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1. Executive Summary  

Invasive species include plants, animals and micro-organisms not native to an area. Invasive 

species can cause significant damage to natural environments, agricultural systems, human 

populations and the economy as a whole. The main constraint to eliminating invaders is 

generally finding them rather than killing them. Once an invasion is found it can usually be 

successfully treated and destroyed.  

Biological invasions are complex dynamic systems with many sources of uncertainty and may 

exhibit strong geographical variation. Fortunately, the essential features of biological 

invasions can be distilled down to parameters that describe rates of spread and growth, habitat 

suitability, vulnerability to control techniques, and severity of damages caused. Similarly, the 

essential features of control programs can be distilled down to parameters that describe the 

types and amounts of resources available, the effectiveness and costs of surveillance and 

control options, and the constraints imposed by legislative and environmental restrictions. 

This opens the door for developing models as management tools. Modelling the spread of 

invaders to assist in mitigating the ecological and commercial impacts of biological invasions 

allows us to identify economically-efficient strategies for slowing or reversing the spread of 

invaders. 

The methodology used in this project is based on a spatially-explicit bioeconomic model that 

integrates search theory, population dynamics and economic principles. Search theory is a 

technique developed for search and rescue and military operations, and which has been 

recently applied to the control of biological invasions. The technique offers simple and 

convenient descriptions of detectability of a target and probability of detection as affected by 

search effort. We also account for the influence of habitat suitability on the progress of an 

invasion. 

We address questions such as minimising the cost of eradication, minimising time to 

eradication or maximising the probability of eradication with a given budget. We develop 

simple decision tools to evaluate the minimum amount of funds that should be spent on 

information campaigns to enhance passive surveillance. We derive trade-off curves (efficient 

frontiers) to identify sets of search and control strategies that are efficient in terms of costs 

and probability of eradication. Our efficient frontier provides a useful policy tool that can be 

derived for any given surveillance strategy and for any given planning horizon, thereby 

enabling agencies to undertake sophisticated policy analyses with simple decision tools 

derived from complex, realistic models. 

We develop an optimisation tool to find efficient search strategies in terms of three decisions: 

search effort allocated per site, buffer surveillance radius and number of repeat visits. Results 

provide useful insights into the design of efficient invasive-species control programs and 

suggest areas for further research and possible application of our tools to actual invasions. 

Our results emphasise that both active and passive surveillance have an important role to play 

in invasive-species control, and that the probability of eradication is enhanced by combining 

both surveillance methods. Among other outputs, this project delivers formal tools, based on 

biology and economics, to leverage and justify requests for funds to control biological 

invasions.  
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2. Introduction  

Invasive species are recognised as an important threat to global biodiversity (Vitousek et al., 

1996) and are responsible for large economic losses (Liebhold et al., 1995; Liebman et al., 

2001). Biological invasions are complex dynamic systems with many sources of uncertainty 

and generally exhibit strong geographical variation. Modelling the spread of invaders to assist 

in mitigating the ecological and commercial impacts of biological invasions allows us to 

identify strategies that are likely to be most effective in slowing or reversing the spread of 

invaders. In most non-agricultural situations, the main constraint to eliminating invaders is not 

killing them but finding them. Once an invasion is found it can usually be successfully treated 

and destroyed. 

The probability of finding an organism through active search by a pest-control agency in a 

target area is affected by the detectability of the organism and the amount of search effort 

applied per unit area. With a limited budget, search effort can be allocated for broad coverage, 

with only a small amount of effort per site but covering a large area. Alternatively more 

search effort can be applied per site, resulting in less sites being able to be searched. The 

strategy selected is likely to affect the risk that the invasion will spread outside the 

containment area. There is a clear trade-off between intensity of search and the extent of area 

searched. Understanding this trade-off can lead to improved chances of controlling or 

eradicating invasions. Similar questions were studied by Hauser and McCarthy (2008, 2009), 

who developed a model to allocate effort in space to minimise expected management costs. 

Their model takes account of environmental benefits and the ease of detection of the invader. 

The study reported here complements their work.  

As an option to avoid spending large amounts of money searching for invaded sites over a 

large area, pest management agencies use „passive surveillance‟; reports from members of the 

public of encounters with pests, to assist in surveillance and control. The Ministry of 

Agriculture and Forestry Biosecurity New Zealand (MAFBNZ) describes passive surveillance 

as „[s]urveillance that relies on members of the public, industry groups, plant or animal health 

professionals and/or laboratories reporting suspected cases of plant or animal disease or the 

presence of a pest at their discretion.‟ (MAFBNZ 2008, p. 29).  

Passive detections are often the method by which an invader is first recognised in a country or 

region. For example, the initial detection of the European wasp (Vespula germanica) in 

Western Australia occurred following a private submission of a wasp for identification (Davis 

and Wilson, 1991). This initial report subsequently led to the discovery of five nests and the 

implementation of an eradication campaign. Another example is the initial discovery of the 

red imported fire ant (Solenopsis invicta) in Australia, following submission of two separate 

samples of the ant by members of the public. The initial reports led to the discovery of two 

epicentres of infestation and the establishment of the Red Imported Fire Ant (RIFA) 

Eradication Program (Jennings, 2004). The recent passive detection of Khapra beetle in Perth 

and mango leaf gall midge on Horn Island in Queensland are two more examples of the 

important role the community can play in the early detection of invasive species (Beale et al. 

2008). 

Passive surveillance during eradication programs has proven to be very important: records 

from the campaign to eradicate the European wasp from Western Australia show that the 

public are responsible for finding 90% of the infestations in new areas (Davis and Wilson, 

1991); reports of fire ants by the public have resulted in detections of half the outlying 

populations of the ant (Jennings, 2004); and the Four Tropical Weeds Eradication Program 

(4TWP) in Queensland obtained information for more than a quarter of the locations of weeds 

in the program due to detection by members of the public (Brooks and Galway, 2008).  
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Given the difficulty and expense of finding organisms through active search, and the potential 

importance of passive detections, an understanding of both types of surveillance can help 

develop useful decision tools. Cacho et al. (2006, 2007) adapted search theory (a technique 

used in search and rescue and military operations) to the control of biological invasions. Their 

model assumed a homogeneous search area where population density could increase but did 

not consider spatial spread. In this report we extend their model by applying the search 

algorithm to multiple sites within a landscape and representing spread through space as well 

as time. We apply the model to a hypothetical invasion and determine the probability and the 

potential costs of eradication for various surveillance and control strategies. We develop 

simple decision tools to evaluate the minimum amount of funds that should be spent in 

information campaigns to enhance passive surveillance.  

We then extend the basic model to derive economic efficiency measures. First we produce 

trade-off curves that allow us to identify sets of search and control strategies that are efficient 

in terms of costs and probability of eradication. Then we develop an optimisation tool to find 

better search strategies in terms of three decisions: search effort allocated per site, buffer 

surveillance radius and number of repeat visits. Results provide useful insights into the design 

of efficient invasive-species control programs. 

We conclude the report by suggesting areas for further research and possible application of 

our tools to actual invasions. 
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3. Methodology  

The methodology used in this project is based on a spatially-explicit bioeconomic model that 

integrates search theory, population dynamics and economic principles (Figure 1). Maps of 

habitat suitability, land ownership, land use and other factors are read into the model. Search 

parameters are also read into the model to estimate the probability that an infestation will be 

found as a function of search effort. The population dynamics of the invader is driven by a 

dispersal kernel that results in spread through space. The simulation model is used to generate 

results on area invaded, eradication probability, number of detections, allocation of search 

effort applied and other relevant variables. These physical results are then processed and 

combined with economic parameters to estimate costs and other measures of performance. In 

extensions of the model an optimisation feedback loop is introduced to identify economically-

efficient search and control strategies by manipulating search parameters. The model 

components are described in the following sections.  

 

Search theory

Population dynamicsMaps

Habitat suitability

Land ownership (private/public) 

Land use (rural/urban) Spatially-explicit  

simulation model

Outputs

Area invaded through time

Eradication probability

Total detections (passive, active) 

Search effort maps

…

Costs (search, treatment, bounty payments)

Economic efficiency measures 

Economic parameters

Optimisation

feedback

 
Figure 1. Overview of model design. 

 

3.1 Model Description 

The landscape is represented as a grid of nr rows and nc columns containing n=nrnc square 

cells of area a. Variables associated with this grid are represented as column vectors of 

dimension n with corresponding grid cells identified by index i=1,...,n; numbered down the 

rows and then across columns. This arrangement simplifies numerical calculations and allows 

cells that do not belong to the map to be excluded from calculations (i.e. it accommodates 

non-rectangular maps). This arrangement also reduces computer memory requirements to run 

the model. These vectors are converted into matrices of dimension nrnc for display as maps. 

The state of cell i is given by its invasion status, represented by the binary variable xi, 

(1=presence, 0=absence). The state of the invasion is contained in column vector x, with 

elements xi.  

Cells have the following attributes: 
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 Habitat suitability (i), contained in vector , represents the probability that a 

propagule landing on a cell will become established (0  i  1).  

 Detectability (i), contained in vector , is the effective sweep width (see below) 

measured in metres from the search path, i depends on target characteristics, 

environmental conditions and searcher ability.  

 Search speed (si), contained in vector s, is the speed (in m/h) at which the cell can be 

traversed following standard search procedures, it depends on characteristics of the 

environment, such as slope, roughness etc. 

 Urban status (ui), contained in vector u is a binary variable (1=urban, 0=rural).  

 Ownership type (oi), contained in vector o is a binary variable (1=private, 0=public). 

3.1.1 Dispersal 

An invasion can be introduced in random locations or seeded on selected cells. An invaded 

cell produces w propagules per time period, and these propagules spread to neighbouring 

cells
1
. The distance between cells (dij) determines the proportion of propagules from cell i that 

reach cell j according to a dispersal kernel. A Cauchy kernel was assumed, where the 

probability that a propagule originating in cell i and moving in direction  will land on cell j is 

given by: 

 





D

l

il

ij

ijk

0




  (1) 

where D is the maximum dispersal distance and 

2

1

1





















adij

ij   (2) 

where   is a dispersal parameter. For convenience in the mapping process dij is measured in 

terms of number of cells and converted to metres in (2) based on the area (a) of a cell. A 

Cauchy kernel was selected because it is easy to compute and has heavy tails so it can capture 

long distance spread. Any kernel can be applied in the model simply by changing a function 

call in the code. The dispersal kernel assumed here is presented in Figure 2A 

Upon model initialisation, an adjacency matrix (A) of dimensions nn is created, whose 

element Aij represents the probability that a propagule originating in cell i will land on cell j. 

 

                                                      
1
 The number of propagules produced by an invaded cell (w) is constant, because the invasion state is a binary 

variable representing absence or presence and does not measure population density. This is a simplification that 

does not capture the increased number of propagules that would be produced by a cell that contains a denser 

invasion. However, exponential growth still occurs because the increasing number of invaded cells in the 

absence of control produces proportionally larger number of propagules. The use of presence/absence to describe 

invasion status is computationally convenient and it is suited to answering a number of important questions 

without the need for additional complexity, but there are cases where modelling local population density is 

important. This is discussed later in this report.  
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Each row Ai is created by identifying the cells that are located within a circle of radius D from 

i and applying the kernel (1) to each cell in this set. The resulting values are then normalised 

so that 
j

ijA  = 1.  
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Figure 2. The dispersal kernel (A) and dispersal probabilities contained in the adjacency matrix (B), two 

arbitrary points are shown on the map. 

 

Figure 2B shows a graphical representation of two rows of A; the rows were rearranged for 

mapping in two dimensions so i = 1280 for the circle labelled (80,16) and i = 4032 for the 

circle labelled (64,63). The probability values within each coloured circle add up to 1.0. 

The probability that a given site will be invaded depends on both the number of propagules 

landing on it and its habitat suitability. In matrix notation: 

 nαp 'exp1   (3) 

 Axn w'  (4) 

The invasion probability vector p contains a probability map that incorporates the combined 

effect of invaded sites (x) and habitat suitability (). A sample invasion probability map (the 

two-dimensional representation of p for a random initial x) is presented in Figure 3. 

To represent dispersal, p is compared to a vector of uniform random numbers r and the new 

state of each cell is set according to the rule: 

1ix , if ii pr   (5) 

otherwise xi remains in its current state. Long-distance dispersal can occur with probability pL 

independently of the dispersal kernel, as may occur when propagules are transported by road, 

water, or other means. This is represented by drawing a vector of uniform random numbers v, 

with the same number of elements as the number of invaded sites. A long distance jump 

occurs for each case where: 

Li pv   (6) 

The destination of these jumps is selected randomly within x. Stochastic dispersal simulation 

through time is executed by applying (3) to (6) iteratively, resulting in an invasion state 

trajectory xt.  
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Figure 3. Sample invasion probability map. 

 

3.1.2 Surveillance 

An invaded cell can be detected through passive surveillance with probability (qi) or through 

active surveillance with probability (zi).  

In passive surveillance the public detects an invader and reports it to the relevant agency. The 

probability of passive detection (q) depends on the urban and ownership attributes of cells; for 

any cell i: 

 iipi oupq ,  (7) 

Each year, search effort is invested in the following activities: (i) searching sites where 

treatment has occurred in the recent past (repeat search); (ii) in response to reports from the 

public (follow-up search); and (iii) through independent surveillance in public land not 

previously searched during (i) or (ii) (active search). The order of priority of these activities 

can be controlled by the user; in this application we apply them in the order given above.   

The probability of detection through active surveillance is calculated based on search theory 

(Cacho et al., 2006, 2007). Search theory is based on the concept of coverage, defined as the 

ratio of the area actually searched over the total area to be searched. The probability that an 

invasion in cell i will be detected depends on the search effort applied mi (h/cell), the speed of 

search si (m/h), effective sweep width i (m) and the area of the cell (m
2
): 



















a

ms
z iii

i


exp1  (8) 

The expression within the inner brackets in (8) measures coverage: the numerator is the area 

effectively searched (m
2
) as the product of distance traversed (si  mi) times effective sweep 

width (i); the denominator is the area of the cell (m
2
). A plot of equation (8) is presented in 

Figure 4A.  

Effective sweep width (i) measures the detectability of the target. It is derived from a lateral 

range curve which shows the probability that a target will be detected as a function of its 
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lateral distance from the searcher (Figure 4B). The efficiency of search per unit of distance 

covered is given by the area under the curve. The value of  is computed by constructing a 

rectangular box of height 1 and lateral range equal to that at which the number of missed 

detections (b) within this range equals the number of detections (a) outside the range (Figure 

4B).  We could replace area b with area a and have the same number of total detections, thus a 

standard rectangle can characterise detectability for a given search method applied in a given 

environment. Effective sweep width is the width of the box in Figure 4B. 
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Figure 4. (A) the detection curve represented in equation (7) and (B) the lateral range curve used to generate . 

 

We assume that, to encourage passive detections, the public is offered a bounty payment (CB) 

for each detection reported to the relevant agency. The total cost of the operation is given by 

the number of passive reports, the amount of surveillance undertaken by the agency and the 

cost of treatment. Total cost in terms of present value is:  

    














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



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t

maTTtmatBpt

R

CNCACmNCNC 


 1
1

S

  (9) 

where Npt is the number of cells where a passive find is reported in year t; Nat is the number of 

cells where search takes place; AT is the area treated as a result of the three types of search;  

is the discount rate; and CB, Cm and CT are the bounty payment ($/report), the cost of 

searching ($/ha) and the cost of treatment ($/ha), respectively. The second summation term in 

(9) represents the cost of repeat searches required as a result of detections in the previous SR 

years.  

We assume that only a portion (pB) of passive detections are reported. If a passive detection 

occurs in a private parcel the invasion may be destroyed, but not necessarily reported. If the 

passive detection occurs in a public parcel it is destroyed only when reported. This covers the 

situation where a person may eliminate a pest from their backyard but they may not inform 

the authorities and therefore no follow-up searches would occur in adjacent areas. This option 

can be turned on or off depending on the type of pest. For example the discovery of wasp nest 

in a backyard may compel a person to destroy it, but the discovery of a weed may not.  

3.2 Numerical Application 

In order to test the model and design decision tools it is useful to have a „world‟ with realistic 

attributes but which can be manipulated to represent any landscape pattern of interest. In our 

model the world is defined in terms of the five maps described earlier: habitat suitability, 
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detectability, search speed, urban status and ownership type. To create a world, these 

attributes could be allocated randomly, in the desired proportions, to cells in the map grid. 

However, purely random spatial patterns are not generally realistic in a landscape sense. 

Fractal algorithms can generate random worlds that possess realistic landscape structure. The 

mid-point displacement method (Saupe, 1988) is a simple and popular algorithm used for this 

purpose. The midpoint-displacement algorithm is a two-dimensional stochastic process 

defined by two parameters: variance, which determines the spread of values generated, and H, 

which determines the fractal dimension of the landscape.  H can take values in the range of 

0.0 (weak spatial autocorrelation) to 1.0 (strong spatial autocorrelation). 

We used a midpoint-displacement algorithm (implemented based on the pseudocode 

presented by Saupe, 1988) to create a hypothetical world. Figure 5 shows four maps of 

private/public ownership generated by controlling the fractal dimension and the proportion of 

privately-owned parcels. This approach allows us to generate worlds that contain the same 

frequency distribution of attribute values but different levels of clustering. In future work this 

will allow us to study whether certain landscape features affect optimal decision rules. Our 

world had dimensions 129  129 (nr=nc=129), with each cell representing one hectare 

(a=10000 m
2
); therefore the total number of cells is the same as the number of hectares (n = nr 

 nc = 16641). The dimension of the world was arbitrarily decided but constrained by the fact 

that the fractal algorithm used creates grids of dimension (N+1)
2
, where N = 2

y
. We set y=7 as 

a compromise between creating a world large enough to contain interesting spatial features 

but small enough to allow fast solution of the dispersal model. The map on the top left of 

Figure 5 was used in the simulations reported later. Other world attributes were initially 

assumed to be homogeneously distributed across the landscape to test the model in the 

absence of confounding factors. 
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Figure 5. Landscape maps showing private (black) and public areas (white) with varios combinations of fractal 

dimension (D) and proportion of private land. 
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The model is implemented in Matlab (The Mathworks, 2002). A verbal description of the 

numerical model operation is presented in the Appendix. We assumed that active-independent 

search by the pest-control agency occurs only in public land unless a detection is made (either 

by a private citizen or through active search),  in which case an intensive search is conducted 

in all parcels within a specific radius (rm) of the detection site, regardless of land class. The 

parameter values used in base-case simulations are presented in Table 1. The population 

parameters were roughly based on the red imported fire ant invasion in Brisbane, using 

anecdotal evidence and reports from QDPI, rather than analysis of actual data. The effective 

sweep width parameter () was arbitrarily set a 5m as a conservative assumption regarding 

the detectability of nests. This low value may apply to small, young nests, but it is likely that 

large nests will have a larger value of , particularly when found in clusters. The Passive 

detection probabilities (0.3 and 0.1 for urban and rural areas respectively) were set at 

plausible values appropriate as a starting point for the analysis. These values are later changed 

as needed to explore interesting situations from a management standpoint.  

Table 1. Parameter values used in the base case 

Parameter Value Description 

w 100 number of propagules produced by invaded cells 

pp(1,1) 0.3 probability of passive detection, (urban, private) 

pp(1,0) 0.1 probability of passive detection, (urban, public) 

pL 0.02 probability of long-distance jump 

M 0 total effort available (h) 

i 0.02 habitat suitability parameter 

i 5 effective sweep width (m) 

si 1,000 search speed (m/h) 

mi 2 search effort applied per cell (h) 

tD 10 time period when invasion is discovered 

 3.95 dispersal kernel parameter 

D 10 dispersal distance (no. of cells) 

pk 0.98 probability of killing treated invasions 

pB 1 proportion of passive detections reported 

rm 5 search radius for reported sites (no. of cells) 

SR 3 number of repeat searches 

CB 500 cost of bounty ($ per find) 

Cm 30 cost of search ($/h) 

CT 100 cost of treatment ($/ha) 

 0.06 discount rate 

a 10,000 cell area (m
2
) 

T 15 planning horizon (y) 

 

The model was run for 500 Monte Carlo iterations and a planning horizon (T) of 15 years. Let  


i

itt xX   (10) 

represent the total area invaded at time t for a single iteration of the model. Xt is a measure of 

performance used to calculate eradication probabilities. Eradication was defined as absence of 

invaded sites after T years of simulation (i.e., where XT=0). 

3.3 Optimisation 

Any invasive-species control program should aim at achieving optimal resource allocation for 

given goals and constraints. The most common objectives in such programs are the 
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maximisation of the benefit/cost ratio (or a similar measure of net benefit) and the 

minimisation of total cost (the sum of search, control and damage costs). The main constraint 

is generally the budget, but there may be others such the number of person-hours available per 

time period, the control technologies available, and environmental restrictions on the 

operation of the program. The decision variables are generally related to surveillance and 

treatment as the control options.  

Dynamic optimisation techniques are well suited to answering such resource allocation 

questions (see for example Shea and Possingham, 2000; Odom et al., 2003; Cacho 2006; 

Regan et al., 2006). Within this class of techniques one that stands out is Stochastic Dynamic 

Programming (SDP), a powerful and flexible method of deriving decision rules based on the 

state of the system at any time. The main limitation of SDP is the „curse of dimensionality‟ 

(Bellman, 1957), which arises because the state space increases quadratically as the number of 

possible states increases. SDP is not well suited to the spatially-explicit case where the 

number of possible states is very large
2
. An option to overcome this limitation is to use the 

spatial model to generate results that are then aggregated into simplified state variables. 

Examples of this approach include the categorisation of patch „invadedness‟ into just three 

states (Bogich and Shea 2008), and the use of invasion density and area invaded generated 

from a spatial model to describe an invasion in simple terms (Hyder et al. 2008).  

Here we follow an alternative approach, based on embedding the spatial model within the 

optimisation algorithm. Our decision variables are the search effort applied per cell (m), the 

size of the radius searched when an infestation is discovered (rm), and the number of repeat 

visits to previously treated sites (SR); the last two variables are integers. The general objective 

is to maximise the expected progress towards eradication at the minimum possible cost, where 

progress is defined by the size of the invasion at time T relative to its size at time 0. The 

problem is to maximise: 

 
   












 


v

Rm

RmT

SrmC

SrmXX
F

,,

,,0  (11) 

Subject to the model described in (1) to (9) and where TX is the mean size of the invasion 

calculated from the set of 500 XT values generated by a Monte Carlo simulation. The 

numerator in this equation is directly related to success in controlling the invasion (smaller 

invasions at T result in larger F) and the expression becomes negative when the invasion is 

growing. Cost as a denominator scales this measure, introducing a penalty for strategies that 

are effective but too expensive.  

The solution to this type of optimisation problem is generally based on algorithms such as 

Newton‟s method and its variations for smooth objective functions, or polytope methods (i.e. 

simplex) that require no smoothness conditions on the objective function (Judd, 1998). 

However, neither class of method works well when decision variables are integers. The 

binary-string genetic algorithm we apply here overcomes this limitation. Genetic algorithms 

(GA) are well suited to maximise functions that are highly non-linear or which have a large 

number of control variables (Cacho and Simmons 1999).  They have been applied to a wide 

range of problems in agriculture and natural resource management (Mayer 2002), including to 

the management of invasive species (Taylor and Hastings, 2004). They have also been applied 

 

                                                      
2
 Consider our case with 16641 cells, each of which could be in either of two states (0,1); a complete description 

of possible states would require 2
16641

 values and the transition probability matrix would require the square of 

this number multiplied by the number of possible decisions. 
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to the derivation of search paths in complex environments (Kierstead and DelBalzo, 2003).  

There are different types of GA, but all of them contain the elements of evaluation, selection, 

crossover and mutation (Goldberg, 1989). These elements are explained below in terms of our 

model. 

3.4 The Genetic Algorithm 

The GA model consists of a population of 20 „individuals‟ representing possible solutions to 

the optimisation problem. Each individual is assigned starting values for three 'genes' 

representing the control variables:  m (search effort applied per cell), rm (search radius around 

known infestations) and SR (number of repeat searches). The two latter variables are 

constrained to integer values rm  (0,1,…7) and SR  (0,1,2,3). These values can be 

represented as 2-bit and 3-bit binary strings respectively (which allow a total of 2
2
 and 2

3
 

possible values to be represented). The control variable m is a non-negative real number 

(representing search hours per hectare), but in the GA it is discretised and represented as an 8-

bit binary string. The real-valued parameter m is mapped into this discrete space, which 

contains 256 points. With 0 ≤ m ≤ 10, this results in sampling intervals of 0.0392 h (i.e. 

10/(256-1)). The binary strings representing the three genes for each individual were 

concatenated horizontally, resulting in 2+3+8 = 13 bits per individual. Hence the population 

of 20 possible solutions is represented as a (0,1) matrix of dimension 20×13. Two such 

individuals are represented in Figure 6. 

 

m(im(i) = ) = 5.84315.8431

10010110 011 0110010110 011 01

rm= 2 SR = 3

00011001010 1100011001010 11

rm= 3 SR = 1i = i = 150150 rm= 3 SR = 1i = i = 150150

m(jm(j) = ) = 0.94120.9412

j = j = 2525

10010101010 1110010101010 11 00011010 0110100011010 01101

rm= 2 SR = 3i = i = 149149

m(im(i) = ) = 5.80395.8039

rm= 2 SR = 3i = i = 149149 rm= 2 SR = 3i = i = 149149

m(im(i) = ) = 5.80395.8039

rm= 3 SR = 1j = j = 2626

m(jm(j) = ) = 0.98040.9804

rm= 3 SR = 1j = j = 2626 rm= 3 SR = 1j = j = 2626

m(jm(j) = ) = 0.98040.9804

crossover

10110101 0101110110101 01011

mutation

rm= 2 SR = 3i = i = 181181

m(im(i) = ) = 7.05887.0588

rm= 2 SR = 3i = i = 181181 rm= 2 SR = 3i = i = 181181

m(im(i) = ) = 7.05887.0588

(1)

(2)

(3)

(4)

 
 

Figure 6. Representation of genetic algorithm showing (1) mapping from decimal to binary numbers, (2) 

crossover, (3) mutation and (4) mapping from binary to decimal. 

 

The initial values of the three control variables for each individual in the population are drawn 

from a uniform distribution and mapped to the corresponding binary strings (Figure 6). The 

three parameters contained in the binary strings are mapped back into their decimal equivalent 

when used as input to the simulation model.  

At the end of n simulations of T years the fitness of each individual is calculated through 

equation (11) based on the values of m, rm and SR contained in the individual‟s genes. 

Individuals are then selected for reproduction using classical roulette wheel selection, where 

the probability of selection is proportional to the fitness of the individual relative to the rest of 



Insert Project Title 

   

 

  
 

Australian Centre of Excellence for Risk Analysis Page 20 of 40 

the population (Mitchell, 1997, 166-167). Under this approach individuals can be selected 

more than once for reproduction, and genes belonging to individuals that are not selected 

disappear from the population. 

After selection, cross-over occurs (Figure 6), with each pair producing two offspring and then 

disappearing, leaving the population size in the second generation the same as in the first. The 

worst performing individual of the new generation is then replaced by the best performing 

individual from the previous generation, this ensures the best solution found so far is not lost 

from the population. Crossover allows transmission of genes from one generation to the next 

and facilitates evolution of agents better adapted to their stochastic environment. The 

crossover operation makes copies from the genes of the two parents using the „bit string 

swapping‟ mechanism described in Goldberg (1989) and elsewhere. The probability of single-

point crossover occurring was set at 0.6, which means that there was a 0.4 probability of 

offspring being identical to their parents. 

Pairing and crossover ensure two important things happen in the GA model.  The first is, 

based on the fitness function (11) poor performers are removed from the population so 

eventually only the fittest survive.  The second is, because pairing involves the whole 

population, inferior genes can survive, albeit in proportions decreasing with each generation, 

and hence the model has a 'genetic memory'. However, a gene eventually disappears if it does 

not contribute to overall population fitness. 

A proportion of the new generation may undergo random mutation of one or more of its 

genes. Mutation consists of flipping a random bit (ie. a zero changes to a one and vice-versa) 

in the binary representation of the parameters. As this evolutionary process moves through 

time, the genetic make-up of the population converges to values of m, rm and SR which 

provide the best control strategy for the given parameters (Table 1). Convergence in a GA can 

be declared when the entire population has evolved to the same genetic make-up, within the 

desired tolerance. The probability of mutation means that new genes may emerge at any time 

and this can prevent early convergence of the population. 

In summary, the aim of our GA is to identify optimal search and control strategies that 

minimise the cost of management of the pest while maximising the likelihood of eradication. 

The GA starts with a population of „random individuals‟, each containing starting values for 

three „genes‟: search effort applied per cell (m); the size of the radius that is searched when an 

infestation is discovered (rm); and the number of repeat visits to previously treated sites (SR). 

Pairs of individuals are selected for reproduction based on their fitness (equation 11). Over 

successive generations the fitness of the population improves until the genetic makeup of the 

population converges to values of m, rm and SR that provide optimal or near-optimal solutions. 

The genetic algorithm parameters used later are presented in Table 2. 

Table 2. Genetic algorithm parameters 

Description Value 

Population size 20 

Number of generations 50 

Crossover probability 0.6 

Mutation probability 0.6 

Lower, upper bound of m 0, 10 

Lower, upper bound of rm 0, 7 

Lower, upper bound of SR 0, 3 
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4. Results and Discussion  

The model was initially run for the base parameter values (Table 1), where active search is 

applied only in response to detections associated with passive surveillance and repeat 

searches. Additional search was applied if the follow-up to those detections (the search of 

radius rm) resulted in additional detections, but no independent active search was applied 

(M=0). Results show that the invasion is unlikely to be controlled for the base case (Figure 

7A), as the expected area invaded, E(Xt), exhibits an increasing trend between years 5 and 15. 

In a subsequent model run, passive detection probability in private parcels was increased to 

0.7 (from the base 0.3) while other parameters were kept at their base values. This resulted in 

effective control in the sense that E(X15) < X0 (Figure 7B). At this level of passive detection 

there was a positive probability that the invasion would be eradicated, as indicated by the 

lower 95% confidence limit.  
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Figure 7.  Expected invasion time trajectories, E(Xt), for two different values of passive detection probabilities 

in private land (A) pp=0.3, (B) pp=0.7; dotted lines are 95% confidence limits. 

 

Summary statistics for the cases illustrated in Figures 7A and 7B are presented in Table 3 

(labelled Base and Passive respectively). In addition, we introduced active search of 6554 

hours per year, enough to cover the equivalent of 0.2 of the total area at the given search 

effort per cell (m=2), this case is labelled Active in Table 3. Increasing passive detection 

probability (pp) from 0.3 to 0.7 caused the expected cost of the eradication program to 

decrease substantially, from $2.34 million to $0.80 million, and the expected final area 

invaded to also decrease, from 225.54 to 16.97 ha (Table 3). The overall cost of eradication 

decreased at higher pp because the pest was found (and controlled) earlier, so invasions were 

smaller and program duration was shorter. Similarly, introducing active search to the base 

case caused the expected final area invaded to decrease, from 225.54 to 30.96 ha, but the cost 

of the eradication program increased by about 40%, from $2.34 million to $3.34 million 

(compare Base against Active in Table 3). The overall cost of eradication increased because of 

the substantial expenditure on search effort ($3.17 million). 

These results show that increasing passive detection probability can produce substantial cost 

savings. But enhancing passive detections would require public information campaigns and 

the costs associated with this are not considered in Table 3, which includes only the costs of 

search, control and bounty payments. Although the cost of increasing the probability of 

passive detection is unknown, a lower bound can be placed on this expenditure based on 

economic efficiency criteria. The difference in cost between Base and Passive is $1.54 

million; this would be the minimum amount the agency should be prepared to spend to 
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achieve the prescribed increased in passive detection probability. The optimum may be higher 

than this as discussed below. 

   

Table 3. Results associated with Figure 4. 

Scenario: Base Passive Active 

Assumptions    

Passive detection probability    

   private land, pp(1,1) 0.3 0.7 0.3 

   public land, pp(1,0) 0.1 0.1 0.1 

Active search effort    

    hours (M) 0 0 6554 

    proportion area covered 0 0 0.2 

 

Results (means of 500 iterations) 

Total cost ($M) 2.34 0.80 3.34 

Bounty cost ($M) 0.31 0.19 0.16 

Search cost ($M) 2.01 0.60 3.17 

Treatment cost ($M) 0.02 0.01 0.01 

Final area invaded, E(Xt) 225.54 16.97 30.96 

 

4.1 How much to spend enhancing passive surveillance? 

Consider the effect of marginal increases in passive detection probability on the cost of 

controlling the invasion calculated by the model (Figure 8). The cost of eradication decreases 

at a decreasing rate as passive detection probability increases. The overall cost of eradication 

decreases because the pest is found and controlled earlier than in the absence of passive 

surveillance. As discussed above, achieving such increases in pp would require public 

information campaigns and the cost associated with this activity was not included in the 

analysis. The actual cost of such campaigns would depend on the behaviour of individuals 

and community groups and their response to information and monetary incentives. As already 

discussed, we can estimate the minimum amount an agency should be willing to invest in 

enhancing passive surveillance by calculating the difference in present value of total program 

costs between the present situation and the target situation.  

The vertical difference between the horizontal dotted line and the cost function (the shaded 

area in Figure 8) is the cost saving that would occur as a result of achieving a given level of 

passive detection probability relative to the base case, and these funds could be used to 

increase public awareness. For example, in Figure 8, moving from pp=0.3 to pp=0.6 would 

reduce total cost from $2.34 million to $0.99 million; these expected savings of $1.35 million 

(in present value terms) could be used to achieve the required gain in passive detections. The 

vertical distance within the shaded area represents a lower bound on the amount that should 

be invested in awareness campaigns to achieve a given level of pp, because the total budget 

would remain the same as in the base case, but the probability of eradication would increase 

(as show later) and this has value in terms of reduced damage, which has not been priced in 

our model.  
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Figure 8. Effect of passive detection probability on total cost of controlling the invasion over 15 years. 

 

The cost-neutral change in the strategy illustrated above may have additional spin-offs.  The 

cost savings of $1.35 million (in search, control and bounty payments) and investment of 

these funds in awareness campaigns are likely to underestimate the value of the investment, as 

public awareness could increase passive detections in public as well as private land, such as 

when an invasion is found and reported by a person walking in a park, and this possible 

benefit has not been considered. 

4.2 Probability distributions 

Cumulative distribution functions (CDF) of final area invaded (Figure 9) provide additional 

insights. An invasion is defined as being under control when its size is not increasing (i.e. 

where XT  X0), this is the area to the left of the dotted line in Figure 9. Using this definition, 

there is a small probability (0.39) that the invasion will be controlled in the base case. It is 

important to point out that this simplistic definition of control (XT  X0) measures the net area 

invaded, but gives no indication of the gross area invaded (Rejmanek and Pitcairn, 2002). It is 

possible that a smaller net area invaded at the end of the simulation could be more scattered 

across the landscape than the initial invasion, therefore representing a large gross area that is 

bounded by a larger containment perimeter. In this situation, the invasion is not being truly 

controlled. Notwithstanding this limitation, XT  X0 is a convenient criterion to eliminate 

inefficient search strategies. 

In Figure 9, as pp increases from 0.3 to 0.7, control of the invasion is practically guaranteed 

(the curve labelled Passive is entirely to the left of the initial invasion line). This strategy 

results not only in smaller final invasions, but also in a positive eradication probability 

(~0.35), given by the intersection of the curve with the vertical axis in Figure 9. In contrast, 

the base case would not result in eradication, as the curve labelled Base intersects the 

horizontal axis at a positive value (86 ha). In this example active search occurs only in 

response to passive detections and further detections result in further search, therefore the 

total search effort represents only follow-up searches and it is not predetermined by the pest-

control agency but driven by the search process. 
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Figure 9. Cumulative distribution functions of final area invaded for the base case (Base), the base case plus 

active effort (M) of 6554 h (Active), and the base case with passive detection probability of 0.7 (Passive). 

Now consider the introduction of independent active search to be allocated randomly in public 

parcels (Figure 9, curve labelled Active). This strategy causes the CDF to shift to the left 

relative to the base case. Interestingly the left shift is more pronounced on the top portion of 

the curve, so that the probability of controlling the invasion is enhanced by the active search 

(the whole Active curve is to the left of the initial invasion line), but the probability of 

eradication is still zero as in the base case (the curve does not intersect the vertical axis). 

4.3 Eradication probability 

As already established above, the probability of passive detection has a negative effect on the 

expected final area invaded, E(XT), but the strength of the effect decreases at a decreasing rate 

as pp increases (Figure 10A). In the Base case, pp values > 0.3 achieve control of the invasion 

(i.e., to the right of point a in Figure10A E(XT) < X0) and at pp values > 0.9 E(XT) is virtually 

zero; indicating it is likely that the invasion will be eradicated if passive surveillance can be 

increased to this level. Introducing active search causes the curve to shift down (dotted line in 

Figure 10A), indicating a higher likelihood of achieving control of the invasion for any given 

level of passive detection probability. In this case control is achieved at pp > 0.16 (to the right 

of point b)   
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Figure 10. effect of passive detection probability on expected final area invaded (A) and probability of 

eradication by year 15 (B). 
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In the Base case, the probability of eradication within T years (PE) becomes positive only 

when pp > 0.5; reaching PE = 0.49 at pp= 0.9 (Figure 10B). Introducing active search causes 

an upward shift in the eradication curve, reaching a PE of 0.93 at pp=0.9; almost double the 

probability of eradication achieved with no active search. These results indicate that 

increasing passive detection in private parcels is a valuable strategy, but there is a limit to its 

effect on PE. At some point it is necessary to increase passive surveillance in public areas or 

introduce active search in such areas to increase the probability of eradication further. 

In this section we have identified two measures of performance: probability of eradication (or 

alternatively the area invaded at any time t) and total cost. The application of these 

performance measures is further developed in the following section. 
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5. Economic Efficiency Measures 

In the previous section we established the importance of passive surveillance in combination 

with active search. We also developed a method to determine the minimum amount that 

should be spent on information campaigns to enhance passive detection probability. In this 

section we develop further measures of economic efficiency and undertake optimisation 

analysis to determine desirable strategies in terms of active search allocation. 

5.1 Efficient frontiers 

The model is designed to simplify the process of analysing the costs and consequences of 

alternative scenarios. Scenarios are represented as given sets of parameter values. The 

scenarios in this section differ from each other in terms of passive detection probability (pp), 

active search effort available (M) and search effort allocated per cell (m). The model results 

are expressed in terms of our two performance measures: probability of eradication and total 

cost (Figure 11). 
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Figure 11. Simulation results for alternative combinations of passive detection probability, active surveillance 

available and search effort per cell.  

 

In Figure 11 the ideal situation is located at the top left of the plot, where probability of 

eradication (PE) is 1.0 and total cost (C) is 0. This leads to a definition of dominance whereby 

a strategy i dominates strategy j unambiguously (i > j) iff: 

ji CC    (12a) 

jEiE PP    (12b) 

and where the strict inequality applies for at least one of these conditions. Based on this 

criterion any dominated strategies can be eliminated, leaving an efficient (dominant) set. 

Graphically, inefficient (dominated) strategies are those occurring below and to the right of 

another strategy. In Figure 11 the efficient set appears to be (ccb, cib, cmb and cpb) as all 

other strategies are dominated by one or more in the set. However, recall that the cost of 

information campaigns to increase passive detection probability (pp) has not been included; 
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therefore it is not valid to compare strategies that differ in terms of pp. Figure 12 presents a 

subset of results where pp was maintained at 0.5.  
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Figure 12. Efficient frontier for a passive detection probability of 0.5 (blue curve), points differ in terms of 

surveillance available and search effort per cell, green arrows illustrate the range over which the efficient frontier 

dominates the point circled in green.  

 

The efficient set can be joined to produce what in economics is called an efficient frontier. 

Any strategies associated with points not on the frontier can be eliminated from further 

consideration. This is illustrated in Figure 12 by the point enclosed in a circle. This point is 

inefficient because performance can be improved by moving vertically (up) to the frontier to 

achieve a higher eradication probability at the same cost, moving horizontally (left) to achieve 

a lower cost for the same eradication probability, or moving at any angle in between to reduce 

cost and increase eradication probability. The frontier is sometimes called a trade-off curve 

and has been used to find efficient land-use patterns when conservation and production are 

alternative land uses (Groeneveld 2005; Polasky et al. 2005). 

The decision of where to operate along the frontier is likely to be determined by a budget 

constraint. But the budget itself is a policy decision that may be influenced by the perceived 

value of achieving a given increase in eradication probability. In terms of policy, the preferred 

point on the frontier may be based on a benefit estimate (i.e. avoided damages) that provides a 

monetary value for PE, or on an arbitrary minimum acceptable eradication probability. 

An efficient frontier provides a useful policy tool. It can be derived for any given level of 

passive detection probability and for any given planning horizon, hence enabling agencies to 

undertake sophisticated policy analyses.    

5.2 Optimisation  

As explained in the Methodology section, optimisation was undertaken with a genetic 

algorithm and consisted of finding search strategies that maximised reductions in the size of 

the invasion at the minimum possible cost. The base-case values reported in Table 1 and the 

GA parameters in Table 2 were used to initialise the optimisation run (GA). These results 
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were compared to the Active scenario discussed in section 4. In both scenarios a maximum of 

6554 hours of active search effort were available to search in public areas each year. 

CDF plots of final area invaded provide evidence that the GA produces a considerable 

improvement over results of the non-optimised, Active simulation (Figure 13A). The Active 

strategy did not result in eradication, as the Active curve intersects the horizontal axis at a 

positive value (18 ha) (Figure 13A). In contrast the optimal solution under GA resulted in a 

relatively high probability (0.61) that the invasion would be eradicated by year 15, and this 

was achieved at a lower cost than in the Active scenario (Figure 13B). 
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Figure 13. Cumulative distribution functions of final area invaded (A) and Cost (B) showing the base case 

solution (Base) and the optimal solution for the base genetic algorithm (Base GA). 

 

The entire cost CDF for GA is to the left of the cost CDF for the Active case (Figure 13B). 

These results indicate that the GA strategy dominates the base strategy by a considerable 

margin, in terms of both costs and probability of eradication.  

Results in Table 4 indicate that the main difference between the Active simulation and the GA 

solution is in the intensity of search per cell (m). In the base case m is 2 hours per cell, 

compared to 8.06 hours per cell in GA. The time spent on active search and following up 

passive reports is similar for both scenarios, but the effort needed for repeat treatment of 

infestations in Active is more than double that of GA reflecting the larger value of SR in 

Active. Despite a similar passive effort requirement under both scenarios, the actual number of 

passive finds in Active is only around 30% of the GA number, indicating that the strategy of a 

much higher search effort per cell in public lands and in response to a passive find in GA pays 

dividends, with many more finds than is the case in Active. As a consequence, the probability 

of eradication under GA is 0.61 and the expected final area invaded is 1 ha, compared to a 

zero probability of eradicating the infestation and an expected final invasion size of 31 ha 

under the Active scenario.  

Other results in Table 4 indicate that the increased search effort per cell (GA) should be 

accompanied by a reduction in the search radius around detections (rm) from 5 to 4 cells, and 

repeat visits to previously treated cells (SR) should occur for only one year rather than three. 

Using the GA strategy the cost of eradication is $3.19 million, compared to $3.34 million 

under Active, around a 5% reduction. In both cases most of the cost is attributed to searching 

for the pest. Although the cost of the bounty payment under both scenarios is small compared 

to total costs (under 6% of total costs), bounty costs under Active are double those of GA, 

again reflecting the effectiveness of the more intense searching that takes place both in 
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response to passive finds and in public areas under GA. The median time to eradication is 13 

years under GA while it never occurs within the 15-year time frame under Active.  

 

Table 4. Comparison between the Active scenario from Table 3 and the optimisation results obtained using the 

genetic algorithm (GA). In both cases the passive detection probabilities were set at 0.3 and 0.01 for private and 

public areas respectively; the active search effort available (M) was 6554 h.  

Scenario: Active GA 

 

Control variables : 

m 2.00 8.06 

rm 5 4 

SR 3 1 

 

Mean results (500 iterations): 

Total cost ($M) 3.34 3.19 

Bounty cost ($M) 0.16 0.08 

Search cost ($M) 3.17 3.10 

Treatment cost ($M) 0.01 0.01 

Final area invaded, E(Xt) 31 1 

Median year eradicated -- 13 

Probability of eradication 0.00 0.61 

Mean passive detections (no.) 608 1889 

Mean passive effort per year (h) 3,293 3,464 

Mean active effort per year (h) 6,427 6,552 

Mean repeat effort per year (h) 3,381 1,492 

 

In summary the optimal strategy of a high search intensity, a low number of repeat treatments 

and a lower search radius for a given probability of passive detection results in earlier and 

cheaper management of weeds, even if monetary rewards are involved. 
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6. Potential Applications and Extensions 

The models and decision tools we have developed in this project have a number of important 

potential applications. Some of these applications represent enhancements to the analytical 

tools available for decision making, others represent contributions to improving the 

management of specific control programs. These are described briefly in this section. 

6.1 Case studies 

The parameter values we used in our analysis are all plausible and roughly based on an ant 

invasion, but they not based on actual data. The next logical step in this research is to apply 

the model to a specific situation where spatial and temporal data are available to produce 

maps of habitat suitability, location of known infestations, rural/urban and public/private 

parcels, and detectability of the invader. Possible candidates for this include the red imported 

fire ant (RIFA), the European wasp and miconia. 

The RIFA (Solenopsis invicta) invasion was first recognized in 2001 after being detected near 

Brisbane‟s main port. Left untreated, fire ants were estimated to cost $8.9 billion over 30 

years (Kompas and Che, 2001) The Queensland Department of Primary Industries (QDPI) 

initiated an eradication program in 2001 (Moloney and Vanderwoude, 2003). Since the 

scheme commenced, the number of nests removed has declined dramatically, from over 

65,000 to 90 infested properties in the period July 2007 to April 2008. Most of the recently 

detected infestations were relatively small, suggesting that infestations are being detected 

soon after their establishment. However, some of the infestations were far from the original 

source, suggesting that the invasion is spreading. In April 2008 a bounty scheme was 

introduced offering a $500 reward for reports by private citizens of new infestations found 

before June 23 2008 (QDPIF, 2008). The aim of the scheme was to assist in finding the last 

remaining ant colonies by encouraging increased reporting and increased searching by private 

citizens. Payment was made on confirmation of ant presence by QDPI staff. This program 

offers an interesting case study. 

The European wasp (Vespula germanica) is an exotic to Australia, and is known to have 

adverse effects on agriculture, tourism and human health (Widmer et al. 1995). While the 

European wasp has established in Tasmania, Victoria, South Australia and New South Wales, 

it has not done so in Western Australia. In that state, wasp nests are destroyed when 

discovered and the pest has been the subject of an eradication program since 1984. As 

previously mentioned, the public are responsible for finding 90% of the infestations in new 

areas (Davis and Wilson, 1991). A complete list of the locations of all known nest sites, the 

type of nests found, the method by which nests were detected and other relevant information 

has been compiled for European wasp in Western Australia, making this a good candidate for 

a case study. 

Miconia (Miconia calvescens) is a small tree that is native to tropical America and is now an 

invasive species in the rainforests of the Hawaiian and Tahitian islands, New Caledonia and, 

more recently, in the wet tropics of Australia. Naturalised infestations were discovered near 

Kuranda, Queensland, in 1997 with 22 other naturalised populations being recorded by June 

2008. A further 23 locations in botanical garden specimens, nursery plants or private garden 

specimens have been recorded in Australia. Miconia has been a declared weed since 1997 and 

was included in the „Four Tropical Weeds‟ Eradication Program when the program 

commenced in 2001. Funding for miconia eradication will continue until at least 2012. 

Miconia offers a promising case study because records of the number of plants killed, the 

search effort and areas searched have been kept since the inception of the program at many of 

the invasion locations. 
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6.2 Generic analysis 

Despite the complexity of biological invasions, their essential features can be distilled down 

to a few parameters that describe rates of spread and growth, habitat suitability, vulnerability 

to control techniques, and severity of damages caused. Similarly, the essential features of 

control programs can be distilled down to a few parameters that describe the types and 

amounts of resources available, the effectiveness and costs of surveillance and control 

options, and constraints imposed by legislative and environmental restrictions. The 

development of a typology of invasions in terms of these parameters, and generic analysis for 

each type of invasion identified, can lead to useful guidelines for rapid response when limited 

information is available but the general features of an invasion are known. This is an 

application that could be accomplished at relatively low risk. It will require a well-designed 

experimental protocol and methodical application of the model to a large number of 

situations. It will also require a good database strategy to interrogate model results and extract 

information for statistical analysis. But it could rely mostly on data from the literature and 

clever design of alternative worlds, rather than requiring detailed input datasets that are 

difficult to obtain.  

For example, Figure 14 shows two different maps of habitat suitability. These maps were 

generated with the fractal algorithm described in the Methodology section. Both maps have 

exactly the same frequency distribution of habitat suitability values, but their fractal 

dimension differs. The map in Figure 14A has weak spatial autocorrelation and results in a 

more fragmented habitat than the map in Figure 14B. An interesting question is: given two 

worlds that are identical in all aspects except habitat fragmentation, will optimal management 

decisions change and if so how? Similar questions can be asked regarding other features of 

the world such as distribution of urban and rural areas, overlap between land ownership and 

habitat suitability etc. The advantage of this approach is that we can design experiments and 

control the variables of interest, something which is not possible for actual managed 

invasions. 
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Figure 14. Two alternative habitat suitability maps created with the mid-point displacement algorithm (see 

Numerical Application in the Methodology section). The maps differ in terms of clustering, controlled by H 

values of 0.2 (A) and 0.8 (B), but the frequency distribution of habitat suitability values is identical.  
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6.3 Enhancing passive surveillance 

The costs of enhancing passive surveillance are unknown at present, but it should be possible 

to design studies to measure these costs based on current programs. Increasing detections by 

the public will ultimately hinge on factors such as (1) the portfolio of media and 

communication materials used; (2) the severity of the pest (i.e. whether it is a minor nuisance 

or a serious threat); (3) the receptivity of the public (partly affected by demographic factors 

such as income, age and education); (4) the simplicity or otherwise of reporting infestations; 

and (5) the availability of reward schemes.  

A bounty scheme can have spin-offs in terms of free media coverage when people who have 

found infestations and received rewards have interesting stories to tell. Examples of this exist 

for the RIFA bounty scheme in Brisbane, which has received significant coverage in local 

newspapers. A bounty scheme may also have negative consequences, such as when people 

disperse the pest intentionally in order to obtain rewards. Existing data for the RIFA invasion 

in Brisbane and the European wasp in Western Australia (see section 6.1 above) could be 

used to develop a behavioural model of passive surveillance. 

There is scope for applying mathematical programming techniques to identify efficient 

portfolios of those factors that are under the control of the agency in charge of an invasion, 

and to incorporate the constraints placed by the biological, economic and political 

environments. Principal-agent theory offers interesting prospects. This is essentially a theory 

of contractual relationships between parties when goal conflict and asymmetry of information 

exist between the principal and the agent (Waterman, 1998). Principal-agent models have 

been applied to environmental policy (Moxey et al., 1999; Fraser, 2002), where the principal 

(the government) sets the mix of monitoring, penalties and rewards to maximise the 

likelihood that the agents (farmers) will contribute to the goals of agri-environmental 

programs. To our knowledge, this approach has not been applied to invasive species, but there 

are interesting opportunities to represent the relationships between biosecurity agencies, the 

public and pest inspectors. The principal would seek to optimise a bounty scheme by 

manipulating the probability that the public would assist in the eradication effort while 

minimising the scope for cheating.  

6.4 Optimal search and control strategies 

There are important policy decisions which could be studied by manipulating model 

parameters. For example, treatment effectiveness (pk) can be manipulated to study the benefits 

of investing in technology that improves the proportion of treated organisms that are killed. 

Or the detectability parameter () could be used to test improvements in detection technology, 

such as the use of dogs to detect fire ants. The benefits and costs of these alternative 

investments in new technology can then be compared by assessing their effects on eradication 

probabilities and costs.  

The value of information gathered while searching is an added benefit to the immediate 

benefits from removing organisms. Quantifying such benefits is useful for assisting in the 

design of integrated surveillance and control programs. For example, it may be more effective 

to use relatively expensive manual treatment methods that yield information on the 

distribution and abundance of organisms rather than automated broad-scale treatment methods 

that do not produce such information. This question can be studied with our model with no 

need for modification. But more interesting questions can be explored through optimisation. 

Our optimisation model is based on a genetic algorithm (GA), a technique that can handle 

difficult objective functions and problems with high dimensionality, but our particular 
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implementation is quite basic. Our GA proved valuable for identifying strategies to allocate 

search effort and reduce costs, but it could be improved considerably by making better use of 

the probability map generated by the model and by considering what is known about the state 

of the invasion at any time. This application would require careful thought regarding the 

representation of the learning process (through evolution of the genetic algorithm) as the 

invasion progresses.  

In terms of deriving rules of thumb, as discussed in the Methodology section, stochastic 

dynamic programming is a powerful and flexible method of deriving decision rules based on 

the state of the system at any time, but it is not well suited to spatially-explicit problems. An 

option is to use the model to derive simplified state variables and design stochastic dynamic 

programming models for optimisation with respect to the key decision variables. Examples of 

this approach are provided by Bogich and Shea (2008) and Hyder et al. (2008) among others. 

The simplified state variables may include total area invaded, average population density and 

degree of clustering of invasions, for example. The advantage of this approach is that we can 

derive optimal decision rules that account for future consequences of current actions and is 

based on the state of the invasion at any time. So we can assess, for example, whether the 

relative proportion of active and passive surveillance should be adjusted over time depending 

on whether the invasion is growing. 

6.5 Uncertainty analysis 

We have accounted for the stochastic nature of dispersal, detection and control of invaders, 

but we did not account for uncertainty. The nature of the dispersal process and the values of 

model parameters are important areas of uncertainty. A critical question is under what 

conditions the presence of uncertainty may change the management and policy decisions that 

are optimal for a particular type of invasion. From a decision analysis standpoint, uncertainty 

is important only if it affects our decisions compared to the existing stochastic model. This 

issue requires some study. Interesting options are offered by methods such as information gap 

analysis (Reagan et al., 2005; Ben-Haim, 2006) which provides a quantitative measure of the 

robustness of decisions to severe uncertainty. A similar view of the role of uncertainty in 

ecological decision models is provided by Burgman et al. (2005) who state that an option to 

deal with uncertainty  is to: “make decisions that maximize the chance of a tolerable outcome, 

despite what is unknown” (p. 2014). 

6.6 Preparedness and Response 

Our model can be used to study the tradeoffs and competition for funds between preparedness 

(pre-discovery) and response (post-discovery). This is an interesting and important question 

that can be explored by assessing the impacts of time to discovery (tD) in terms of costs and 

damages.  

Regarding response once the invasion is discovered, our tools could be further developed to 

identify rapid and efficient methods to delimit and contain the invasion. There is some useful 

work on this topic reported in the literature (i.e. Mangel et al. 1984) but there is still much 

work to be done to make the ideas operational and widely applicable. 

6.7 Enhancements to the model 

6.7.1 Growth 

The model is based on presence/absence rather than population density. This has advantages 

in terms of solution speed, but it imposes some limitations. For example, the number of 
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propagules produced per infested site are constant in the model. Propagule pressure increases 

when more sites are infested, but not as the density of the invasion grows within a site, 

because this increase is not modelled. This is not a problem if the area of the cell is small 

enough to contain only one or a few individuals, but errors are introduced as the area of the 

cells increases. Hence, extending the model to include population density per site, rather than 

considering only presence/absence, will result in a better representation of propagule pressure 

and will reduce the sensitivity of the model to spatial scale (i.e. reduce the error introduced as 

the area per cell in the map increases). Population density will also affect the probability of 

detecting an infested site and this can have important implications for effort allocation. 

Another important future enhancement of the model is to introduce a seed bank as an 

additional state variable. This will allow a more realistic application of our tools to plant 

invasions, as the presence of a seedbank makes invasions harder to eradicate.   

6.7.1 Dispersal 

Our model is based on an adjacency matrix, an efficient method to speed up numerical 

calculations of spatial spread. This approach offers substantial speed advantages over standard 

methods that rely on applying dispersal kernels to individual infested cells based on Cartesian 

coordinates. In early tests of our model we achieved 30-fold reductions in the time required to 

solve some problems by applying an adjacency matrix. This is important because optimisation 

analysis requires many runs of a model, and thus it can be impossible to apply (within 

realistic time horizons) to models that require more than a few seconds to complete one run.  

The adjacency matrix is a powerful tool and we have only scratched the surface in its 

application. For example, we assumed that the dispersal kernel applies uniformly in all 

directions; this implies there are no factors that affect the direction or pattern of dispersal. In 

our model, the actual dispersal pattern is affected by habitat suitability, which defines the 

probability of establishment of propagules that land on a cell. So we account for the essential 

spatial features of the problem, but our approach does not account for factors such as wind, 

slope and rivers that vary across the landscape and may affect dispersal. These factors can be 

accommodated with an adjacency matrix by thinking of adjacency not only in terms of 

proximity but also in terms of connectedness. Developing more detailed adjacency matrices 

for large maps can be an intensive and complicated effort but, if it improves the feasibility of 

eradication with a limited budget, investment in such effort may pay off in a short time, 

particularly for invasions that can cause substantial damages.  

6.7.1 User interface 

The model is written in the Matlab language, and requires the user to have the software 

available in their computer. The user does not need to be a Matlab expert, because the model 

is designed to allow scenarios to be defined within a spreadsheet file (Excel). This file is read 

by Matlab and the simulation is run. The user generally does not need to access the code, but 

needs to know how to start a new run in Matlab and how to copy and paste results into Excel. 

However, some operations require the code to be accessed, for example to change the order in 

which passive detections, repeat searches and active searches are processed, the user needs to 

modify one line of code. People who have skills and experience in managing invasions 

generally do not have access to Matlab and have no interest in manipulating computer code. 

Hence the importance of developing a user interface and compiling the model into an 

executable file. 
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7. Recommendations 

1. Apply the model to actual invasions to test its performance and to assist in the design 

of control plans.  

2. Conduct further study on the trade offs and interactions involved in search intensity, 

passive surveillance and landscape coverage. 

3. Study the marginal cost of achieving improvements in passive surveillance and 

develop a mathematical programming model to identify efficient management 

portfolios in terms search effort, treatment intensity, information campaigns and 

reward programs. 

4. Introduce uncertainty into the evaluation of alternative surveillance and treatment 

strategies. Evaluate whether the presence of uncertainty affects the optimal decisions 

identified with our existing tools. 

5. Build upon the optimisation tools developed to devise smarter search strategies; also 

consider deriving simplified state variables and designing stochastic dynamic 

programming models for optimisation with respect to the key decision variables and 

based on the state of the system at any time. 

6. Study the tradeoffs and competition for funds between preparedness (pre-discovery) 

and response (post-discovery). This is an interesting and important question that can 

be explored in terms of costs, damages and probability of eradication. 

7. Extend the model to allow the use of population density as an alternative state variable 

to absence/presence.  

8. Introduce a seed bank as an additional state variable to allow more realistic application 

of our tools to plant invasions. 

9. Further develop the adjacency matrix approach to modelling spatial spread, accounting 

for factors that affect dispersal such as wind, slope, rivers and roads.  

10. Develop a user interface and compile the model into an executable program to be 

made available to DAFF and other potential users. 
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7. Appendix   

The operation of the model is as follows. 

1. A „world‟ is created by generating the attribute vectors , , s, u, o, the state vector x 

and the adjacency matrix A. 

2. The passive detection probability vector (q) is created based on attributes u and o 

(equation 7).  

3. Other demographic (w, pL, SR), economic (, CB, Cm, CT) and logistic (M, m, pB, rm, tD) 

parameters are initialised according to the scenario to be tested. 

4. An invasion is started at a random location and allowed to spread undetected (applying 

equations 3 to 5) until the time of discovery tD. The initial invasion state (xt) for t=1 is 

generated (i.e. the time counter starts upon discovery of the invasion).  

5. Passive detections are generated by comparing a vector of random numbers () to the 

probability of detection of invaded sites ( txq  ). An invasion is detected for cell i if i 

 qi xit. A proportion pB of passive detections are reported. The parcels included in the 

reported set are selected randomly from the passive-detection set. 

6. A search area of radius rm is drawn around each reported cell.  

7. Search commences in the areas identified in step 6 by applying the search equation (8) 

to each cell within these areas; if additional invasions are found these are included in 

the reported list and step 6 is repeated. 

8. Repeat searching of sites previously treated up to SR years ago is undertaken.  

9. When independent searching occurs, a cell is randomly selected from the valid active-

search set (initially the entire set of publicly owned cells minus cells already searched 

in previous steps) and searched by applying effort m.  

10. If an invasion is detected in steps 8 or 9, a search area of radius rm is drawn around 

each reported cell and searching within this area commences according to equation 

(8). 

11. The amount of active-search effort available and the valid active-search set are 

updated based on the searches executed in steps 9 and 10. If active-search effort is still 

available, steps 9 to 11 are repeated. Otherwise step 12 is executed. 

12. Control is applied to all cells where invasions were detected; these invasions are 

eliminated with probability pk. The state of the invasion xt is updated.  

13. The time counter is increased. If t < T, the invasion spreads (applying equations 3 to 6) 

and the state of the invasion xt is updated. If t=T, results are saved, the time counter is 

restarted and the simulation returns to step 4 for the desired number of Monte Carlo 

iterations. 

14. Results from simulations are converted to cumulative distribution functions (CDFs) 

and relevant summary statistics are calculated. 

  

 


