
other type, are statistically significant at 1% level and have expected signs (Table 1). The
statistical insignificance and ‘wrong signs’ of estimates for the local transmission rates of pig
farms to farms of other type is not surprising due to the fact that pig farms account for less
than 1% of the total number of farms in Victoria. Therefore, we drop these parameters from
our estimation, and set their values to zero in the model.

Other parameters for an epidemic, including detection time, the culling ratio, the prob-
ability of being a seed farm, and the location probabilities of colonies are drawn from the
average values of the simulation data. Last, but not least, the FMD arrival probability, λ, is
estimated using the information on the past FMD incursions in Australia. Since there were
four FMD incursions over the last 200 years (Productivity Commission, 2002), we assume
the FMD arrival probability is 2 outbreaks/100 years.

Parameter values for the economic model are estimates from the literature and drawn
from expert opinion. In particular, the daily costs of revenue losses due to an FMD outbreak
are $5.4 and $0.807 billion in the first year and the following 9 years, respectively. These
estimates are based on the average revenue losses of $6.21 billion for a small FMD outbreak
in Victoria, controlled using a ‘stamp-out’ policy estimated by Buetre et al. (2013), and
the assumption of 87% of these revenue losses being incurred in the first year (Productivity
Commission, 2002). The unit cost of eradication per farm and the daily operating cost of an
FMD disease control centre(s) is based on Garner et al. (2012) and Abdalla et al. (2005).

With regard to BMT specifically, Garner et al. (2015) discuss in detail the possibility of
implementing BMT and its costing in Australia, noting that BMT is not yet commercially
available. Accordingly, a typical milk tanker of 20,000 litres can collect milk from about 5
farms since the average size of an Australian dairy herd is 225 cows and the average yield
is 17 litres/cow/day. With 7590 dairy farms in Victoria, and tankers visiting 5 farms/trip,
there will be 552,552 (i.e. (7590/5) ∗ 52 (weeks) ∗7(days)) milk samples to test on a daily
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basis. The efficacy of bulk milk testing is not sensitive to the testing interval (Garner et al.,
2015). Testing at the tanker level could allow detection of a small number of infected cows
since rRT-PCR is able to detect FMDV in milk being diluted 10,000 fold (Reid et al., 2006).
For milk rRT-PCR to have an analytical sensitivity of 10−2.5 or 10−3, we need 2 to 4 infected
cows per farm and at least one infected farm contributing to a tanker. In this model, we use
the farm level threshold of 3 infected cows for detection (∼ 10−2.6). The diagnostic sensitivity
of milk rRT-PCR is 95%. We assume a delay of two days from when milk is tested until
FMDV is confirmed to allow for the trace back of individual farms and confirmation on
investigations and testing. The cost per bulk milk test and testing equipment is estimated
based on expert opinion (at conservative values). All values are in Australian Dollars in 2014
unless otherwise specified.

Results

Results for our paper are obtained using Fortran and the software R (R Core Team, 2014,
version 3.1.1). In particular, we use packages sensitivity (Pujol et al., 2014), triangle (Carnell,
2013), lhs (Carnell, 2012), reshape (Wickham and Hadley, 2007), maptools (Bivand and
Lewin-Koh, 2015), sp (Pebesma and Bivand, 2005; Roger S. Bivand, 2013), rgeos (Bivand
and Rundel, 2014), ggplot2 (Wickham, 2009), Plotrix (J, 2006), RColorBrewer (Neuwirth,
2014), and tikzDevice (Sharpsteen and Bracken, 2015).

BMT-prior

The expected total cost of an FMD outbreak per day under the BMT-prior scenario is
presented against passive surveillance alone in Figure 2. For illustrative purposes only, the
total expected cost of an outbreak is calculated for a case where an FMD detection replies
solely on active surveillance using BMT (the dashed-dotted red line). This case is not realistic
since passive surveillance always exists. However, in this unrealistic case, a clear trade-off
can be seen between the cost of active surveillance versus revenue losses and the costs of
eradication and outbreak management. The earlier an outbreak is detected, the less damage
it would bring about, but then the more costly is the program. Given this trade-off, the
expected total cost is minimised at the BMT testing interval of 9 days as seen by the large
red dot. Nonetheless, this total expected cost of an outbreak under BMT without passive
surveillance in place is always higher than its counterpart under passive surveillance (the
solid blue line), suggesting that FMD detection using BMT is less cost-effective than simply
using the current passive surveillance.

The more realistic case we consider is BMT implemented on top of the current passive
surveillance system. That is, FMD infected farms not detected earlier under BMT-prior are
assumed to be detected by passive surveillance. In this case, given the parameter values in
Table 1, the expected total cost of an FMD outbreak is a monotonically diminishing function,
having no optimal point. The reason for the non-existence of an optimum is twofold. First,
the annual cost of an active surveillance programme, Cprior

bmt , is very large compared with
revenue losses (Cr) and the expected costs of eradication (Cprior

e ) and outbreak management
(Cm), given the low FMD arrival probability (λ). Second, the difference in the time it
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would take for FMD to be detected under BMT-prior and under passive surveillance is not
particularly large; on average, 5 and 2 days for dairy and non-dairy regions, respectively
(Table 1). Consequently, as the cost of active surveillance falls when the BMT testing
interval increases, more infected farms are likely to be detected by passive surveillance rather
than by active surveillance. To this end, revenue losses and the costs of eradication and
outbreak management do not increase quickly enough to create an optimum, which results
in a monotonic fall of the expected total cost of an FMD outbreak as the BMT testing
interval increases. Finally, in addition to not having an optimum, the expected total cost of
an FMD outbreak is always higher for BMT-prior than under passive surveillance, making
BMT-prior non-economic.

When would BMT-prior be economically worthwhile to be implemented? Put differently,
we ask when an optimum exists, or at these optimal points, is the total expected cost of an
outbreak under BMT-prior less than that under passive surveillance? Those optimal points
are represented in Figure (3), corresponding to varying values of the unit cost per bulk milk
test and the FMD arrival probability. The FMD arrival probability varies from 1 to 30
outbreaks per 100 years, while the value of unit cost per bulk milk test varies from $1 to $50.
As can be seen, no optimal points are obtained where the FMD arrival probability is small
and the unit cost per bulk milk test is large (the top left region). Optimums are achieved
only for a BMT testing interval in the range of 1-5 days. This result is plausible since FMD
can be detected, on average, 1-5 days earlier by BMT active surveillance than by passive
surveillance (Table 1), and FMDV is contained in milk for up to 4 days before clinical signs
of the disease become evident (Burrows, 1968; Donaldson, 1997).

Figure (3) is also revealing in several other ways. First, if the probability of an FMD
incursion is 2 outbreaks/100 years as assumed in this paper, it is not cost effective to im-
plement on-going surveillance using BMT unless the unit cost per bulk milk test is $2 or
lower. While our estimated unit cost per bulk milk test is $36, it seems likely that BMT
may be much less expensive when it is commercially available and efficiently combined with
other milk tests for food safety purposes. Second, if the unit cost per test remains $36, then
the probability of FMD incursion needs to be roughly 4 outbreaks/100 years for on-going
surveillance using BMT to be cost-effective. There are, in fact, good reasons to believe that
the FMD arrival probability could be much higher than our assumed 2 outbreaks/100 years,
in spite of Australia’s good record of preventing FMD. Indeed, over the last 50 years, FMD
has occurred more regularly in FMD previously-free countries due largely to increasing glob-
alisation and international trade. That, combined with the risk that goes with increases in
FMD prevalence in now two-thirds of the world (Knight-Jones and Rushton, 2013; Kompas
et al., 2015), suggests that probability calculations based on data from a century or more
ago are no longer truly reliable. The recent outbreak from an unknown source in Japan, also
an island country with strict quarantine regulations, serves as a good warning for Australia
(Muroga et al., 2012).

BMT-post

In this scenario, active surveillance using BMT only starts after an FMD outbreak occurs,
and also operates on top of the existing passive surveillance system as in BMT-prior. As
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seen in Figure (4), the total cost of an outbreak under passive surveillance alone is above
BMT-post for any BMT testing interval of less than 100 days (or more). Furthermore, the
optimal point is achieved when BMT is implemented every single day. These results are
clearly in contrast with those for BMT-prior. The reason for these results is that the cost
for BMT active surveillance (Cpost

bmt ) becomes relatively small in comparison with the revenue
losses and the control cost of an FMD outbreak, since the latter are known, and no longer
considered as expected values. In fact, revenue losses and the control costs now become very
high, with certainty, generating substantial benefits for each extra day that an outbreak is
shortened. Overall, our result suggests that using bulk milk testing as a means of active
surveillance is much more cost-effective that merely replying on passive surveillance.

Given this result, we check to see how sensitive it is to parameter values. To do so, we
focus on the ratio of the total cost under the BMT-post and the total cost under passive
surveillance alone. Starting at the optimum (when the ratio is much smaller than 1), with
all parameter values specified as in Table 1, we vary estimated coefficients within ± of their
standard deviations. Since the culling rate, θ, can be high due to possible delay in the culling
process which, in turn, can increase the number of IP, CP and DC farms, we let it vary in
the range [-10%,+30%] of its value. We vary the number of farms that a tanker can visit
in one go (h) by ±20% of its value. The unit cost per BMT could fall substantially when
it becomes commercially available; we therefore vary its value in the range [-90%, +10%].
With regard to revenue losses, since the main difference in these losses under the BMT-
post and passive surveillance alone rests on the differences in the corresponding outbreak
duration, we focus on the losses caused by outbreak durations. This avoids revenue loss
dominating other parameters in this exercise. We also exclude from our sensitivity analysis
some parameters that are basically fixed, given actual data, such as the number of milk
factories, the number of dairy farms and the cost of testing equipment, along with protocols
such as the quarantine duration and restrictions on animal movements. All other coefficients
are varied within ±10% of their values.

Following (Thomas et al., 2011; Nguyen et al., 2015), our sensitivity analysis is based
on a standard combination of Latin Hypercube Sampling (LHS) for efficient sampling of
the parameter space (McKay et al., 1979), and the multivariate Partial Rank Correlation
Coefficient (PRCC) analysis (Campolongo et al., 2000; Marino et al., 2008). In particular, we
randomise coefficients using a triangle distribution with Latin Hypercube Sampling. We then
calculate PRCCs, where values with magnitudes close to one are most important, and the
sign is the correlation. Based on 3000 runs, this sensitivity analysis suggests that our result
is most sensitive to culling time and detection time, and to a lesser extent, daily revenue loss
and the unit cost of a bulk milk test (see Figure 5). This makes good sense since culling time
and detection time play a pivotal role in determining the size and length of an outbreak,
while daily revenue loss and the unit cost of a bulk milk test are key determinants for the
potential costs and benefits of a policy intervention.
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Conclusion

This paper has examined whether active surveillance using BMT against FMD is economi-
cally justified. We investigate two scenarios. For BMT-prior, an on-going active surveillance
regime using BMT for detecting FMD is implemented while in BMT-post, the testing only
starts after an FMD incursion. In both scenarios, BMT active surveillance operates on top
of the existing passive surveillance system.

We find that BMT-prior is generally justified when FMD is expected to occur much more
frequently than 2 outbreaks/100 year and the unit cost per BMT is much cheaper than $36,
or roughly $2 per test. Indeed, if the unit cost per BMT remains unchanged, BMT-prior
is not economical unless the FMD incursion probability is seen to be 4 outbreaks/100 years
or higher. Our result also suggests the need for a more affordable BMT. For example, for
an unit cost of $10, BMT-prior is well justified when FMD is expected to occur every 12
years or more frequently. Since bulk milk testing is not yet commercially available, perhaps
a partnership between the public and private sectors is worth exploring to reduce the cost
of this testing method.

On the other had, we have shown that BMT is highly suited to active surveillance after
an FMD incursion. The result is relatively insensitive to model parameter values, except for
parameters especially crucial to the size and the cost of an FMD outbreak. As a result, BMT-
post is recommended for active surveillance against FMD to shorten the length and size of
an outbreak, even at the current estimated cost of the test in Australia, as well as testing for
post-outbreak proof of FMD-free status. In short, it offers an important biosecurity measure
to at least partially offset the otherwise devastating effects of an FMD incursion.

16



References

ABARES (2014). Agricultural Commodity Statistics 2014. Australian Bureau of Agricultural
and Resource Economics and Sciences, Canberra.

Abdalla, A., S. Beare, L. Cao, G. Garner, and A. Heaney (2005). Foot and mouth disease
evaluating alternatives for controlling a possible outbreak in Australia. ABARE eReport
05.6. Available at http://pandora.nla.gov.au/pan/32832/20050623-0000/PC13123.

pdf [Accessed: 10 April 2015].

Alexandersen, S. and A. Donaldson (2002). Further studies to quantify the dose of natural
aerosols of foot-and-mouth disease virus for pigs. Epidemiology and infection 128 (02),
313–323.

Animal Health Australia (2014). Disease strategy: Foot-and-mouth disease (version 3.4).
Australian Veterinary Emergency Plan (AUSVETPLAN), Edition 3, Agriculture Ministers
Forum, Canberra, ACT.

Bates, T. W., M. C. Thurmond, S. K. Hietala, K. S. Venkateswaran, T. M. Wilson, B. Col-
ston, J. E. Trebes, and F. P. Milanovich (2003). Surveillance for detection of foot-and-
mouth disease. JAVMA 223 (5), 609–616.

Bellman, R. (2003). Dynamic programming. New York: Dover Publications, Inc.

Bivand, R. and N. Lewin-Koh (2015). maptools: Tools for reading and handling spatial ob-
jects. Available at http://CRAN.R-project.org/package=maptools [Accessed: 2 Febru-
ary 2015]. R package version 0.8-34.

Bivand, R. and C. Rundel (2014). rgeos: Interface to geometry engine - open source (geos).
Available at http://CRAN.R-project.org/package=rgeos [Accessed: 2 February 2015].
R package version 0.3-8.

Bogich, T. L., A. M. Liebhold, and K. Shea (2008). To sample or eradicate? a cost min-
imization model for monitoring and managing an invasive species. Journal of Applied
Ecology 45 (4), 1134–1142.

Bouma, A., A. Elbers, A. Dekker, A. De Koeijer, C. Bartels, P. Vellema, P. Van der Wal,
E. Van Rooij, F. Pluimers, and M. De Jong (2003). The foot-and-mouth disease epidemic
in The Netherlands in 2001. Preventive Veterinary Medicine 57 (3), 155–166.

Buetre, B., S. Wicks, H. Kruger, N. Millist, A. Yainshet, G. Garner, A. Duncan, A. Abdalla,
C. Trestrail, M. Hatt, L. Thompson, and M. Symes (2013). Potential socio-economic
impacts of an outbreak of foot-and-mouth disease in Australia. Australian Bureau of
Agricultural and Resource Economics and Sciences research report 13.11. Available at
daff.gov.au/abares/publications [Accessed: 29 January 2014].

17

http://pandora.nla.gov.au/pan/32832/20050623-0000/PC13123.pdf
http://pandora.nla.gov.au/pan/32832/20050623-0000/PC13123.pdf
http://CRAN.R-project.org/package=maptools
http://CRAN.R-project.org/package=rgeos
daff.gov.au/abares/publications


Burrows, R. (1968). Excretion of foot-and-mouth disease virus prior to development of
lesions. Veterinary Record 82 (13), 387.

Campolongo, F., A. Saltelli, T. Sorensen, and S. Tarantola (2000). Hitchhiker’s guide to
sensitivity analysis. In A. Saltelli, K. Chan, and E. M. Scott (Eds.), Sensitivity Analysis,
Wiley Series in Probability and Statistics, pp. 15–47. John Wiley & Sons, Ltd.

Carnell, R. (2012). lhs: Latin Hypercube Samples. Available at http://CRAN.R-project.

org/package=lhs [Accessed: 2 February 2015]. R package version 0.10.

Carnell, R. (2013). triangle: Provides the standard distribution functions for the triangle
distribution. Available at http://CRAN.R-project.org/package=triangle [Accessed: 2
February 2015]. R package version 0.8.

Doel, T. (2003). FMD vaccines. Virus Research 91 (1), 81 – 99.

Donaldson, A. (1997). Risks of spreading foot and mouth disease through milk and dairy
products. Rev. sci. tech. Off. int. Epiz 16 (1), 117–24.

Donaldson, A., J. Gloster, L. Harvey, and D. Deans (1982). Use of prediction models to fore-
cast and analyse airborne spread during the foot-and-mouth disease outbreaks in Brittany,
Jersey and the Isle of Wight in 1981. The Veterinary Record 110 (3), 53–57.

Dunn, C., A. Donaldson, et al. (1997). Natural adaption to pigs of a Taiwanese isolate of
foot-and-mouth disease virus. Veterinary Record 141 (7), 174–175.

East, I., R. Wicks, P. Martin, E. Sergeant, L. Randall, and M. Garner (2013). Use of a
multi-criteria analysis framework to inform the design of risk based general surveillance
systems for animal disease in australia. Preventive Veterinary Medicine 112 (3), 230–247.

Epanchin-Niell, R. S., R. G. Haight, L. Berec, J. M. Kean, and A. M. Liebhold (2012). Opti-
mal surveillance and eradication of invasive species in heterogeneous landscapes. Ecology
Letters 15 (8), 803–812.

Epanchin-Niell, R. S. and J. E. Wilen (2012). Optimal spatial control of biological invasions.
Journal of Environmental Economics and Management 63 (2), 260 – 270.

FAO (2002). Committee on commodity problems. intergovernmental group on meat and
dairy products - animal diseases: Implications for international meat trade. 19th session,
27-29 August 2002. Available at http://www.fao.org/docrep/MEETING/004/y6975e.

htm [Accessed: 7 November 2014].

Ferguson, N. M., C. A. Donnelly, and R. M. Anderson (2001). The foot-and-mouth epidemic
in Great Britain: pattern of spread and impact of interventions. Science 292 (5519), 1155–
1160.

18

http://CRAN.R-project.org/package=lhs
http://CRAN.R-project.org/package=lhs
http://CRAN.R-project.org/package=triangle
http://www.fao.org/docrep/MEETING/004/y6975e.htm
http://www.fao.org/docrep/MEETING/004/y6975e.htm


Finnoff, D., A. Potapov, and M. A. Lewis (2010). Second best policies in invasive species man-
agement: when are they ”good enough”? In C. Perrings, H. Mooney, and M. Williamson
(Eds.), Bioinvasions & globalisation: ecology, economics, management, and policy., pp.
110–126. Oxford University Press.

GAO (2002). Foot and mouth disease: to protect US livestock, USDA must remain vigilant
and resolve outstanding issues. United States General Accounting Office. Report to the
Honorable Tom Daschle, US Senate.

Garner, M., I. East, P. Ha, T. Kompas, and H. T. M. Nguyen (2015). Assessment of ap-
proaches to enhance passive surveillance to detect emergency animal diseases in Australia.
Working paper. Department of Agriculture, Fisheries and Forestry.

Garner, M., S. Roche, and R. Wicks (2012). Assessing management options for pig farms that
develop welfare problems in an emergency disease response. Department of Agriculture,
Fisheries andForestry, Canberra, February.

Garner, M. G. and S. Beckett (2005). Modelling the spread of foot-and-mouth disease in
Australia. Australian Veterinary Journal 83 (12), 758–766.

Gramig, B. M. and R. D. Horan (2011). Jointly determined livestock disease dynamics
and decentralised economic behaviour. Australian Journal of Agricultural and Resource
Economics 55 (3), 393–410.

Grubman, M. J. and B. Baxt (2004). Foot-and-mouth disease. Clinical microbiology re-
views 17 (2), 465–493.

Hanski, I. and O. E. Gaggiotti (2004). Ecology, genetics, and evolution of metapopulations.
Elsevier Academic Press: San Diego.

Hanski, I. and M. E. Gilpin (1997). Metapopulation biology: ecology, genetics, and evolution.
Elsevier Academic Press: San Diego.

Hauser, C. E. and M. A. McCarthy (2009). Streamlining search and destroy: cost-effective
surveillance for invasive species management. Ecology Letters 12 (7), 683–692.

Hayama, Y., T. Yamamoto, S. Kobayashi, N. Muroga, and T. Tsutsui (2013). Mathematical
model of the 2010 foot-and-mouth disease epidemic in Japan and evaluation of control
measures. Preventive veterinary medicine 112 (3), 183–193.

Hernández-Jover, M., J. Gilmour, N. Schembri, T. Sysak, P. Holyoake, R. Beilin, and J.-A.
Toribio (2012). Use of stakeholder analysis to inform risk communication and extension
strategies for improved biosecurity amongst small-scale pig producers. Preventive Veteri-
nary Medicine 104 (3), 258–270.

19



Higgs, T., I. Roth, M. Anderson, M. Cozens, I. East, G. Garner, I. Langstaff, T. Martin,
R. Paskin, B. Scanlan, E. Sergeant, J. Watson, and R. Wicks (2012). Improving general
surveillance in Australia. Final report of the General Surveillance Epidemiology Working
Group (AHC).

Homans, F. and T. Horie (2011). Optimal detection strategies for an established invasive
pest. Ecological Economics 70 (6), 1129–1138.

J, L. (2006). Plotrix: a package in the red light district of R. R-News 6 (4), 8–12.

Kao, R. (2001). Landscape fragmentation and foot-and-mouth disease transmission. Veteri-
nary Record 148 (24), 746–747.

Keeling, M., M. Woolhouse, R. May, G. Davies, and B. Grenfell (2003a). Modelling vacci-
nation strategies against foot-and-mouth disease. Nature 421 (6919), 136–142.

Keeling, M. J. and P. Rohani (2008). Modeling infectious diseases in humans and animals.
New Jersey: Princeton University Press.

Keeling, M. J., M. E. Woolhouse, D. J. Shaw, L. Matthews, M. Chase-Topping, D. T.
Haydon, S. J. Cornell, J. Kappey, J. Wilesmith, and B. T. Grenfell (2001). Dynamics of
the 2001 UK foot and mouth epidemic: stochastic dispersal in a heterogeneous landscape.
Science 294 (5543), 813–817.

Keeling, M. J., M. E. J. Woolhouse, R. M. May, G. Davies, and B. T. Grenfell (2003b, Jan-
uary). Modelling vaccination strategies against foot-and-mouth disease. Nature 421 (6919),
136–142.

Kitching, R., M. Thrusfield, and N. Taylor (2006). Use and abuse of mathematical models:
an illustration from the 2001 foot and mouth disease epidemic in the United Kingdom.
Rev. sci. tech. Off. int. Epiz. 25 (1), 293–311.

Knight-Jones, T. and J. Rushton (2013). The economic impacts of foot and mouth dis-
ease what are they, how big are they and where do they occur? Preventive Veterinary
Medicine 112, 161–73.

Kobayashi, M., T. E. Carpenter, B. F. Dickey, and R. E. Howitt (2007). A dynamic, opti-
mal disease control model for foot-and-mouth disease: I. Model description. Preventive
Veterinary Medicine 79 (2), 257–273.

Kompas, T. and T. Che (2009). A practical optimal surveillance measure: The case of
papaya fruit fly in Australia. Australian Centre for Biosecurity and Environmental Eco-
nomics, Crawford School of Economics and Government, Australian National University,
Canberra, ACT. Available from http://www.acbee.anu.edu.au/pdf/publications/

Papaya_Fruit_Fly.pdf [Accessed: 15 January 2014].

20

http://www.acbee.anu.edu.au/pdf/publications/Papaya_Fruit_Fly.pdf
http://www.acbee.anu.edu.au/pdf/publications/Papaya_Fruit_Fly.pdf


Kompas, T., H. T. M. Nguyen, and P. V. Ha (2015). Food and biosecurity: livestock
production and towards a world free of foot-and-mouth disease. Food Security 7, 291–302.

Leforban, Y. (1999). Prevention measures against foot-and-mouth disease in europe in recent
years. Vaccine 17 (13), 1755–1759.

Levins, R. (2007). Paper 10. some demographic and genetic consequences of environmental
heterogeneity for biological control. In J. A. Wiens, M. R. Moss, M. G. Turner, and
D. J. Mladenoff (Eds.), Foundation Papers in Landscape Ecology, pp. 162–5. Columbia
University Press.

Marino, S., I. B. Hogue, C. J. Ray, and D. E. Kirschner (2008, September). A methodology
for performing global uncertainty and sensitivity analysis in systems biology. Journal of
Theoretical Biology 254 (1), 178–196.

Matthews, K. (2011). A review of Australia’s preparedness for the threat of foot-and-mouth
disease. Australian Government Department of Agriculture, Fisheries and Forestry.

McKay, M. D., R. J. Beckman, and W. J. Conover (1979). A comparison of three methods
for selecting values of input variables in the analysis of output from a computer code.
Technometrics 21 (2), pp. 239–245.

McLaws, M., C. Ribble, W. Martin, and J. Wilesmith (2009). Factors associated with
the early detection of foot-and-mouth disease during the 2001 epidemic in the United
Kingdom. The Canadian Veterinary Journal 50 (1), 53.

Mehta, S. V., R. G. Haight, F. R. Homans, S. Polasky, and R. C. Venette (2007). Op-
timal detection and control strategies for invasive species management. Ecological Eco-
nomics 61 (2), 237–245.

Morris, R. S., M. W. Stern, M. A. Stevenson, J. W. Wilesmith, and R. L. Sanson (2001).
Predictive spatial modelling of alternative control strategies for the foot-and-mouth disease
epidemic in Great Britain, 2001. Veterinary Record 149 (5), 137–144.

Muroga, N., Y. Hayama, T. Yamamoto, A. Kurogi, T. Tsuda, and T. Tsutsui (2012).
The 2010 foot-and-mouth disease epidemic in Japan. Journal of Veterinary Medical Sci-
ence 74 (4), 399–404.

National Farmers’ Federation (2012). Nff farm facts: 2012. Available at http://www.nff.

org.au/farm-facts.html [Accessed: 05 March 2015].

Neuwirth, E. (2014). RColorBrewer: ColorBrewer Palettes. R package version 1.1-2.

Nguyen, H. T. M., R. I. Hickson, T. Kompas, G. N. Mercer, and K. M. Lokuge (2015).
Strengthening tuberculosis control overseas: Who benefits? Value in Health 18, 180–188.

21

http://www.nff.org.au/farm-facts.html
http://www.nff.org.au/farm-facts.html


OIE and FAO (2012). The global foot and moth disease control strategy: strengthening
animal health systems through improved control of major diseases. Available at http:

//www.oie.int/doc/ged/D11886.PDF [Accessed 7 November 2014].

Orsel, K., A. Bouma, A. Dekker, J. Stegeman, and M. de Jong (2009). Foot and mouth
disease virus transmission during the incubation period of the disease in piglets, lambs,
calves, and dairy cows. Preventive Veterinary Medicine 88 (2), 158 – 163.

Palmer, S., F. Fozdar, and M. Sully (2009). The effect of trust on west australian farmers’
responses to infectious livestock diseases. Sociologia Ruralis 49 (4), 360–374.

Park, J.-H., K.-N. Lee, Y.-J. Ko, S.-M. Kim, H.-S. Lee, Y.-K. Shin, H.-J. Sohn, J.-Y. Park,
J.-Y. Yeh, Y.-H. Lee, et al. (2013). Control of foot-and-mouth disease during 2010–2011
epidemic, South Korea. Emerging infectious diseases 19 (4), 655.

Paskin, R. (1999). Manual on livestock disease surveillance and information systems. FAO:
Rome.

Pebesma, E. and R. Bivand (2005). Classes and methods for spatial data in R. R News 5 (2).

Productivity Commission (2002). Impact of a Foot and Mouth Disease Outbreak on
Australia. Research Report, AusInfo, Canberra. Available at http://www.pc.gov.au/

inquiries/completed/foot-and-mouth [Accessed: 10 April 2015].

Pujol, G., B. Iooss, A. J. with contributions from Paul Lemaitre, L. Gilquin, L. L. Gratiet,
T. Touati, B. Ramos, J. Fruth, and S. D. Veiga (2014). sensitivity: Sensitivity Analysis.
R package version 1.10.1.

R Core Team (2014). R: A Language and Environment for Statistical Computing. Vienna,
Austria: R Foundation for Statistical Computing.

Reid, S. M., S. Parida, D. P. King, G. H. Hutchings, A. E. Shaw, N. P. Ferris, Z. Zhang,
J. E. Hillertonb, and D. J. Patona (2006, January-February). Utility of automated real-
time RT-PCR for the detection of foot-and-mouth disease virus excreted in milk. Vet.
Res. 37 (1), 121–32.

Roger S. Bivand, Edzer Pebesma, V. G.-R. (2013). Applied spatial data analysis with R.
Baltimore: Springer.

Sharov, A. A. (2004). Bioeconomics of managing the spread of exotic pest species with
barrier zones. Risk Analysis 24 (4), 879–892.

Sharpsteen, C. and C. Bracken (2015). tikzDevice: R Graphics Output in LaTeX Format. R
package version 0.8.1.

Thomas, E., H. Barrington, K. Lokuge, and G. Mercer (2011). Modelling the spread of
tuberculosis, including drug resistance and HIV: a case study in Papua New Guinea’s
Western Province. ANZIAM Journal 52 (0), 26–45.

22

http://www.oie.int/doc/ged/D11886.PDF
http://www.oie.int/doc/ged/D11886.PDF
http://www.pc.gov.au/inquiries/completed/foot-and-mouth
http://www.pc.gov.au/inquiries/completed/foot-and-mouth


Tildesley, M. J., N. J. Savill, D. J. Shaw, R. Deardon, S. P. Brooks, M. E. J. Woolhouse,
B. T. Grenfell, and M. J. Keeling (2006, March). Optimal reactive vaccination strategies
for a foot-and-mouth outbreak in the UK. Nature 440 (7080), 83–86.

Tomassen, F., A. de Koeijer, M. Mourits, A. Dekker, A. Bouma, and R. Huirne (2002).
A decision-tree to optimise control measures during the early stage of a foot-and-mouth
disease epidemic. Preventive Veterinary Medicine 54 (4), 301 – 324.

USDA (2014). Livestock and poultry: World markets and trade. Issued in October 2014.
Available at http://www.fas.usda.gov/data [Accessed: 21 November 2014].

Verhulst, P.-F. (1838). Notice sur la loi que la population suit dans son accroissement.
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Appendix A: Discounting factor

The purpose of this appendix is to clarify whether a discount factor is needed in opti-
misation equations (7) and (11). Without the loss of generality, we simplify our problem
and notation. An FMD outbreak can happen at any given day with a probability of λ and
last for T days from the day of incursion until the day when an FMD-free state is declared.
Since BMT active surveillance can reduce outbreak duration, T is a function of k (i.e. T (k))
where k is the BMT testing interval.

A daily cost, C(a, k), incurs during T (k) and consists of eradication and management
expenses where a is the length of an outbreak. Please note that a is defined in a similar
fashion as the age of colonies φ, as before, but refers now to the length of the whole outbreak.
We need a to distinguish different outbreaks over time.

In the context of the BMT-prior scenario, we define the daily cost of BMT active surveil-
lance as S(k)prior which is a function of k. The daily expected total cost which includes
expenses on active surveillance, eradication and management is calculated as follows:

DC(k) = S(k)prior + λ

T (k)∑
a=1

C(a, k) (13)

On any given day, an FMD outbreak can occur. Our objective is to minimise the sum of
all daily expected total costs counting from day 1 to day ∞ as follows:

mink TC
prior = mink

∑∞
t=1

DC(k)
(1+ρ)t

where
1

1 + ρ
is a discount factor

= minkDC(k)× ρ−1 since t→∞ and DC(k) does not depend on t
(14)

Therefore,

mink TC
prior ⇔ mink

[
SC(k)prior + λ

∑T (k)
a=1 C(a, k)

]
(15)

where the term on the right hand side of equation (15) is a simplified version of equation
(7). To this end, optimising equation (15) is equivalent to optimising equation (7). This
approach has been used in a similar way by Epanchin-Niell et al. (2012).

In the context of the BMT-post scenario, active surveillance starts only when FMD is
detected. We define the daily cost of BMT active surveillance as S(k)post which incurs from
the day when BMT testing equipment is ready for testing. We define the cost of management
and eradication as C(a, k)post. Our objective is to minimise the total cost of an outbreak
once it occurs. The optimisation equation is as follows:

min
k
TCpost = min

k

Π(k)∑
d=D

S(k)post

(1 + ρ)d
+ λ

Π(k)∑
a=1

C(a, k)post

(1 + ρ)a

 (16)
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where D is the day when BMT testing equipment is ready for active surveillance; Π(k) is the
outbreak duration under BMT-post. The key difference between equation (16) and equation
(14) is that the time horizon of the former is the outbreak duration, not∞ as in equation (14)

for the case of the BMT-prior. Therefore, the series
∑Π(k)

d=D
1

(1+ρ)d
and

∑Π(k)
a=1

1
(1+ρ)a

of equation

(16) are finite, not converging to ρ−1 as in equation (14). To this end, the optimisation in
equation (14) needs to take into account the discount factor. However, we choose to drop
the discount factor for simplicity because: (a) the time horizon is likely to be relatively short
(i.e., in the order of 3 to 6 months, plus 3 months of quarantine); and (b) the prevailing
discount rate in Australia is low.
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Appendix B: Estimation results

Non-linear estimation is used in estimating transmission parameters. In particular, using
the simulation data with 663 observations and equation (2) gives the following estimate
of the long distance transmission rate (g) and the maximum carrying capacity of colonies
(qmax):

̂qt+1 − qt = 0.0709 × (19.01− qt)qt
19.01

(0.00431) (1.38)

Likewise, using the simulation data and equation (1) gives the following estimates of the
local transmission rates to farms of the same type (βii):

Estimation of local transmission rates to farms of the same type

Parameter
Dairy Non-dairy

Pig Others Pig Others

βii 0.109 0.0455 0.0852 0.0369

SE (0.00916) (0.00137) (0.00532) (0.00158)

Number of observations 118 2440 166 1466

Using the simulation data and equation (1) gives the following estimates of the local
transmission rates to farms of the different type (βij):

Estimation of local transmission rates to farms of different types

Parameter
Dairy Non-dairy

Pigs to others Others to pigs Pigs to others Others to pigs

βij 0.00 0.00129 0.00 0.000963

SE (0.000106) (0.000127)

Number of observations 2440 1466

The maximum carrying capacities of each farm type in each region is calculated by using
the number of farms of that type in that region divided by the estimated q̂max.
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Table 1: Table of Parameter Values and Descriptions

Para-
Description

Dairy Non-dairy
Unit

meter Pig Others Pig Others

βii FMD local transmission
rate to farms of the same
type(a)

0.109∗ 0.0455∗ 0.0852∗ 0.0369∗ per day

βij FMD local transmission
rate to farms of different
types(a)

0.00 0.00129∗ 0.00 0.000963∗ per day

N Farm carrying capacity(a) 6 859 11 1347 farm

ce Unit cost of eradication per
farm(b)

0.439 0.194 0.456 0.149 $ mil

πs Probability of being 0.607 0.393 0.607 0.393

a seed farm(a)

From dairy From non-dairy

→ dairy → non-dairy → dairy → non-dairy

κ Probability of the

location of a ‘child’ colony
generated by a ‘mother’
colony(a,e)

0.702 0.298 0.332 0.668

Dairy Non-dairy

η1l Probability of the location
of the 1st colony(a) 0.352 0.648

Φ
Detection time by passive

21 23 day
surveillance(a)

T
Detection time by active

16 21 day
surveillance(a)

For the whole outbreak

λ FMD arrival probability(c) ∼ 0.000055 per day

θ The culling ratio(a) 3.74

g Colony growth rate(a) 0.0709 per day

qmax Colony carry capacity(a) 19 colony

δ Unit cost per bulk milk
test(d)

36 $
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Description For the whole outbreak Unit

cm Daily operating cost of
an FMD disease control
centre(s)(b)

0.475 $ Mil

cr1 Daily revenue loss in the
first year(c)

14.8 $ Mil

cr2 Daily revenue loss in the 9
following year(c)

0.246 $ Mil

%ps Culling time for a colony
under passive surveillance

16 day

%bmt Culling time for a colony
under BMT-post and
BMT-prior

16 day

ςps Quarantine time under
passive surveillance

90 day

ςbmt Quarantine time under
BMT-post and BMT-prior

90 day

h Number of farms visited by
a milk tanker in one trip(d)

5 farm

ε Testing equipment set-up
time(d)

7 day

Mdf Number of dairy farms(a) 7,590 farm

Edaily Amortised cost of testing
equipment(d)

50,000/365 $

Eone-off One-off cost of testing
equipment(d)

500,000 $

Mfac Number of milk factories(d) 25 factory

Values are in Australian Dollar 2014; (*): statistically significant at 1% level; (a): Estimated from AUSSPREAD

simulations and explained in detail in Appendix B; (b): Calculated based on Abdalla et al. (2005) and Gar-

ner et al. (2012); (c): Approximately 2 outbreaks/100 years, based on Productivity Commission (2002) and

Buetre et al. (2013); (d): (Garner et al., 2015) and expert opinion; (e): ηql =
∑

m η1lκml when q > 1 and

where m, l ∈ L.
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Figure 1: Farm distribution in Victoria State

Farm distribution is based on AusSpread Model (Garner and Beckett, 2005)
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Figure 2: BMT-prior: expected total cost of an FMD outbreak versus BMT testing intervals
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Figure 3: BMT-prior: surveillance frontier
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Figure 4: BMT-post: total cost of an FMD outbreak versus BMT testing intervals

0 20 40 60 80 100

6
2
5
0

6
2
6
0

6
2
7
0

6
2
8
0

6
2
9
0

6
3
0
0

6
3
1
0

BMT testing intervals (day)

To
ta

l 
c
o
s
t 
o
f 
o
n
e
 o

u
tb

re
a
k
 (

M
ill

io
n
 $

A
U

D
)

�

�

Passive surveillance
BMT−post
Optimum

32



Figure 5: BMT-post: sensitivity analysis

Parameters are defined in Table 1. PRCC: Partial rank correlation coefficient; D: Dairy region; ND:
Non-dairy region; p: pig farms; o: other farms
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