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ABSTRACT

Scoring systems are commonly employed in risk analysis as a way of integrating information
about a range of variables (called risk attributes) into a single risk score suitable for decision
making. The construction of scoring systems is often criticised as being arbitrary as there is no
transparent basis for the selection of weightings and integration methods. This paper describes
an alternative approach which overcomes these difficulties. The method we detail is called Point
of Truth Calibration. It is based on expert judgements on constructed risk scenarios rather than
individual scores of risk attributes. We argue that it is an improved form of expert elicitation for
many complex risk assessment problems. The proposed method will ‘automatically’ calibrate
weightings (scores) of risk attributes from the overall risks given by experts using well devel-
oped statistical techniques. Several examples from biosecurity are presented to demonstrate the
approach.

Keywords: Scoring system, risk assessment, risk calibration, expert elicitation.
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1 Introduction
Decision making in biosecurity is a challenge and complex problems abound. In world trade
it is common for a country to need to decide whether the importation of goods or organisms
represents an acceptable risk. How do they determine the risk of a particular organism to an
ecosystem or continent? Governments may need to decide particular management actions. For
example, how do they determine the cost of eradicating a species that has invaded an ecosystem?

An additional challenge may be that directly relevant empirical data are not available. This is
often the case in biosecurity assessments as they often deal with rare events in unique situations.
For example, an application to import an organism into a country can be difficult to assess. As
the organism has not been imported previously, direct data on its likelihood of establishment is
not available. While data from analogous trade may be available, for example invasion success
internationally, its interpretation typically requires significant assumptions.

In these cases it is usual to rely on expert judgements to underpin the assessment. While this
can require considerable assumptions, it is often the case that a decision needs to be made, and
interests to be traded off. In this case the choice of doing nothing is not viable and the expert
represents the most trusted source of reliable information. There are of course a number of
significant issues in using experts such as the expert’s availability, overconfidence, and moti-
vational bias (see Burgman (2005), Meyer and Booker (1990), Klayman et al. (1999) and Vose
(2008)), which need to be considered carefully in all expert-based assessments.

1.1 Point scoring systems

While we may be satisfied that the use of expert opinions is appropriate in a particular case, the
question of how we engage the experts remains. There is significant literature on a variety of
issues in expert elicitation, for example, finding beliefs about particular parameters and related
population values; see O’Hagan et al. (2006), Low Choy et al. (2009) and Kuhnert et al. (2010).
We consider the complex task of constructing expert-based scoring systems to measure risk for
particular scenarios. By scenarios we mean particular cases for which a decision needs to be
made.

In an expert-based point scoring system, scores are normally allocated by experts for a num-
ber of risk attributes. A system of combining the scores is derived and applied to the indi-
vidual scores to produce the overall risk score. The Australian weed risk assessment system
(Pheloung et al., 1999), is a good example of a scoring system. It has been applied in Eu-
rope (Crosti et al. (2007)) and the U.S.A. ( Gordon et al. (2008b)), and elsewhere (Gordon et al.
(2008a)). Other examples of scoring systems used in biosecurity are Copp et al. (2005) and
Copp et al. (2009). These scoring systems were generated by experts but were then available
for use administratively by field staff.

Typically, the issue of weighting the individual scores to obtain an overall risk score is prob-
lematic. For example, a total score for the particular scenario could be obtained by summing
over all individual scores, which is a type of averaging. Alternatively, the experts could con-
struct a weighting system based on their expert knowledge. The difficulty with this approach
is that there is no objective guarantee that the mapping from the attributes of the case under
consideration to the final score is robust or defensible.

The advantage of point scoring systems is their use of explicit and consistent assessment of
variables, which means that the process can be applied in a consistent manner. It may provide
greater resolution in the ranking of risks than other methods such as rule sets or qualitative eval-
uations, thereby providing a means for allocating priorities that compete for scarce resources
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(Burgman et al., 1999).

The main drawback of point scoring systems is that they are sensitive to the variables chosen and
relative weighting of variables. As pointed out by Hubbard (2009), the scoring systems them-
selves add their own sources of error as a result of unintended consequences of their structure.
The point scores and risk ranks are directly related to weights given to variables. In addition,
the risk of a complex scenario may depend on a number of variables in quite complex ways.
The expert’s ability to decompose this complexity can be questioned.

1.2 Related approaches to using expert judgements

A concept called bootstrapping was first reported by Dawes (1971) and was extensively re-
viewed by Armstrong (2001). Because this name gained popularity in the statistics community
for a different concept, Armstrong (2001) has renamed it judgemental bootstrapping. Judge-
mental bootstrapping derives a mathematical model using regression of the judgements from
experts. The key idea is that a regression model, based on the attributes of a scenario and the
expert’s prediction for the outcome of a scenario, can perform better than the experts themselves
in predicting new cases. For example, Simester and Brodie (1993) developed a judgemental
bootstrapping model of criminal sentencing decisions from judges to predict sentence length
and the outcome of sentencing appeals in New Zealand. They modelled sentencing length for
sexual offences as a function of variables describing the character of the offender and the cir-
cumstances of the offence. The model outperformed both an equal weights approach and a
naive mean projection in predicting sentence lengths.

To analyse an expert’s prediction skills, Stewart (1990) combined a decomposition of the cor-
relation coefficient and expert’s bias originally developed by Murphy (1988) with the so called
lens model introduced by Brunswik (1955). The lens model is closely linked to the assumption
that the model between the forecast and the observed outcome is linear. The decomposition of
correlation coefficient requires knowledge of the model attributes used by the experts. The lens
model shows the relationships between the model attributes, the observed event and the expert’s
prediction.

Mazzuchi et al. (2008) reported the use of expert judgements in a risk assessment concerning
aircraft wiring. Pairwise scenarios of different aircraft wiring environments were presented to
a group of experts for their judgements on relative failure rates in the two environments. Sta-
tistical analyses of experts’ responses were required to remove both random and inconsistent
responses. Regression analysis was then applied to the failure pattern to relate it to environmen-
tal variables.

Research has been done to try to explore the best procedure for capturing the complexity of
experts’ rules, and to produce the most accurate predictions. Cook and Stewart (1975) com-
pared seven different methods to obtain weights for attributes to predict a student’s admis-
sion to graduate school. These included asking experts to divide 100 points among the at-
tributes, rate attributes on a 100-point scale, make comparisons between a pair of attributes,
etc. Cook and Stewart (1975) found that these methods produced similar results in terms of
matching the experts’ decisions. However, they all yielded more accurate predictions of actual
judgements than an arbitrary policy of equal weights on all attributes. This conclusion was also
confirmed by a partial replication study by Schmitt (1978).

There are other approaches which were based on so-called predictive elicitation; see Kadane et al.
(1980), Kadane et al. (1996), Kadane and Wolfson (1998). During a predictive elicitation, ques-
tions about the expert’s (probabilistic) view of the dependent variable were asked given various
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values of the predictor variables. The predictive elicitation approach addresses the construction
of priors for regression analysis. In this approach, experts will be asked to specify the range of
each of the covariates in the model, then to elicit four hyper-parameters of the prior distribution,
including the prior mean and the degrees-of-freedom, through a two-stage elicitation.

There have been recent developments in software for expert elicitation. For example, James et al.
(2010) presented an expert elicitation tool for determining priors for use in Bayesian regression
in ecology. It utilises an indirect elicitation approach to target expert knowledge and derives an
expert-defined prior model including its hyper-parameters. This expert-defined prior, together
with observed data, can then provide posterior estimates based on the Bayesian framework. This
expert elicitation tool has been applied in a case study predicting the distribution of a species of
Wallaby, a small marsupial, see Murray et al. (2009).

1.3 Our approach and the organisation of the paper

In this paper, we will describe a method called Point of Truth Calibration (PoTCal). It is based
on expert judgements on constructed risk scenarios rather than individual scores of risk at-
tributes. Our method will then empirically calibrate weightings (scores) of risk attributes from
the overall risks given by experts using regression techniques. This methodology forms a bridge
between best practice approaches to constructing scoring systems when objective data are avail-
able and the expert based approaches needed in the absence of data.

Our approach develops methodology in this area in several ways. First, it promotes the use of
general regression approaches to empirically estimate the relationship between predictions and
attributes. These can potentially remove biases. Second, it models variation in expert opinion
so that inference over the population of experts can be considered. Third, it considers a general
framework for these problems. Previous literature has either been one-off or examined simple
cases. Fourth, it describes these techniques to a wider audience.

The examples presented in the paper will demonstrate the method and provide an opportunity
for comparison to conventional expert-based scoring systems.

The paper is arranged as follows. In Section 2 we consider a motivating example. In Section 3
we define the PoTCal approach. In Section 4 we consider two examples from biosecurity and
in Section 5 we discuss the links of the proposed method to existing techniques and explore the
strengths and weaknesses of the approach.

2 Motivation
To motivate the problem consider a simple example. Assume decision makers are deciding
whether particular plant species should be imported to a country and they are concerned about
the possible environmental or economic impacts if these plants become weeds (see, for example,
Pheloung et al. (1999)). Scientific advisors may believe that the attributes of the plant species
such as its life history and growth rate are related to the probability that it becomes a weed.
Thus there may be input data for the ith plant species as Ai = [ai1, ai2, . . . , aik] where aij is the
jth attribute for the ith plant species and k represents the number of attributes.

Traditional approaches would consider using weights to determine a risk score. First, construct
a design vector Xi from the Ai. This is done using the standard methods in linear modelling,
converting categorical variables to the associated indicators. For example, if there were Ai =
[ai1, ai2] with a·1 having three levels and a·2 having 2 levels then it would have the design matrix
[I(a·1 = level 1), I(a·1 = level 2), I(a·1 = level 3), I(a·2 = level 1), I(a·2 = level 2)], where
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I() is the indicator function taking the value 1 when the condition in parentheses holds and zero
otherwise.

The risk score is calculated as
Si = XT

i β (2.1)

where β is a vector of parameters. The weights β are elicited from the experts. The experts
can then construct cutoffs for the Si to prompt particular management actions. For example, if
Si < K, where K is some constant, the risk may be considered acceptable. An issue with this
approach is that the cutoffs may be considered arbitrary and not empirically justified.

A possible development of this system is to attempt to calibrate this cutoff to achieve optimal
performance. Hughes and Madden (2003) considered this for a weed risk assessment system.
They calibrated it as follows. Consider having a sample of plant species with associated at-
tributes and using the scoring system to generate a set of risk scores. If we know whether each
plant species i is considered a significant weed or not, we have a binary outcome yi. Being
significant in this context could mean that its impacts were severe enough to cause government
action. Knowledge of yi may be empirical but more importantly it may be expert based. To
characterise the relationship between risk scores and the outcome yi we can use logistic regres-
sion. This would have the linear predictor

log(
pi

1− pi

) = α + Siβ
∗ = α + XT

i ββ∗ (2.2)

with pi being the probability that the ith plant species is a weed and β∗ is the slope of the logistic
regression line relating the scores to the response. An important insight is that this calibration
is a simple rescaling of the expert weights. The direction of the vector β does not change.

The approach advocated in this paper is as follows. We argue that it is better to calculate the
regression

log(
pi

1− pi

) = α + XT
i β′ (2.3)

based on the expert assessments yi rather than letting the experts estimate the point scores for
individual risk attributes. The important point to note is that we have used the experts to elicit
the compound scenario yi. This is compound in the sense that any number of the variables in
A have impact on yi. We then use regression to find the weights (i.e. scores) and explore the
nature of the relationship between the assessments expressed by the experts and the attributes.
We have made it into a calibration problem where the experts have provided the point of truth,
which is the component that we accept as reflecting the reality we wish to model.

3 Methods
We assume that we have “scenarios” with associated attributes X . The ith scenario has attribute
Xi. We wish to calculate a score Yi for each scenario. This score is typically for use in decision
making and could be binary, categorical, or continuous. We assume that there is a relationship
between Yi and Xi and we now consider the statistical characterisation of this relationship.

Assume that we have a large population of scenarios. In this case the conditional mean E[Y |X]
is well defined as well as the conditional variance V ar[Y |X]. Now we can write E[Y |X] =
f(X, α) where α is a set of parameters. The function f() is potentially extremely compli-
cated. It can have discontinuities, non linearities, complex interactions and other difficulties.
Figure 3.1 shows some possible forms for this function in the simple case that there is a single
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Figure 3.1: Examples of function f(): (a) linear; (b) non-linear; (c) discontinuous.

variable x. Its shape is a simple reflection of the complexities of the situation and cannot be
simplified by further analysis.

In simple cases we will have a sample of the [Yi, Xi] pairs and the problem is a standard regres-
sion problem and a range of techniques are available to explore this relationship and form good
predictors of Yi. The case of interest here is when Yi is not known. In this case the scoring ap-
proach considers a function g(Xi, ε) where g() and the parameters ε are defined by the experts.
For example g() can simply be the sum of the scores, and ε are the user defined weights.

Bias for scenario i in this measure is the discrepancy

Bi = f(Xi, α)− g(Xi, ε). (3.1)

We note that with the expert-based approach you cannot calculate V ar(Yi|Xi). This provides an
estimate of the variations in the scenario outcome given the attributes, and expresses uncertainty.

The alternative PoTCal approach is to get the experts to provide their views about the values Yi.
Denote these as Ŷi. We then use regression techniques to estimate the relationship f(X, α) by
regressing the Ŷi against the Xi. We can also estimate V ar[Yi|Xi] if a well defined technique is
used. In addition, by incorporating experts in the model as either fixed and/or random effects,
the effect of the experts’ can be estimated and incorporated into decision making. For example,
we can make inference over the population of experts if we believe we have a representative
sample of experts.

There are a number of issues that need to be considered in this approach. The first is what
happens if there are no experts to estimate Yi. If this is the case then the Yi is unknown, and it
is unlikely that a hypothesis could be formed about g(Xi, ε). Thus if experts cannot estimate Yi

then a scoring system is not possible. The second issue is that the experts will not be able to
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score Yi exactly, but can estimate it by Ŷ such that

Ŷi = Yi + φi (3.2)

In this case the φi is the judgement error. Consider the simple linear case

Yi = Xiβ + γi. (3.3)

In this case γi is the residual error, the component of Yi that cannot be predicted by Xi. If we
initially assume that the judgement error has mean 0 and variance σ2

φ and the residual error also
has mean 0 but variance σ2

γ , then we have

Ŷi = Xiβ + (γi + φi) (3.4)

where the combined error term (γi +φi) has mean 0 and variance (σ2
φ +σ2

γ) assuming these two
errors are independent.

Thus the modelled error term based on the expert’s input incorporates a component of uncer-
tainty relating to their ability to predict the scenario. The error variance will bound the actual
uncertainty, assuming unbiasedness. As the error becomes more complicated, different biases
will result, and the magnitude and pattern of them will also depend on the true model g(Xi, α)
and the regression technique used.

4 Examples
In the following section we consider two examples where the PoTCal approach has been ap-
plied to real world problems in biosecurity management. Each approach follows the general
principles given in Section 3. The technical development of the methodology was lead by the
first author of this report in both cases.

4.1 Weed eradication study

Weeds are one of the major natural resource management problems in Australia and are con-
sidered by farmers to be one of the highest priority land degradation issues. The cost of weeds
to Australian agriculture has been estimated at $3.3 billion per year (Jones et al., 2002; Groves,
2002) compared to the $2.4 billion estimated for salinity, sodicity and soil acidity combined
(CRCAWM, 2002). In Australia, 335 weeds are listed as noxious according to the National
Weeds Strategy (www.weeds.org.au/noxious.htm).

Weed eradication is one of the strategic approaches to weed management. Weed eradication can
be defined as ‘the complete and permanent removal of all wild populations from a defined area
by a time-limited campaign’; see Bomford and O’Brien (1995). Weed eradication involves a fi-
nite investment compared to the indefinite commitment of resources to an ongoing containment
strategy, or simply living with the costs of the weed.

Weed eradication may be both desirable and feasible on so called “sleeper weeds”. A sleeper
weed is a naturalised exotic plant species that is currently only present in a small area but
that has the potential to spread widely and have a major negative impact on agriculture; see
Cunningham et al. (2003). Groves et al. (2003) identified that 29 naturalised plant species have
thought to have been eradicated from Australia and there were 156 cases where eradication has
been unsuccessfully attempted at a State/Territory scale.
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Given this failure rate, identifying and prioritising sleeper weeds to be eradicated is a complex
but important task. Eradication should not be attempted if it is unlikely to succeed. Prioritisa-
tion involves weed short-listing, risk assessment, potential impact assessment and eradication
feasibility assessment. In this example we consider the weed eradication feasibility assessment.

While eradication may be desirable for many weeds, it is not always feasible. The aim of the
feasibility assessment is to assess the selected species for the feasibility of eradication (or the
cost-benefit analysis) based on factors such as their current area of infestation and the relative
merits of eradication and control. In this example, 17 species were selected for the eradication
feasibility assessment, see Table 4.1.

Table 4.1: List of 17 potential agricultural sleeper weeds [source: Cunningham et al. (2003)].

Species Common name State(s)
Aeschynomene paniculata pannicle jointvetch Queensland
Brillantaisia lamium Queensland
Froelichia floridana snakecotton Queensland
Gmelina elliptica badhara bush Queensland
Asystasia gangetica ssp. micrantha Chinese violet New South Wales
Eleocharis parodii New South Wales
Baccharis pingraea chilquilla Victoria
Hieracium aurantiacum orange hawkweed Victoria, Tasmania
Hypericum tetrapterum square-stalked St Johns wort Victoria, Tasmania
Nassella charruana Uruguay needle grass Victoria
Oenanthe pimpinelloides meadow parsley South Australia
Onopordum tauricum Taurian thistle Victoria
Piptochaetium montevidense Uruguayan ricegrass Victoria
Rorippa sylvestris yellow creeping cress Tasmania, South Australia
Centaurea eriophora mallee cockspur South Australia
Crupina vulgaris common crupina South Australia
Cuscuta suaveolens Chilean dodder South Australia

The weed profiles for each of these 17 species were made up of 13 attributes which describe
the current weed geographic distribution (four attributes), weed control effort, that is, access,
detection and tolerance (four attributes) and weed persistence, that is, ability to recover and
spread (five attributes). For example the weed geographic distribution are the categories “≤ 1
hectare”, “1-10 hectares”, “10-50 hectares”, “50-100 hectares” and “100-3000 hectares”.

Nine experts were asked to examine each of the 15 developed hypothetical weed profiles and
gave assessments of eradication feasibility. For each scenario the expert was asked to assess the
probability of success for each of a fixed set of expenditures ($25,000, $50,000, ...). This was
done as the experts were uncomfortable giving an exact cost for a particular level of eradication
probability.

The elicited probability of eradication data for each expert and scenario was analysed by fitting
a logistic curve to it by regressing it on the cost data. This allowed estimation of the cost for a
successful (95% probability) eradication for each scenario considered by the expert, providing
a standardisation of the responses. We analysed the data as follows.

We modelled the probability of eradication, p, using the following relationship

log(
p

1− p
) = α + Cβ (4.1)
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where C is the cost and α and β are parameters to be estimated. We modelled the variation in p
as

var(p) = p(1− p)D (4.2)

where a scale factor D was estimated to account for over-dispersion.

After the model parameters α and β had been estimated (denoted by α̂ and β̂), the eradication
cost for a given probability p can also be estimated using the following formula which was
derived by rearranging Equation (4.1):

Ĉ(p) =
log( p

1−p
)− α̂

β̂
(4.3)

By choosing a fixed p we standardised the results across the scenarios. In this example, p = 0.95
was chosen, which represents a high likelihood that eradication would be successful.

The calibration model that was fitted is as follows

log(Ĉ(.95)ij) = α + XT
i β + bj + εij (4.4)

where C(.95)ij is the estimated eradication cost (in thousands of dollars) given by Equation (4.3)
for the ith weed scored by the jth respondent; Xi is the column vector of attributes for the ith
weed; β is the regression coefficients for the weed attributes; α is the intercept; bj is the effect
of the jth respondent which is assumed to be a random effect (i.e., drawn from the population
of potential respondents) with mean 0 and variance σ2; and finally εij is the error term assumed
independent Normal with mean 0 and variance σ2. The model allows for a systematic (across
scenarios) additive effect attributable to experts. The attributes where ordered categories each
on an approximate exponential scale so the logarithm of the costs were reasonably assumed to
be linearly related to category level (e.g. 1,2,3 for a three level category). The alternative ap-
proach of fitting unordered categories could not be attempted due to the available sample size.
Standard regression diagnostics were used to ensure reasonable fit.

Maximum likelihood was used to fit Equation (4.4) and the effect of design variables was cal-
culated using likelihood ratio statistics. Significant design variables were selected for the final
model with the assistance of their p-values from t tests for the regression coefficients. The fi-
nal model below gives the eradication cost with respect to the risk attributes and the estimated
weights:

Ĉ = exp[9.43 + (−0.5X1) + (−0.63X2) + (−0.36X3) + (−0.42X4)]× AUD$1000 (4.5)

where Ĉ is the modelled eradication cost; X1 is the area of the infestation; X2 is the number of
infestations; X3 is the ease of access; and X4 is the seedbank longevity.

Both X1 and X2 are from the original four attributes defining the weed geographic distribution.
X3 is one of the four attributes relating to the weed control effort. X4 is one of the original five
attributes describing the the weed persistence.

The PoTCal method took into account the variability between experts and estimated the indi-
vidual expert effects, that is, the mean difference between the nine experts averaged over all
15 weeds are shown in Figure 4.1. The details of this study can be found in Cunningham et al.
(2003).

If a traditional point scoring method was used for this example, instead of the proposed PoTCal
method, then the experts would have to provide point scores for each of the 13 risk attributes.
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Figure 4.1: Plot of estimated person effects, i.e., mean difference between the nine experts
averaged over all weeds, [source: Cunningham et al. (2003)].
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After that, a method to combine these 13 scores including the relative weighting of each attribute
would have to be determined. Finally, the score would have to be calibrated to the decision
process.

4.2 Designated ballast water exchange areas

Invasive marine pests pose a threat to Australian marine environments and to industries depen-
dent on these environments; see Bax et al. (2003). Exchanging ballast water is one mechanism
for the introduction and translocation of marine pests. The Australian government has signed
and ratified the International Convention for the Control and Management of Ships Ballast
Water and Sediments (the Convention), and is working with its States and Northern Territory
towards a single consistent national ballast water management system; see Knight et al. (2007).

The Convention provides for the management of ballast water through two main mechanisms
- exchange and treatment. The designation of ballast water exchange areas is an interim solu-
tion for approximately 10 years. This required investigation of the possible locations for ballast
water exchange areas to reduce the risk of translocating harmful aquatic organisms around Aus-
tralia’s marine environment until onboard treatments become available.

In this example, we estimate the biological risks posed by exchange of ballast water around
the Australian coast. The Australian coastline and territorial waters are vast (over eight million
square kilometres) and it is not feasible to carry out individual assessments at all locations.
Instead, Knight et al. (2007) applied the PoTCal approach to assess the biological risks at 12
chosen locations around the Australian coast (see Figure 4.2). We note that at each location
there are four scenarios (i.e., discharging points) so that there are four elicitation observations
per location for each expert.

Figure 4.2: 12 locations and domestic shipping activities in 2005, [source: Knight et al. (2007)].
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Associated with the scenarios per location was a range of data thought to be related to the risk of
discharge of ballast water to the environment. These variables included the assumed exchange
sites (i.e., discharging points; see for example Figure 4.3) with their coordinates, water depth,
distance offshore and a range of contours describing the time it took discharged particles to
reach shallow water.

Figure 4.3: Location 7 - Brisbane coast where stars represent discharging points (i.e., scenarios)
[source: Knight et al. (2007)].

For every scenario at each location, the experts were asked to consider the relative risk between
the discharge at that point and discharge in a nearby port environment. They were asked to
estimate the percentage of species that would establish if the ballast water was discharged at
each site. For example, if the expert thought 10 species could establish in the port, while only
five would establish based on discharge at the scenario point due to the different environmental
conditions, they would rate it 0.5.

There were five risk attributes potentially related to the biological risk at each scenario. They are
latitude, longitude, distance from coast, water depth and larval survivability. A logistic model
was set up in the form of

log(
p

1− p
) = α + b + f1(depth) + f2(distance) + f3(larval.baseline)

+f4(latitude) + f5(longitude) (4.6)

where p is the risk estimated by the experts, b is a random effect associated with each expert and
fi represents a smooth function such as a spline. This was fitted to the elicited data therefore
calibrating the risk attributes with respect to the relative risks estimated by the experts at each
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discharging point in each location. The conditional variation in p was modelled with a scale
factor to accommodate estimating dispersion as in the weed example.

The derived biological risk model was then extrapolated from those 12 locations to all Aus-
tralian coastal waters. The final product of this study was an estimated spatial risk map of
ballast water exchange around the Australian coastline, shown in Figure 4.4. The risk here was
defined as the relative risk of discharging ballast water at the location compared with the nearest
port. For more details of this study; see Knight et al. (2007).

Figure 4.4: Map of the estimated risk from ballast water exchange, [source: Knight et al.
(2007)].

5 Discussions and Conclusions
There are strong linkages between the PoTCal approach and a number of other techniques al-
ready in the literature. Judgemental bootstrapping was originally proposed by Dawes (1971) and
was recently reviewed by Armstrong (2001). Similarly to PoTCal, judgemental bootstrapping
involves experts rating scenarios and typically using multiple linear regression to define scoring
rules. The key claim of practitioners of judgemental bootstrapping is that the regression mod-
els produced outperform the experts in many cases, being able to smooth out idiosyncrasies in
the experts performance. There is a significant literature that demonstrates this (see Armstrong
(2001)). Judgement bootstrapping also recommends fitting separate models to different indi-
viduals or groups (Armstrong, 2001). The PoTCal approach explicitly considers how to model
variation in opinion over scenario attributes. It explicitly considers how to incorporate, estimate
and report variation between experts without expending large numbers of degrees of freedom on
individual models. It also explicitly considers modelling the non-linearities in the relationship
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between scenario outcomes and attributes.

A number of studies have considered the relative accuracy of expert defined weighting schemes
and models derived by regression techniques (Hamm, 1991; Cook and Stewart, 1975). Hamm
(1991) studied traffic engineers’ ability to predict the aesthetics, capacity and safety of roads.
He found that models fitted to the engineer’s judgements performed better when the vari-
ables available for modelling were fixed by the researchers before the start of the analysis.
When the variables were defined by the experts as part of the analysis, the results were mixed.
Cook and Stewart (1975) compared seven methods for obtaining expert judgements concerning
graduate student admission to the University of Colorado. While not statistically significant in
all cases, the use of optimal linear weights outperformed the subjective approach in the sample
in both cases considered. We note that in these studies simple linear models were used with
different models fitted to each expert, different to the approach in this paper.

In the meteorological literature, Stewart (1990) has considered the application of the lens model
in forecasting. The lens model considers decomposing forecast skill into components relating
to the forecast and the actual outcome. As described by Stewart (1990), the lens model of
Brunswik describes the relationship between cues, forecast and observation. This is considering
similar issues to PoTCal but it is not developed as a predictive analysis but rather as a technique
to decompose correlations related to forecasting skill.

A slightly different approach is probabilistic inversion (Du et al., 2006). Probabilistic inversion
is used to parameterise stochastic models of processes. There are often occasions when the
parameters of a model may not be available because the process might be new or there is no
opportunity to perform measurements (Cooke et al., 2006). In these situations it might still be
possible to obtain information about other variables predicted by the model. Probabilistic inver-
sion considers how to infer the stochastic nature of the unknown variables from the structure of
the model and the observed information. This approach requires strong assumptions about the
model formulation to perform its inference. PoTCal is targeted at less structured problems. It
relies only on defining the empirical relationship between the cues and the expert’s opinions.

James et al. (2010) have developed techniques for eliciting priors for Bayesian regression mod-
els. There is related work discussed in Kadane and Wolfson (1998). While these techniques
elicit compound judgements of scenarios from experts, their focus on the derivation of priors
and the use of Bayesian techniques is different from PoTCal.

The last example to consider is the use of pairwise comparisons. Cooke (1991) reviewed a
number of these approaches. Pairwise comparisons do not in themselves address the calibration
problem but they can be effective techniques for elicitation. A relevant example of its appli-
cation is in Mazzuchi et al. (2008) who considered estimating the safety of electrical wiring.
They used a Bradley-Terry model to estimate relative failure rates and applied a multiple linear
regression based approach to generalise this over environmental variables. They then used em-
pirical data on a subset of cases to convert the relative failure rates to absolute failure rates. The
PoTCal approach solves the empirical calibration problem. If there is additional empirical data
available, a number of analyses could also be considered.

In summary, the proposed PoTCal method has a number of potential advantages over the con-
ventional expert-based scoring systems, particularly:

1. In some cases it is more straightforward for the experts to consider scenarios rather than
risk components which are dependent on implicit modelling. It only needs a single elici-
tation of the risk of the scenarios under assessment. Therefore, the elicitation is direct and
transparent, while the conventional point scoring methods performed on the attributes of
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risk are indirect and less transparent.

2. Assessment of scenarios allows the expert to apply all of their knowledge about the sce-
nario, and uncertainties in the ability to assess risk which can be quantified in the analysis.

3. Variations between experts can be quantified and incorporated into decision making.

4. It avoids experts having to consider formulation of complex interactions between individ-
ual risk components and/or attributes.

5. Using modern statistical or machine learning methods, such as regression or classification
trees, means that the weights are automatically calibrated to real world scenarios.

6. It forms a logical bridge to traditional regression based approaches to scoring when data
is available.

7. The method provides consistent results derived from expert judgements, in the sense that
they can be reproduced administratively .

Advantage 1 is key. Instead of a circular process of iterating through variables, weighting and
functional form, the PoTCal approach only requires a single elicitation about a number of real
world scenarios. This frees the expert from being a subject matter specialist, statistician and
decision theorist at the same time. This ensures that the expert is used for their expertise, that
is, knowledge of the system of interest. When seen as a regression problem, the design of
scoring systems requires understanding of conditional and marginal relationships in high di-
mensional space. It is a technical area even for appropriately trained specialists. The subject
matter expertise is still invaluable in selecting the scenarios and analysing the results, for exam-
ple, considering the plausible relationships.

Previous experiments that have only compared linear models with expert derived models (e.g.
Cook and Stewart (1975)) have not fully explored this issue. The simple linear model will typi-
cally be biased because of non-linearities. Therefore demonstrating that an expert defined scor-
ing system outperforms a linear model has not necessarily demonstrated that it will outperform
all models.

We do not currently possess the empirical data to demonstrate when one approach is better
than the other. The application of either technique to credible examples will require significant
resources. At this stage we are comfortable that logically the approach is an improvement in
many cases. This is consistent with the findings of Hamm (1991) and Cook and Stewart (1975).
We do not argue that it will be better in all cases but are confident that it will improve per-
formance in many situations. For example, Cook and Stewart (1975) found that the regression
based estimate was a greater improvement as the number of variables increased.

Advantage 2 is slightly subtle but an important consideration. When an expert is considering
a scenario, they can factor in whatever knowledge they may possess. This promotes realism in
the analysis, and the additional variation from the experts can be factored into the uncertainty
about our ability to replicate the expert’s views from the scenario attributes. This is also a sig-
nificant difficulty. If the scenario does not contain variables the expert considers are significant,
then guidance needs to be given about how to accommodate this. In our work we have asked
the experts to mentally average over these variables (thus forming an expectation) but it is a
significant complication. We note that the usual expert-based scoring systems are also impacted
by these issues. We acknowledge that the examples presented here have not explored the issue
of uncertainty. In the applications considered, the decision makers were satisfied in using the
expected risk in decision making. In other analyses more detailed assessment may be warranted.

Advantage 3 is a significant improvement. The existence of variation between experts is well
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recognised. While this causes difficulties for decision makers it is more transparent to quantify
it and find a principled way of incorporating it into decision making. For example the decision
maker could use the average response or the worst case or the best case as defined by the
experts. Examples of modelling this variation is demonstrated in the two examples presented in
this paper. The use of statistical models provides a rigorous framework for incorporating these
variations. It allows inference about the population of experts. Note that this is different from
the approach used in judgemental bootstrapping (Armstrong, 2001) were different models are
fitted to different experts.

Advantage 4 is clear. When posed as a regression problem the data can be used to explore the
nature of relationships between the scenario attributes and the expert’s views. Nonlinearities,
interactions and non significant variables can be identified and quantified. Trying to do this in
an ad hoc way is difficult and it is hard to see how it could be done effectively otherwise. The
expert views are still vital in considering the possible forms of the relationship, and the analysis
still relies on the empirical relationships rather than any unverifiable assumptions. We note that,
in practice, with limited experts and scenarios, the data may be too sparse to fully explore this
issue. We also note that in almost all cases we have seen in the literature such as (Armstrong,
2001), Hamm (1991) and Cook and Stewart (1975) simple multiple linear regression was the
approach used. If this model cannot fit the underlying data significant biases could result.

Advantage 5 arises because of the empirical nature of the weightings. Provided a set of scenar-
ios is generated which spans the attributes of scenarios for which the model will be used, the
model fitting will typically ensure that predictions are sensible. Thus there is less possibility of
unrealistic scores. Note that it is important not to oversell this. Either approach will be suscepti-
ble to error if extrapolation occurs outside the domain considered by the experts. Extrapolation
for regression models can lead to poor predictions so care needs to be taken.

Advantage 6, though theoretical, is still an important contribution to the development of these
methods. Regression based approaches to developing scoring systems are well known in medicine.
In these cases they typically have large data bases of cases (scenarios) with records of disease
or condition development. They can then use regression methods based on the related attributes
to construct scores. The PoTCal approach is identical, except we use the experts to assess the
scenarios. This logical linkage to the empirical approach is reassuring.

The final advantage 7 is important because experts are inconsistent in making their judgements,
which has been pointed out by many researchers, see e.g., Dawes (1971), Armstrong (2001) and
(Hubbard, 2009, pg. 111). These researchers have proved, through their individual studies, that
the mathematical models derived from expert judgements will often work better than experts
themselves in terms of consistency, unbiasedness, reliability and repeatability. Obviously if
there are large variations in experts’ views, caution should used in using an averaged response.

We have applied the technique in several potentially contentious areas. We have been encour-
aged by its ease of implementation. While there is still significant work to be performed to
ensure the experts are well directed and that the results are appropriate for decision making, we
have found that the approach can be implemented to produce credible results. As previously
mentioned, experts will often want information about complex scenarios that is not contained
in the available attributes. In these cases a strategy, such as asking them to average over missing
variables, is needed.

We have also been surprised about the acceptance of the results of a PoTCal analysis in con-
tentious issues. Choosing contingency deballasting zones in Australia had the potential to im-
pact a number of jurisdictions and industries. The acceptance of results occurs because of the
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transparency of the approach and the limitation of subjective assessment to those components
where there was no other way to approach the problem. By choosing the weightings objectively,
an area of significant contention is removed. Provided the decision makers have confidence in
the experts used, the extension to confidence in the results is not too difficult.

The approach is not a replacement for sound analysis. If the experts are misguided or wrong,
then the PoTCal approach cannot redeem this. We note that expert-based scoring systems will
suffer from the same shortcomings. PoTCal should not be oversold to imply it can correct these
effects. It also relies on having enough data points to estimate parameters adequately.

The PoTCal approach can be applied to a wide number of areas beyond the biosecurity exam-
ples here. For example, in environmental monitoring the concept of ecosystem health is often
of interest and ways of measuring this compound phenomenon with simple environmental mea-
surement are required. The PoTCal approach would use experts to assess a sample of locations
for ecosystem health and then apply regression to derive appropriate weightings to map the sim-
ple indicators to the complex phenomena. Any situation where experts are used in developing
scoring systems is a candidate for the PoTCal approach.

19



References
Armstrong, J. S. (2001). Principles of forecasting: a handbook for researchers and practi-

tioners, chapter Judgemental bootstrapping: inferring experts rules for forecasting, pages
171–192. Kluwer Academic Publishers, Boston.

Bax, N., Williamson, A., Aguero, M., Gonzalez, E., and Geeves, W. (2003). Marine invative
alien species: a threat to globe biodiversity. Marine Policy, 27:313–323.

Bomford, M. and O’Brien, P. (1995). Eradication or control for vertebrate pests? Wildlife
Society Bulletin, 23:249–255.

Brunswik, E. (1955). Representative design and probabilistic theory in a functional psychology.
Psychological Review, 62:193–217.

Burgman, M. A. (2005). Risks and decisions for conservation and environmental management.
Cambridge University Press.

Burgman, M. A., Keith, D. A., and Walshe, T. V. (1999). Uncertainty in comparative risk
analysis for threatened Australian plant species. Risk Analysis, 19:585–598.

Cook, R. L. and Stewart, T. R. (1975). A comparison of seven methods for obtaining subjec-
tive descriptions of judgmental policy. Organizational Behavior and Human Performance,
13:31–45.

Cooke, R. M. (1991). Experts in uncertainty: opinion and subjective probability in science.
New York, NY: Oxford University Press.

Cooke, R. M., Nauta, M., Havelaar, A. H., and van der Fels, I. (2006). Probabilistic inversion for
chicken processing lines. Reliability Engineering and System Safety, 91(10-11):1364–1372.

Copp, G. H., Garthwaite, R., and Gozlan, R. E. (2005). Risk identification and assessment of
non-native freshwater fishes: Concepts and perspectives on protocols for the UK. Technical
Report no. 129, Cefas Lowestoft, UK.

Copp, G. H., Vilizzi, L., Mumford, J., Fenwick, G. V., Godard, M. J., and Gozlan, R. E. (2009).
Calibration of FISK, an invasiveness screening tool for nonnative freshwater fishes. Risk
Analysis, 29(3):457–467.

CRCAWM (2002). Cooperate Research Centre for Australian Weed Management: Annual
Report 2001-2002. CRC for Australian Weed Management (CRCAWM), South Australia.

Crosti, R., Cascone, C., and Testa, W. (2007). Towards a weed risk assessment for the italian
peninsula: preliminary validation of a scheme for the central mediterranean region in italy.
In Rokich, D., Wardell-Johnson, G., Yates, C., Stevens, J., Dixon, K., McLellan, R., and
Moss, G., editors, Proceedings of the International Mediterranean Ecosystems (MEDECOS
XI) Conference Perth, Western Australia, September 2-5, pages 53–54.

Cunningham, D. C., Woldendorp, G., Burgess, M. B., and Barry, S. C. (2003). Proioritising
sleeper weeds for eradication: Selection of species based on potential impacts on agriculture
and feasibility of eradication. Australian Bureau of Rural Sciences, Canberra.

Dawes, R. M. (1971). A case study of graduate admission: Application of 3 principles of human
decision making. American Psychologist, 26:180–188.

Du, C., Kurowicka, D., and Cooke, R. (2006). Techniques for generic probabilistic inversion.
Computational Statistics & Data Analysis, 50:1164–1187.

20



Gordon, D. R., Onderdonk, D. A., Fox, A. M., , and Stocker, R. K. (2008a). Consistent accuracy
of the Australian weed risk assessment system across varied geographies. Diversity and
Distributions, 14:234242.

Gordon, D. R., Onderdonk, D. A., Fox, A. M., Stocker, R. K., and Gantz, C. (2008b). Predicting
invasive plants in Florida using the Australian Weed Risk Assessment. Invasive Plant Science
and Management, 1:178–195.

Groves, R. H. (2002). Biological Invasions: Economic and Environmental Costs of Alien Plant,
Animal, and Microbe Species, chapter The impacts of alien plants in Australia. CRC Press,
New York.

Groves, R. H., Hosking, J. R., Batianoff, G. N., Cooke, D. A., Cowie, I. D., Johnson, R. W.,
Keighery, G. J., Lepschi, B. J., Mitchell, A. A., Moerkerk, M., Randall, R. P., Rozefelds,
A. C., Walsh, N. G., and Waterhouse, B. M. (2003). Weed categories for natural and agricul-
tural ecosystem management. Australian Bureau of Rural Sciences, Canberra.

Hamm, R. M. (1991). Accuracy of alternative methods for describing experts’ knowledge of
multiple influence domains. Bulletin of the Psychonomic Society, 29(6):553–556.

Hubbard, D. W. (2009). The Failure of Risk Management: Why it’s broken and how to fix it.
John Wiley, New Jersey.

Hughes, G. and Madden, L. V. (2003). Evaluating predictive models with application in regu-
latory policy for invasive weeds. Agricultural Systems, 76(2):755–774.

James, A., Low Choy, S., and Mengersen, K. (2010). Elicitator: An expert elicitation tool for
regression in ecology. Environmental Modelling & Software, 25(1):129–145.

Jones, R. N., Hennessy, K. J., Kenny, G. J., Suppiah, R., Walsh, K. J. E., Wet, N. D., and Whet-
ton, P. H. (2002). Scenarios and projected ranges of change for mean climate and climate
variability for the South Pacific. Asia Pacific Journal on Environment and Development, 9(1
& 2):1–42.

Kadane, J. B., Chan, N. H., and Wolfson, L. J. (1996). Priors for unit root models. Journal of
Econometrics, 75:99–111.

Kadane, J. B., Dickey, J. M., Winkler, R. L., Smith, W. S., and Peters, S. C. (1980). Inter-
active elicitation of opinion for a Normal linear model. Journal of the American Statistical
Association, 75(372):845–854.

Kadane, J. B. and Wolfson, L. J. (1998). Experiences in elicitation. The Statistician, 47(3):3–19.

Klayman, J., Soll, J. B., Gonzalez-Vallejo, C., and Barlas, S. (1999). Overconfidence: It de-
pends on how, what, and whom you ask. Organizational Behavior and Human Decision
Processes, 79(3):216–247.

Knight, E., Barry, S., Summerson, R., Cameron, S., and Darbyshire, R. (2007). Designated
Exchange Areas Project - Providing informed decisions on the discharge of Ballast Water in
Australia (Phase 2). Australian Bureau of Rural Sciences.

Kuhnert, P. M., Martin, T. G., and Griffiths, S. P. (2010). A guide to eliciting and using expert
knowledge in Bayesian ecological models. Ecology Letters, In Press.

Low Choy, S., O’Leary, R., and Mengersen, K. (2009). Elicitation by design in ecology: using
expert opinion to inform priors for Bayesian statistical models. Ecology, 90(1):265–277.

21



Mazzuchi, T. A., Linzey, W. G., and Bruning, A. (2008). A paired comparison experiment for
gathering expert judgment for an aircraft wiring risk assessment. Reliability Engineering and
System Safety, 93:722–731.

Meyer, M. A. and Booker, J. M. (1990). Eliciting and analyzing expert judgement: A practical
guide. Washington, DC: U.S. Nuclear Regulatory Commission.

Murphy, A. H. (1988). Skill scores based on the mean square error and their relationships to
the correlation coefficient. Monthly Weather Review, 116:2417–2424.

Murray, J. V., Goldizen, A. W., OLeary, R. A., McAlpine, C. A., Possingham, H. P., and Low
Choy, S. (2009). How useful is expert opinion for predicting the distribution of a species
within and beyond the region of expertise? a case study using brush-tailed rock-wallabies
petrogale penicillata. Journal of Applied Ecology, 46:842–851.

O’Hagan, A., Buck, C., Daneshkhah, A., Eiser, J., Garthwaite, P., Jenkinson, D., Oakley, J., and
Rakow, T. (2006). Uncertain Judgements: Eliciting Expert’s Probabilities. Wiley, UK.

Pheloung, P. C., Williams, P. A., and Halloy, S. R. (1999). A weed risk assessment model for use
as a biosecurity tool evaluating plant introductions. Journal of Environmental Managament,
57:239–251.

Schmitt, N. (1978). Comparison of subjective and objective weighting strategies in changing
task situations. Organizational Behavior and Human Performance, 21(2):171–188.

Simester, D. I. and Brodie, R. J. (1993). Forecasting criminal sentencing decisions. Interna-
tional Journal of Forecasting, 9(1):49–60.

Stewart, T. R. (1990). A decomposition of the correlation coefficient and its use in analyzing
forecasting skill. Weather and Forecasting, 5:661–666.

Vose, D. (2008). Risk analysis: a quantitative guide. John Wiley & Sons, 3rd edition.

6 Acknowledgements
This report is the product of the Australian Centre of Excellence for Risk Analysis (ACERA). In
preparing this report, the Authors acknowledge the financial and other support provided by the
Department Of Agriculture, Fisheries and Forestry(DAFF) and the University of Melbourne.

This report has been improved by discussions with Keith Hayes, Greg Hood and Mark Burgman
and the comments on an earlier draft from Mark Burgman and Mick McCarthy. Any remaining
errors are our own.

22






